use reexport::*;
use rustc::hir;
use rustc::hir::*;
use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
use rustc::hir::def::Def;
use rustc::hir::map::Node;
use rustc::lint::{LintContext, LateContext, Level, Lint};
use rustc::session::Session;
use rustc::traits;
use rustc::ty::{self, TyCtxt, Ty};
use rustc::mir::transform::MirSource;
use rustc_errors;
use std::borrow::Cow;
use std::env;
use std::mem;
use std::str::FromStr;
use syntax::ast::{self, LitKind};
use syntax::attr;
use syntax::codemap::{ExpnFormat, ExpnInfo, Span, DUMMY_SP};
use syntax::errors::DiagnosticBuilder;
use syntax::ptr::P;
use syntax::symbol::keywords;
pub mod comparisons;
pub mod conf;
pub mod constants;
mod hir_utils;
pub mod paths;
pub mod sugg;
pub mod inspector;
pub mod internal_lints;
pub mod author;
pub use self::hir_utils::{SpanlessEq, SpanlessHash};
pub type MethodArgs = HirVec
>;
/// Produce a nested chain of if-lets and ifs from the patterns:
///
/// ```rust,ignore
/// if_let_chain! {[
/// let Some(y) = x,
/// y.len() == 2,
/// let Some(z) = y,
/// ], {
/// block
/// }}
/// ```
///
/// becomes
///
/// ```rust,ignore
/// if let Some(y) = x {
/// if y.len() == 2 {
/// if let Some(z) = y {
/// block
/// }
/// }
/// }
/// ```
#[macro_export]
macro_rules! if_let_chain {
([let $pat:pat = $expr:expr, $($tt:tt)+], $block:block) => {
if let $pat = $expr {
if_let_chain!{ [$($tt)+], $block }
}
};
([let $pat:pat = $expr:expr], $block:block) => {
if let $pat = $expr {
$block
}
};
([let $pat:pat = $expr:expr,], $block:block) => {
if let $pat = $expr {
$block
}
};
([$expr:expr, $($tt:tt)+], $block:block) => {
if $expr {
if_let_chain!{ [$($tt)+], $block }
}
};
([$expr:expr], $block:block) => {
if $expr {
$block
}
};
([$expr:expr,], $block:block) => {
if $expr {
$block
}
};
}
pub mod higher;
/// Returns true if the two spans come from differing expansions (i.e. one is
/// from a macro and one
/// isn't).
pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool {
rhs.ctxt != lhs.ctxt
}
pub fn in_constant(cx: &LateContext, id: NodeId) -> bool {
let parent_id = cx.tcx.hir.get_parent(id);
match MirSource::from_node(cx.tcx, parent_id) {
MirSource::Fn(_) => false,
MirSource::Const(_) |
MirSource::Static(..) |
MirSource::Promoted(..) => true,
}
}
/// Returns true if this `expn_info` was expanded by any macro.
pub fn in_macro(span: Span) -> bool {
span.ctxt.outer().expn_info().map_or(false, |info| {
match info.callee.format {// don't treat range expressions desugared to structs as "in_macro"
ExpnFormat::CompilerDesugaring(name) => name != "...",
_ => true,
}
})
}
/// Returns true if the macro that expanded the crate was outside of the
/// current crate or was a
/// compiler plugin.
pub fn in_external_macro<'a, T: LintContext<'a>>(cx: &T, span: Span) -> bool {
/// Invokes `in_macro` with the expansion info of the given span slightly
/// heavy, try to use
/// this after other checks have already happened.
fn in_macro_ext<'a, T: LintContext<'a>>(cx: &T, info: &ExpnInfo) -> bool {
// no ExpnInfo = no macro
if let ExpnFormat::MacroAttribute(..) = info.callee.format {
// these are all plugins
return true;
}
// no span for the callee = external macro
info.callee.span.map_or(true, |span| {
// no snippet = external macro or compiler-builtin expansion
cx.sess().codemap().span_to_snippet(span).ok().map_or(
true,
|code| {
!code.starts_with("macro_rules")
},
)
})
}
span.ctxt.outer().expn_info().map_or(false, |info| {
in_macro_ext(cx, &info)
})
}
/// Check if a `DefId`'s path matches the given absolute type path usage.
