//! Checks for usage of `&Vec[_]` and `&String`. use crate::utils::ptr::get_spans; use crate::utils::{ is_allowed, is_type_diagnostic_item, match_qpath, match_type, paths, snippet_opt, span_lint, span_lint_and_sugg, span_lint_and_then, walk_ptrs_hir_ty, }; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::{ BinOpKind, BodyId, Expr, ExprKind, FnDecl, FnRetTy, GenericArg, HirId, ImplItem, ImplItemKind, Item, ItemKind, Lifetime, MutTy, Mutability, Node, PathSegment, QPath, TraitFn, TraitItem, TraitItemKind, Ty, TyKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; use rustc_span::{sym, MultiSpan}; use std::borrow::Cow; declare_clippy_lint! { /// **What it does:** This lint checks for function arguments of type `&String` /// or `&Vec` unless the references are mutable. It will also suggest you /// replace `.clone()` calls with the appropriate `.to_owned()`/`to_string()` /// calls. /// /// **Why is this bad?** Requiring the argument to be of the specific size /// makes the function less useful for no benefit; slices in the form of `&[T]` /// or `&str` usually suffice and can be obtained from other types, too. /// /// **Known problems:** The lint does not follow data. So if you have an /// argument `x` and write `let y = x; y.clone()` the lint will not suggest /// changing that `.clone()` to `.to_owned()`. /// /// Other functions called from this function taking a `&String` or `&Vec` /// argument may also fail to compile if you change the argument. Applying /// this lint on them will fix the problem, but they may be in other crates. /// /// One notable example of a function that may cause issues, and which cannot /// easily be changed due to being in the standard library is `Vec::contains`. /// when called on a `Vec>`. If a `&Vec` is passed to that method then /// it will compile, but if a `&[T]` is passed then it will not compile. /// /// ```ignore /// fn cannot_take_a_slice(v: &Vec) -> bool { /// let vec_of_vecs: Vec> = some_other_fn(); /// /// vec_of_vecs.contains(v) /// } /// ``` /// /// Also there may be `fn(&Vec)`-typed references pointing to your function. /// If you have them, you will get a compiler error after applying this lint's /// suggestions. You then have the choice to undo your changes or change the /// type of the reference. /// /// Note that if the function is part of your public interface, there may be /// other crates referencing it, of which you may not be aware. Carefully /// deprecate the function before applying the lint suggestions in this case. /// /// **Example:** /// ```ignore /// // Bad /// fn foo(&Vec) { .. } /// /// // Good /// fn foo(&[u32]) { .. } /// ``` pub PTR_ARG, style, "fn arguments of the type `&Vec<...>` or `&String`, suggesting to use `&[...]` or `&str` instead, respectively" } declare_clippy_lint! { /// **What it does:** This lint checks for equality comparisons with `ptr::null` /// /// **Why is this bad?** It's easier and more readable to use the inherent /// `.is_null()` /// method instead /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// // Bad /// if x == ptr::null { /// .. /// } /// /// // Good /// if x.is_null() { /// .. /// } /// ``` pub CMP_NULL, style, "comparing a pointer to a null pointer, suggesting to use `.is_null()` instead." } declare_clippy_lint! { /// **What it does:** This lint checks for functions that take immutable /// references and return mutable ones. /// /// **Why is this bad?** This is trivially unsound, as one can create two /// mutable references from the same (immutable!) source. /// This [error](https://github.com/rust-lang/rust/issues/39465) /// actually lead to an interim Rust release 1.15.1. /// /// **Known problems:** To be on the conservative side, if there's at least one /// mutable reference with the output lifetime, this lint will not trigger. /// In practice, this case is unlikely anyway. /// /// **Example:** /// ```ignore /// fn foo(&Foo) -> &mut Bar { .. } /// ``` pub MUT_FROM_REF, correctness, "fns that create mutable refs from immutable ref args" } declare_lint_pass!