use rustc::lint::*; use syntax::ptr::P; use rustc_front::hir::*; use reexport::*; use rustc_front::util::{is_comparison_binop, binop_to_string}; use syntax::codemap::{Span, Spanned}; use rustc_front::visit::FnKind; use rustc::middle::ty; use rustc::middle::const_eval::ConstVal::Float; use rustc::middle::const_eval::eval_const_expr_partial; use rustc::middle::const_eval::EvalHint::ExprTypeChecked; use utils::{get_item_name, match_path, snippet, span_lint, walk_ptrs_ty, is_integer_literal}; use utils::span_help_and_lint; declare_lint!(pub TOPLEVEL_REF_ARG, Warn, "An entire binding was declared as `ref`, in a function argument (`fn foo(ref x: Bar)`), \ or a `let` statement (`let ref x = foo()`). In such cases, it is preferred to take \ references with `&`."); #[allow(missing_copy_implementations)] pub struct TopLevelRefPass; impl LintPass for TopLevelRefPass { fn get_lints(&self) -> LintArray { lint_array!(TOPLEVEL_REF_ARG) } } impl LateLintPass for TopLevelRefPass { fn check_fn(&mut self, cx: &LateContext, k: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) { if let FnKind::Closure = k { // Does not apply to closures return } for ref arg in &decl.inputs { if let PatIdent(BindByRef(_), _, _) = arg.pat.node { span_lint(cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. Consider using a reference type instead." ); } } } fn check_stmt(&mut self, cx: &LateContext, s: &Stmt) { if_let_chain! { [ let StmtDecl(ref d, _) = s.node, let DeclLocal(ref l) = d.node, let PatIdent(BindByRef(_), i, None) = l.pat.node, let Some(ref init) = l.init ], { let tyopt = if let Some(ref ty) = l.ty { format!(": {:?} ", ty) } else { "".to_owned() }; span_help_and_lint(cx, TOPLEVEL_REF_ARG, l.pat.span, "`ref` on an entire `let` pattern is discouraged, take a reference with & instead", &format!("try `let {} {}= &{};`", snippet(cx, i.span, "_"), tyopt, snippet(cx, init.span, "_")) ); } }; } } declare_lint!(pub CMP_NAN, Deny, "comparisons to NAN (which will always return false, which is probably not intended)"); #[derive(Copy,Clone)] pub struct CmpNan; impl LintPass for CmpNan { fn get_lints(&self) -> LintArray { lint_array!(CMP_NAN) } } impl LateLintPass for CmpNan { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if is_comparison_binop(cmp.node) { if let &ExprPath(_, ref path) = &left.node { check_nan(cx, path, expr.span); } if let &ExprPath(_, ref path) = &right.node { check_nan(cx, path, expr.span); } } } } } fn check_nan(cx: &LateContext, path: &Path, span: Span) { path.segments.last().map(|seg| if seg.identifier.name.as_str() == "NAN" { span_lint(cx, CMP_NAN, span, "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead"); }); } declare_lint!(pub FLOAT_CMP, Warn, "using `==` or `!=` on float values (as floating-point operations \ usually involve rounding errors, it is always better to check for approximate \ equality within small bounds)"); #[derive(Copy,Clone)] pub struct FloatCmp; impl LintPass for FloatCmp { fn get_lints(&self) -> LintArray { lint_array!(FLOAT_CMP) } } impl LateLintPass for FloatCmp { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { let op = cmp.node; if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) { if is_allowed(cx, left) || is_allowed(cx, right) { return; } if let Some(name) = get_item_name(cx, expr) { let name = name.as_str(); if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") || name.ends_with("_eq") { return; } } span_lint(cx, FLOAT_CMP, expr.span, &format!( "{}-comparison of f32 or f64 detected. Consider changing this to \ `abs({} - {}) < epsilon` for some suitable value of epsilon", binop_to_string(op), snippet(cx, left.span, ".."), snippet(cx, right.span, ".."))); } } } } fn is_allowed(cx: &LateContext, expr: &Expr) -> bool { let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None); if let Ok(Float(val)) = res { val == 0.0 || val == ::std::f64::INFINITY || val == ::std::f64::NEG_INFINITY } else { false } } fn is_float(cx: &LateContext, expr: &Expr) -> bool { if let ty::TyFloat(_) = walk_ptrs_ty(cx.tcx.expr_ty(expr)).sty { true } else { false } } declare_lint!(pub CMP_OWNED, Warn, "creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`"); #[derive(Copy,Clone)] pub struct CmpOwned; impl LintPass for CmpOwned { fn get_lints(&self) -> LintArray { lint_array!(CMP_OWNED) } } impl LateLintPass for CmpOwned { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = expr.node { if is_comparison_binop(cmp.node) { check_to_owned(cx, left, right.span, true, cmp.span); check_to_owned(cx, right, left.span, false, cmp.span) } } } } fn check_to_owned(cx: &LateContext, expr: &Expr, other_span: Span, left: bool, op: Span) { let snip = match expr.node { ExprMethodCall(Spanned{node: ref name, ..}, _, ref args) if args.len() == 1 => { if name.as_str() == "to_string" || name.as_str() == "to_owned" && is_str_arg(cx, args) { snippet(cx, args[0].span, "..") } else { return } }, ExprCall(ref path, ref v) if v.len() == 1 => { if let &ExprPath(None, ref path) = &path.node { if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) { snippet(cx, v[0].span, "..") } else { return } } else { return } }, _ => return }; if left { span_lint(cx, CMP_OWNED, expr.span, &format!( "this creates an owned instance just for comparison. Consider using \ `{} {} {}` to compare without allocation", snip, snippet(cx, op, "=="), snippet(cx, other_span, ".."))); } else { span_lint(cx, CMP_OWNED, expr.span, &format!( "this creates an owned instance just for comparison. Consider using \ `{} {} {}` to compare without allocation", snippet(cx, other_span, ".."), snippet(cx, op, "=="), snip)); } } fn is_str_arg(cx: &LateContext, args: &[P]) -> bool { args.len() == 1 && if let ty::TyStr = walk_ptrs_ty(cx.tcx.expr_ty(&args[0])).sty { true } else { false } } declare_lint!(pub MODULO_ONE, Warn, "taking a number modulo 1, which always returns 0"); #[derive(Copy,Clone)] pub struct ModuloOne; impl LintPass for ModuloOne { fn get_lints(&self) -> LintArray { lint_array!(MODULO_ONE) } } impl LateLintPass for ModuloOne { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(ref cmp, _, ref right) = expr.node { if let &Spanned {node: BinOp_::BiRem, ..} = cmp { if is_integer_literal(right, 1) { cx.span_lint(MODULO_ONE, expr.span, "any number modulo 1 will be 0"); } } } } } declare_lint!(pub REDUNDANT_PATTERN, Warn, "using `name @ _` in a pattern"); #[derive(Copy,Clone)] pub struct PatternPass; impl LintPass for PatternPass { fn get_lints(&self) -> LintArray { lint_array!(REDUNDANT_PATTERN) } } impl LateLintPass for PatternPass { fn check_pat(&mut self, cx: &LateContext, pat: &Pat) { if let PatIdent(_, ref ident, Some(ref right)) = pat.node { if right.node == PatWild { cx.span_lint(REDUNDANT_PATTERN, pat.span, &format!( "the `{} @ _` pattern can be written as just `{}`", ident.node.name, ident.node.name)); } } } }