///
/// # Examples
/// ```rust,ignore
/// match_def_path(cx.tcx, id, &["core", "option", "Option"])
/// ```
///
/// See also the `paths` module.
pub fn match_def_path(tcx: TyCtxt, def_id: DefId, path: &[&str]) -> bool {
use syntax::symbol;
struct AbsolutePathBuffer {
names: Vec,
}
impl ty::item_path::ItemPathBuffer for AbsolutePathBuffer {
fn root_mode(&self) -> &ty::item_path::RootMode {
const ABSOLUTE: &'static ty::item_path::RootMode = &ty::item_path::RootMode::Absolute;
ABSOLUTE
}
fn push(&mut self, text: &str) {
self.names.push(symbol::Symbol::intern(text).as_str());
}
}
let mut apb = AbsolutePathBuffer { names: vec![] };
tcx.push_item_path(&mut apb, def_id);
apb.names.len() == path.len() &&
apb.names.into_iter().zip(path.iter()).all(
|(a, &b)| *a == *b,
)
}
/// Check if type is struct, enum or union type with given def path.
pub fn match_type(cx: &LateContext, ty: Ty, path: &[&str]) -> bool {
match ty.sty {
ty::TyAdt(adt, _) => match_def_path(cx.tcx, adt.did, path),
_ => false,
}
}
/// Check if the method call given in `expr` belongs to given type.
pub fn match_impl_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool {
let method_call = cx.tables.type_dependent_defs[&expr.id];
let trt_id = cx.tcx.impl_of_method(method_call.def_id());
if let Some(trt_id) = trt_id {
match_def_path(cx.tcx, trt_id, path)
} else {
false
}
}
/// Check if the method call given in `expr` belongs to given trait.
pub fn match_trait_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool {
let method_call = cx.tables.type_dependent_defs[&expr.id];
let trt_id = cx.tcx.trait_of_item(method_call.def_id());
if let Some(trt_id) = trt_id {
match_def_path(cx.tcx, trt_id, path)
} else {
false
}
}
pub fn last_path_segment(path: &QPath) -> &PathSegment {
match *path {
QPath::Resolved(_, ref path) => {
path.segments.last().expect(
"A path must have at least one segment",
)
},
QPath::TypeRelative(_, ref seg) => seg,
}
}
pub fn single_segment_path(path: &QPath) -> Option<&PathSegment> {
match *path {
QPath::Resolved(_, ref path) if path.segments.len() == 1 => Some(&path.segments[0]),
QPath::Resolved(..) => None,
QPath::TypeRelative(_, ref seg) => Some(seg),
}
}
/// Match a `Path` against a slice of segment string literals.
///
/// # Examples
/// ```rust,ignore
/// match_path(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_path(path: &QPath, segments: &[&str]) -> bool {
match *path {
QPath::Resolved(_, ref path) => match_path_old(path, segments),
QPath::TypeRelative(ref ty, ref segment) => {
match ty.node {
TyPath(ref inner_path) => {
!segments.is_empty() && match_path(inner_path, &segments[..(segments.len() - 1)]) &&
segment.name == segments[segments.len() - 1]
},
_ => false,
}
},
}
}
pub fn match_path_old(path: &Path, segments: &[&str]) -> bool {
path.segments.iter().rev().zip(segments.iter().rev()).all(
|(a, b)| a.name == *b,
)
}
/// Match a `Path` against a slice of segment string literals, e.g.