(Ptr => [PTR_ARG, CMP_NULL, MUT_FROM_REF]); impl<'tcx> LateLintPass<'tcx> for Ptr { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if let ItemKind::Fn(ref sig, _, body_id) = item.kind { check_fn(cx, &sig.decl, item.hir_id, Some(body_id)); } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx ImplItem<'_>) { if let ImplItemKind::Fn(ref sig, body_id) = item.kind { let parent_item = cx.tcx.hir().get_parent_item(item.hir_id); if let Some(Node::Item(it)) = cx.tcx.hir().find(parent_item) { if let ItemKind::Impl { of_trait: Some(_), .. } = it.kind { return; // ignore trait impls } } check_fn(cx, &sig.decl, item.hir_id, Some(body_id)); } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) { if let TraitItemKind::Fn(ref sig, ref trait_method) = item.kind { let body_id = if let TraitFn::Provided(b) = *trait_method { Some(b) } else { None }; check_fn(cx, &sig.decl, item.hir_id, body_id); } } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if let ExprKind::Binary(ref op, ref l, ref r) = expr.kind { if (op.node == BinOpKind::Eq || op.node == BinOpKind::Ne) && (is_null_path(l) || is_null_path(r)) { span_lint( cx, CMP_NULL, expr.span, "comparing with null is better expressed by the `.is_null()` method", ); } } } } #[allow(clippy::too_many_lines)] fn check_fn(cx: &LateContext<'_>, decl: &FnDecl<'_>, fn_id: HirId, opt_body_id: Option) { let fn_def_id = cx.tcx.hir().local_def_id(fn_id); let sig = cx.tcx.fn_sig(fn_def_id); let fn_ty = sig.skip_binder(); let body = opt_body_id.map(|id| cx.tcx.hir().body(id)); for (idx, (arg, ty)) in decl.inputs.iter().zip(fn_ty.inputs()).enumerate() { // Honor the allow attribute on parameters. See issue 5644. if let Some(body) = &body { if is_allowed(cx, PTR_ARG, body.params[idx].hir_id) { continue; } } if let ty::Ref(_, ty, Mutability::Not) = ty.kind() { if is_type_diagnostic_item(cx, ty, sym::vec_type) { let mut ty_snippet = None; if_chain! { if let TyKind::Path(QPath::Resolved(_, ref path)) = walk_ptrs_hir_ty(arg).kind; if let Some(&PathSegment{args: Some(ref parameters), ..}) = path.segments.last(); then { let types: Vec<_> = parameters.args.iter().filter_map(|arg| match arg { GenericArg::Type(ty) => Some(ty), _ => None, }).collect(); if types.len() == 1 { ty_snippet = snippet_opt(cx, types[0].span); } } }; if let Some(spans) = get_spans(cx, opt_body_id, idx, &[("clone", ".to_owned()")]) { span_lint_and_then( cx, PTR_ARG, arg.span, "writing `&Vec<_>` instead of `&[_]` involves one more reference and cannot be used \ with non-Vec-based slices.", |diag| { if let Some(ref snippet) = ty_snippet { diag.span_suggestion( arg.span, "change this to", format!("&[{}]", snippet), Applicability::Unspecified, ); } for (clonespan, suggestion) in spans { diag.span_suggestion( clonespan, &snippet_opt(cx, clonespan).map_or("change the call to".into(), |x| { Cow::Owned(format!("change `{}` to", x)) }), suggestion.into(), Applicability::Unspecified, ); } }, ); } } else if is_type_diagnostic_item(cx, ty, sym::string_type) { if let Some(spans) = get_spans(cx, opt_body_id, idx, &[("clone", ".to_string()"), ("as_str", "")]) { span_lint_and_then( cx, PTR_ARG, arg.span, "writing `&String` instead of `&str` involves a new object where a slice will do.", |diag| { diag.span_suggestion(arg.span, "change this to", "&str".into(), Applicability::Unspecified); for (clonespan, suggestion) in spans { diag.span_suggestion_short( clonespan, &snippet_opt(cx, clonespan).map_or("change the call to".into(), |x| { Cow::Owned(format!("change `{}` to", x)) }), suggestion.into(), Applicability::Unspecified, ); } }, ); } } else if match_type(cx, ty, &paths::COW) { if_chain! { if let TyKind::Rptr(_, MutTy { ref ty, ..} ) = arg.kind; if let TyKind::Path(ref path) = ty.kind; if let QPath::Resolved(None, ref pp) = *path; if let [ref bx] = *pp.segments; if let Some(ref params) = bx.args; if !params.parenthesized; if let Some(inner) = params.args.iter().find_map(|arg| match arg { GenericArg::Type(ty) => Some(ty), _ => None, }); then { let replacement = snippet_opt(cx, inner.span); if let Some(r) = replacement { span_lint_and_sugg( cx, PTR_ARG, arg.span, "using a reference to `Cow` is not recommended.", "change this to", "&".to_owned() + &r, Applicability::Unspecified, ); } } } } } } if let FnRetTy::Return(ref ty) = decl.output { if let Some((out, Mutability::Mut, _)) = get_rptr_lm(ty) { let mut immutables = vec![]; for (_, ref mutbl, ref argspan) in decl .inputs .iter() .filter_map(|ty| get_rptr_lm(ty)) .filter(|&(lt, _, _)| lt.name == out.name) { if *mutbl == Mutability::Mut { return; } immutables.push(*argspan); } if immutables.is_empty() { return; } span_lint_and_then( cx, MUT_FROM_REF, ty.span, "mutable borrow from immutable input(s)", |diag| { let ms = MultiSpan::from_spans(immutables); diag.span_note(ms, "immutable borrow here"); }, ); } } } fn get_rptr_lm<'tcx>(ty: &'tcx Ty<'tcx>) -> Option<(&'tcx Lifetime, Mutability, Span)> { if let TyKind::Rptr(ref lt, ref m) = ty.kind { Some((lt, m.mutbl, ty.span)) } else { None } } fn is_null_path(expr: &Expr<'_>) -> bool { if let ExprKind::Call(ref pathexp, ref args) = expr.kind { if args.is_empty() { if let ExprKind::Path(ref path) = pathexp.kind { return match_qpath(path, &paths::PTR_NULL) || match_qpath(path, &paths::PTR_NULL_MUT); } } } false }