///
/// # Examples
/// ```rust,ignore
/// match_path(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool {
path.segments.iter().rev().zip(segments.iter().rev()).all(
|(a, b)| a.identifier.name == *b,
)
}
/// Get the definition associated to a path.
pub fn path_to_def(cx: &LateContext, path: &[&str]) -> Option {
let cstore = &cx.tcx.sess.cstore;
let crates = cstore.crates();
let krate = crates.iter().find(
|&&krate| cstore.crate_name(krate) == path[0],
);
if let Some(krate) = krate {
let krate = DefId {
krate: *krate,
index: CRATE_DEF_INDEX,
};
let mut items = cstore.item_children(krate, cx.tcx.sess);
let mut path_it = path.iter().skip(1).peekable();
loop {
let segment = match path_it.next() {
Some(segment) => segment,
None => return None,
};
for item in &mem::replace(&mut items, vec![]) {
if item.ident.name == *segment {
if path_it.peek().is_none() {
return Some(item.def);
}
items = cstore.item_children(item.def.def_id(), cx.tcx.sess);
break;
}
}
}
} else {
None
}
}
/// Convenience function to get the `DefId` of a trait by path.
pub fn get_trait_def_id(cx: &LateContext, path: &[&str]) -> Option {
let def = match path_to_def(cx, path) {
Some(def) => def,
None => return None,
};
match def {
def::Def::Trait(trait_id) => Some(trait_id),
_ => None,
}
}
/// Check whether a type implements a trait.
/// See also `get_trait_def_id`.
pub fn implements_trait<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
ty_params: &[Ty<'tcx>],
) -> bool {
let ty = cx.tcx.erase_regions(&ty);
let obligation = cx.tcx.predicate_for_trait_def(
cx.param_env,
traits::ObligationCause::dummy(),
trait_id,
0,
ty,
ty_params,
);
cx.tcx.infer_ctxt().enter(|infcx| {
traits::SelectionContext::new(&infcx).evaluate_obligation_conservatively(&obligation)
})
}
/// Resolve the definition of a node from its `NodeId`.
pub fn resolve_node(cx: &LateContext, qpath: &QPath, id: NodeId) -> def::Def {
cx.tables.qpath_def(qpath, id)
}
/// Match an `Expr` against a chain of methods, and return the matched `Expr`s.
///
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
/// `matched_method_chain(expr, &["bar", "baz"])` will return a `Vec`
/// containing the `Expr`s for
/// `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr, methods: &[&str]) -> Option> {
let mut current = expr;
let mut matched = Vec::with_capacity(methods.len());
for method_name in methods.iter().rev() {
// method chains are stored last -> first
if let ExprMethodCall(ref path, _, ref args) = current.node {
if path.name == *method_name {
if args.iter().any(|e| in_macro(e.span)) {
return None;
}
matched.push(&**args); // build up `matched` backwards
current = &args[0] // go to parent expression
} else {
return None;
}
} else {
return None;
}
}
matched.reverse(); // reverse `matched`, so that it is in the same order as `methods`
Some(matched)
}
/// Get the name of the item the expression is in, if available.
pub fn get_item_name(cx: &LateContext, expr: &Expr) -> Option {
let parent_id = cx.tcx.hir.get_parent(expr.id);
match cx.tcx.hir.find(parent_id) {
Some(Node::NodeItem(&Item { ref name, .. })) |
Some(Node::NodeTraitItem(&TraitItem { ref name, .. })) |
Some(Node::NodeImplItem(&ImplItem { ref name, .. })) => Some(*name),
_ => None,
}
}
/// Convert a span to a code snippet if available, otherwise use default.
///
/// # Example
/// ```rust,ignore
/// snippet(cx, expr.span, "..")
/// ```
pub fn snippet<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
snippet_opt(cx, span).map_or_else(|| Cow::Borrowed(default), From::from)
}
/// Convert a span to a code snippet. Returns `None` if not available.
pub fn snippet_opt<'a, T: LintContext<'a>>(cx: &T, span: Span) -> Option {
cx.sess().codemap().span_to_snippet(span).ok()
}
/// Convert a span (from a block) to a code snippet if available, otherwise use
/// default.
/// This trims the code of indentation, except for the first line. Use it for
/// blocks or block-like
/// things which need to be printed as such.
///
/// # Example
/// ```rust,ignore
/// snippet(cx, expr.span, "..")
/// ```
pub fn snippet_block<'a, 'b, T: LintContext<'b>>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
let snip = snippet(cx, span, default);
trim_multiline(snip, true)
}
/// Like `snippet_block`, but add braces if the expr is not an `ExprBlock`.
/// Also takes an `Option` which can be put inside the braces.
pub fn expr_block<'a, 'b, T: LintContext<'b>>(
cx: &T,
expr: &Expr,
option: Option,
default: &'a str,
) -> Cow<'a, str> {
let code = snippet_block(cx, expr.span, default);
let string = option.unwrap_or_default();
if let ExprBlock(_) = expr.node {
Cow::Owned(format!("{}{}", code, string))
} else if string.is_empty() {
Cow::Owned(format!("{{ {} }}", code))
} else {
Cow::Owned(format!("{{\n{};\n{}\n}}", code, string))
}
}
/// Trim indentation from a multiline string with possibility of ignoring the
/// first line.
pub fn trim_multiline(s: Cow, ignore_first: bool) -> Cow {
let s_space = trim_multiline_inner(s, ignore_first, ' ');
let s_tab = trim_multiline_inner(s_space, ignore_first, '\t');
trim_multiline_inner(s_tab, ignore_first, ' ')
}
fn trim_multiline_inner(s: Cow, ignore_first: bool, ch: char) -> Cow {
let x = s.lines()
.skip(ignore_first as usize)
.filter_map(|l| {
if l.is_empty() {
None
} else {
// ignore empty lines
Some(
l.char_indices()
.find(|&(_, x)| x != ch)
.unwrap_or((l.len(), ch))
.0,
)
}
})
.min()
.unwrap_or(0);
if x > 0 {
Cow::Owned(
s.lines()
.enumerate()
.map(|(i, l)| if (ignore_first && i == 0) || l.is_empty() {
l
} else {
l.split_at(x).1
})
.collect::>()
.join("\n"),
)
} else {
s
}
}
/// Get a parent expressions if any – this is useful to constrain a lint.
pub fn get_parent_expr<'c>(cx: &'c LateContext, e: &Expr) -> Option<&'c Expr> {
let map = &cx.tcx.hir;
let node_id: NodeId = e.id;
let parent_id: NodeId = map.get_parent_node(node_id);
if node_id == parent_id {
return None;
}
map.find(parent_id).and_then(
|node| if let Node::NodeExpr(parent) =
node
{
Some(parent)
} else {
None
},
)
}
pub fn get_enclosing_block<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, node: NodeId) -> Option<&'tcx Block> {
let map = &cx.tcx.hir;
let enclosing_node = map.get_enclosing_scope(node).and_then(|enclosing_id| {
map.find(enclosing_id)
});
if let Some(node) = enclosing_node {
match node {
Node::NodeBlock(block) => Some(block),
Node::NodeItem(&Item { node: ItemFn(_, _, _, _, _, eid), .. }) => {
match cx.tcx.hir.body(eid).value.node {
ExprBlock(ref block) => Some(block),
_ => None,
}
},
_ => None,
}
} else {
None
}
}
pub struct DiagnosticWrapper<'a>(pub DiagnosticBuilder<'a>);
impl<'a> Drop for DiagnosticWrapper<'a> {
fn drop(&mut self) {
self.0.emit();
}
}
impl<'a> DiagnosticWrapper<'a> {
fn wiki_link(&mut self, lint: &'static Lint) {
if env::var("CLIPPY_DISABLE_WIKI_LINKS").is_err() {
self.0.help(&format!(
"for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()
));
}
}
}
pub fn span_lint<'a, T: LintContext<'a>>(cx: &T, lint: &'static Lint, sp: Span, msg: &str) {
let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg));
if cx.current_level(lint) != Level::Allow {
db.wiki_link(lint);
}
}
pub fn span_help_and_lint<'a, 'tcx: 'a, T: LintContext<'tcx>>(
cx: &'a T,
lint: &'static Lint,
span: Span,
msg: &str,
help: &str,
) {
let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, span, msg));
if cx.current_level(lint) != Level::Allow {
db.0.help(help);
db.wiki_link(lint);
}
}
pub fn span_note_and_lint<'a, 'tcx: 'a, T: LintContext<'tcx>>(
cx: &'a T,
lint: &'static Lint,
span: Span,
msg: &str,
note_span: Span,
note: &str,
) {
let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, span, msg));
if cx.current_level(lint) != Level::Allow {
if note_span == span {
db.0.note(note);
} else {
db.0.span_note(note_span, note);
}
db.wiki_link(lint);
}
}
pub fn span_lint_and_then<'a, 'tcx: 'a, T: LintContext<'tcx>, F>(
cx: &'a T,
lint: &'static Lint,
sp: Span,
msg: &str,
f: F,
) where
F: for<'b> FnOnce(&mut DiagnosticBuilder<'b>),
{
let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg));
if cx.current_level(lint) != Level::Allow {
f(&mut db.0);
db.wiki_link(lint);
}
}
pub fn span_lint_and_sugg<'a, 'tcx: 'a, T: LintContext<'tcx>>(
cx: &'a T,
lint: &'static Lint,
sp: Span,
msg: &str,
help: &str,
sugg: String,
) {
span_lint_and_then(cx, lint, sp, msg, |db| { db.span_suggestion(sp, help, sugg); });
}
/// Create a suggestion made from several `span → replacement`.
///
/// Note: in the JSON format (used by `compiletest_rs`), the help message will
/// appear once per
/// replacement. In human-readable format though, it only appears once before
/// the whole suggestion.
pub fn multispan_sugg(db: &mut DiagnosticBuilder, help_msg: String, sugg: Vec<(Span, String)>) {
let sugg = rustc_errors::CodeSuggestion {
substitution_parts: sugg.into_iter()
.map(|(span, sub)| {
rustc_errors::Substitution {
span: span,
substitutions: vec![sub],
}
})
.collect(),
msg: help_msg,
show_code_when_inline: true,
};
db.suggestions.push(sugg);
}
/// Return the base type for references and raw pointers.
pub fn walk_ptrs_ty(ty: Ty) -> Ty {
match ty.sty {
ty::TyRef(_, ref tm) => walk_ptrs_ty(tm.ty),
_ => ty,
}
}
/// Return the base type for references and raw pointers, and count reference
/// depth.
pub fn walk_ptrs_ty_depth(ty: Ty) -> (Ty, usize) {
fn inner(ty: Ty, depth: usize) -> (Ty, usize) {
match ty.sty {
ty::TyRef(_, ref tm) => inner(tm.ty, depth + 1),
_ => (ty, depth),
}
}
inner(ty, 0)
}
/// Check whether the given expression is a constant literal of the given value.
pub fn is_integer_literal(expr: &Expr, value: u128) -> bool {
// FIXME: use constant folding
if let ExprLit(ref spanned) = expr.node {
if let LitKind::Int(v, _) = spanned.node {
return v == value;
}
}
false
}
pub fn is_adjusted(cx: &LateContext, e: &Expr) -> bool {
cx.tables.adjustments.get(&e.id).is_some()
}
pub struct LimitStack {
stack: Vec,
}
impl Drop for LimitStack {
fn drop(&mut self) {
assert_eq!(self.stack.len(), 1);
}
}
impl LimitStack {
pub fn new(limit: u64) -> LimitStack {
LimitStack { stack: vec![limit] }
}
pub fn limit(&self) -> u64 {
*self.stack.last().expect(
"there should always be a value in the stack",
)
}
pub fn push_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) {
let stack = &mut self.stack;
parse_attrs(sess, attrs, name, |val| stack.push(val));
}
pub fn pop_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) {
let stack = &mut self.stack;
parse_attrs(sess, attrs, name, |val| assert_eq!(stack.pop(), Some(val)));
}
}
fn parse_attrs(sess: &Session, attrs: &[ast::Attribute], name: &'static str, mut f: F) {
for attr in attrs {
if attr.is_sugared_doc {
continue;
}
if let Some(ref value) = attr.value_str() {
if attr.name().map_or(false, |n| n == name) {
if let Ok(value) = FromStr::from_str(&value.as_str()) {
attr::mark_used(attr);
f(value)
} else {
sess.span_err(attr.span, "not a number");
}
}
}
}
}
/// Return the pre-expansion span if is this comes from an expansion of the
/// macro `name`.
/// See also `is_direct_expn_of`.
pub fn is_expn_of(mut span: Span, name: &str) -> Option {
loop {
let span_name_span = span.ctxt.outer().expn_info().map(|ei| {
(ei.callee.name(), ei.call_site)
});
match span_name_span {
Some((mac_name, new_span)) if mac_name == name => return Some(new_span),
None => return None,
Some((_, new_span)) => span = new_span,
}
}
}
/// Return the pre-expansion span if is this directly comes from an expansion
/// of the macro `name`.
/// The difference with `is_expn_of` is that in
/// ```rust,ignore
/// foo!(bar!(42));
/// ```
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
/// `bar!` by
/// `is_direct_expn_of`.
pub fn is_direct_expn_of(span: Span, name: &str) -> Option {
let span_name_span = span.ctxt.outer().expn_info().map(|ei| {
(ei.callee.name(), ei.call_site)
});
match span_name_span {
Some((mac_name, new_span)) if mac_name == name => Some(new_span),
_ => None,
}
}
/// Return the index of the character after the first camel-case component of
/// `s`.
pub fn camel_case_until(s: &str) -> usize {
let mut iter = s.char_indices();
if let Some((_, first)) = iter.next() {
if !first.is_uppercase() {
return 0;
}
} else {
return 0;
}
let mut up = true;
let mut last_i = 0;
for (i, c) in iter {
if up {
if c.is_lowercase() {
up = false;
} else {
return last_i;
}
} else if c.is_uppercase() {
up = true;
last_i = i;
} else if !c.is_lowercase() {
return i;
}
}
if up { last_i } else { s.len() }
}
/// Return index of the last camel-case component of `s`.
pub fn camel_case_from(s: &str) -> usize {
let mut iter = s.char_indices().rev();
if let Some((_, first)) = iter.next() {
if !first.is_lowercase() {
return s.len();
}
} else {
return s.len();
}
let mut down = true;
let mut last_i = s.len();
for (i, c) in iter {
if down {
if c.is_uppercase() {
down = false;
last_i = i;
} else if !c.is_lowercase() {
return last_i;
}
} else if c.is_lowercase() {
down = true;
} else {
return last_i;
}
}
last_i
}
/// Convenience function to get the return type of a function
pub fn return_ty<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, fn_item: NodeId) -> Ty<'tcx> {
let fn_def_id = cx.tcx.hir.local_def_id(fn_item);
let ret_ty = cx.tcx.fn_sig(fn_def_id).output();
cx.tcx.erase_late_bound_regions(&ret_ty)
}
/// Check if two types are the same.
// FIXME: this works correctly for lifetimes bounds (`for <'a> Foo<'a>` == `for
// <'b> Foo<'b>` but
// not for type parameters.
pub fn same_tys<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
cx.tcx.infer_ctxt().enter(|infcx| {
infcx.can_eq(cx.param_env, a, b).is_ok()
})
}
/// Return whether the given type is an `unsafe` function.
pub fn type_is_unsafe_function<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyFnDef(..) | ty::TyFnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe,
_ => false,
}
}
pub fn is_copy<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
!ty.moves_by_default(cx.tcx.global_tcx(), cx.param_env, DUMMY_SP)
}
/// Return whether a pattern is refutable.
pub fn is_refutable(cx: &LateContext, pat: &Pat) -> bool {
fn is_enum_variant(cx: &LateContext, qpath: &QPath, did: NodeId) -> bool {
matches!(
cx.tables.qpath_def(qpath, did),
def::Def::Variant(..) | def::Def::VariantCtor(..)
)
}
fn are_refutable<'a, I: Iterator- >(cx: &LateContext, mut i: I) -> bool {
i.any(|pat| is_refutable(cx, pat))
}
match pat.node {
PatKind::Binding(..) |
PatKind::Wild => false,
PatKind::Box(ref pat) |
PatKind::Ref(ref pat, _) => is_refutable(cx, pat),
PatKind::Lit(..) |
PatKind::Range(..) => true,
PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.id),
PatKind::Tuple(ref pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)),
PatKind::Struct(ref qpath, ref fields, _) => {
if is_enum_variant(cx, qpath, pat.id) {
true
} else {
are_refutable(cx, fields.iter().map(|field| &*field.node.pat))
}
},
PatKind::TupleStruct(ref qpath, ref pats, _) => {
if is_enum_variant(cx, qpath, pat.id) {
true
} else {
are_refutable(cx, pats.iter().map(|pat| &**pat))
}
},
PatKind::Slice(ref head, ref middle, ref tail) => {
are_refutable(
cx,
head.iter().chain(middle).chain(tail.iter()).map(
|pat| &**pat,
),
)
},
}
}
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d
/// implementations have.
pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool {
attr::contains_name(attrs, "automatically_derived")
}
/// Remove blocks around an expression.
///
/// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return
/// themselves.
pub fn remove_blocks(expr: &Expr) -> &Expr {
if let ExprBlock(ref block) = expr.node {
if block.stmts.is_empty() {
if let Some(ref expr) = block.expr {
remove_blocks(expr)
} else {
expr
}
} else {
expr
}
} else {
expr
}
}
pub fn opt_def_id(def: Def) -> Option {
match def {
Def::Fn(id) |
Def::Mod(id) |
Def::Static(id, _) |
Def::Variant(id) |
Def::VariantCtor(id, ..) |
Def::Enum(id) |
Def::TyAlias(id) |
Def::AssociatedTy(id) |
Def::TyParam(id) |
Def::Struct(id) |
Def::StructCtor(id, ..) |
Def::Union(id) |
Def::Trait(id) |
Def::Method(id) |
Def::Const(id) |
Def::AssociatedConst(id) |
Def::Local(id) |
Def::Upvar(id, ..) |
Def::Macro(id, ..) |
Def::GlobalAsm(id) => Some(id),
Def::Label(..) | Def::PrimTy(..) | Def::SelfTy(..) | Def::Err => None,
}
}
pub fn is_self(slf: &Arg) -> bool {
if let PatKind::Binding(_, _, name, _) = slf.pat.node {
name.node == keywords::SelfValue.name()
} else {
false
}
}
pub fn is_self_ty(slf: &hir::Ty) -> bool {
if_let_chain! {[
let TyPath(ref qp) = slf.node,
let QPath::Resolved(None, ref path) = *qp,
let Def::SelfTy(..) = path.def,
], {
return true
}}
false
}
pub fn iter_input_pats<'tcx>(decl: &FnDecl, body: &'tcx Body) -> impl Iterator
- {
(0..decl.inputs.len()).map(move |i| &body.arguments[i])
}
/// Check if a given expression is a match expression
/// expanded from `?` operator or `try` macro.
pub fn is_try(expr: &Expr) -> Option<&Expr> {
fn is_ok(arm: &Arm) -> bool {
if_let_chain! {[
let PatKind::TupleStruct(ref path, ref pat, None) = arm.pats[0].node,
match_path(path, &paths::RESULT_OK[1..]),
let PatKind::Binding(_, defid, _, None) = pat[0].node,
let ExprPath(QPath::Resolved(None, ref path)) = arm.body.node,
path.def.def_id() == defid,
], {
return true;
}}
false
}
fn is_err(arm: &Arm) -> bool {
if let PatKind::TupleStruct(ref path, _, _) = arm.pats[0].node {
match_path(path, &paths::RESULT_ERR[1..])
} else {
false
}
}
if let ExprMatch(_, ref arms, ref source) = expr.node {
// desugared from a `?` operator
if let MatchSource::TryDesugar = *source {
return Some(expr);
}
if_let_chain! {[
arms.len() == 2,
arms[0].pats.len() == 1 && arms[0].guard.is_none(),
arms[1].pats.len() == 1 && arms[1].guard.is_none(),
(is_ok(&arms[0]) && is_err(&arms[1])) ||
(is_ok(&arms[1]) && is_err(&arms[0])),
], {
return Some(expr);
}}
}
None
}
pub fn type_size<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> Option {
ty.layout(cx.tcx, cx.param_env).ok().map(|layout| {
layout.size(cx.tcx).bytes()
})
}