use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor}; use rustc_hir::{ def, FnDecl, FnRetTy, FnSig, GenericArg, HirId, ImplItem, ImplItemKind, Item, ItemKind, Path, PathSegment, QPath, TyKind, }; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::hir::map::Map; use rustc_middle::lint::in_external_macro; use rustc_middle::ty; use rustc_middle::ty::{DefIdTree, Ty}; use rustc_semver::RustcVersion; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::symbol::kw; use rustc_typeck::hir_ty_to_ty; use crate::utils::{differing_macro_contexts, meets_msrv, span_lint_and_sugg}; declare_clippy_lint! { /// **What it does:** Checks for unnecessary repetition of structure name when a /// replacement with `Self` is applicable. /// /// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct /// name /// feels inconsistent. /// /// **Known problems:** /// - False positive when using associated types ([#2843](https://github.com/rust-lang/rust-clippy/issues/2843)) /// - False positives in some situations when using generics ([#3410](https://github.com/rust-lang/rust-clippy/issues/3410)) /// /// **Example:** /// ```rust /// struct Foo {} /// impl Foo { /// fn new() -> Foo { /// Foo {} /// } /// } /// ``` /// could be /// ```rust /// struct Foo {} /// impl Foo { /// fn new() -> Self { /// Self {} /// } /// } /// ``` pub USE_SELF, nursery, "unnecessary structure name repetition whereas `Self` is applicable" } impl_lint_pass!(UseSelf => [USE_SELF]); const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element"; fn span_use_self_lint(cx: &LateContext<'_>, path: &Path<'_>, last_segment: Option<&PathSegment<'_>>) { let last_segment = last_segment.unwrap_or_else(|| path.segments.last().expect(SEGMENTS_MSG)); // Path segments only include actual path, no methods or fields. let last_path_span = last_segment.ident.span; if differing_macro_contexts(path.span, last_path_span) { return; } // Only take path up to the end of last_path_span. let span = path.span.with_hi(last_path_span.hi()); span_lint_and_sugg( cx, USE_SELF, span, "unnecessary structure name repetition", "use the applicable keyword", "Self".to_owned(), Applicability::MachineApplicable, ); } // FIXME: always use this (more correct) visitor, not just in method signatures. struct SemanticUseSelfVisitor<'a, 'tcx> { cx: &'a LateContext<'tcx>, self_ty: Ty<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for SemanticUseSelfVisitor<'a, 'tcx> { type Map = Map<'tcx>; fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'_>) { if let TyKind::Path(QPath::Resolved(_, path)) = &hir_ty.kind { match path.res { def::Res::SelfTy(..) => {}, _ => { if hir_ty_to_ty(self.cx.tcx, hir_ty) == self.self_ty { span_use_self_lint(self.cx, path, None); } }, } } walk_ty(self, hir_ty) } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::None } } fn check_trait_method_impl_decl<'tcx>( cx: &LateContext<'tcx>, impl_item: &ImplItem<'_>, impl_decl: &'tcx FnDecl<'_>, impl_trait_ref: ty::TraitRef<'tcx>, ) { let trait_method = cx .tcx .associated_items(impl_trait_ref.def_id) .find_by_name_and_kind(cx.tcx, impl_item.ident, ty::AssocKind::Fn, impl_trait_ref.def_id) .expect("impl method matches a trait method"); let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id); let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig); let output_hir_ty = if let FnRetTy::Return(ty) = &impl_decl.output { Some(&**ty) } else { None }; // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature. // `trait_ty` (of type `ty::Ty`) is the semantic type for the signature in the trait. // We use `impl_hir_ty` to see if the type was written as `Self`, // `hir_ty_to_ty(...)` to check semantic types of paths, and // `trait_ty` to determine which parts of the signature in the trait, mention // the type being implemented verbatim (as opposed to `Self`). for (impl_hir_ty, trait_ty) in impl_decl .inputs .iter() .chain(output_hir_ty) .zip(trait_method_sig.inputs_and_output) { // Check if the input/output type in the trait method specifies the implemented // type verbatim, and only suggest `Self` if that isn't the case. // This avoids suggestions to e.g. replace `Vec` with `Vec`, // in an `impl Trait for u8`, when the trait always uses `Vec`. // See also https://github.com/rust-lang/rust-clippy/issues/2894. let self_ty = impl_trait_ref.self_ty(); if !trait_ty.walk().any(|inner| inner == self_ty.into()) { let mut visitor = SemanticUseSelfVisitor { cx, self_ty }; visitor.visit_ty(&impl_hir_ty); } } } const USE_SELF_MSRV: RustcVersion = RustcVersion::new(1, 37, 0); pub struct UseSelf { msrv: Option, } impl UseSelf { #[must_use] pub fn new(msrv: Option) -> Self { Self { msrv } } } impl<'tcx> LateLintPass<'tcx> for UseSelf { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if !meets_msrv(self.msrv.as_ref(), &USE_SELF_MSRV) { return; } if in_external_macro(cx.sess(), item.span) { return; } if_chain! { if let ItemKind::Impl(impl_) = &item.kind; if let TyKind::Path(QPath::Resolved(_, ref item_path)) = impl_.self_ty.kind; then { let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args; let should_check = parameters.as_ref().map_or( true, |params| !params.parenthesized &&!params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))) ); if should_check { let visitor = &mut UseSelfVisitor { item_path, cx, }; let impl_def_id = cx.tcx.hir().local_def_id(item.hir_id); let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id); if let Some(impl_trait_ref) = impl_trait_ref { for impl_item_ref in impl_.items { let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id); if let ImplItemKind::Fn(FnSig{ decl: impl_decl, .. }, impl_body_id) = &impl_item.kind { check_trait_method_impl_decl(cx, impl_item, impl_decl, impl_trait_ref); let body = cx.tcx.hir().body(*impl_body_id); visitor.visit_body(body); } else { visitor.visit_impl_item(impl_item); } } } else { for impl_item_ref in impl_.items { let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id); visitor.visit_impl_item(impl_item); } } } } } } extract_msrv_attr!(LateContext); } struct UseSelfVisitor<'a, 'tcx> { item_path: &'a Path<'a>, cx: &'a LateContext<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> { type Map = Map<'tcx>; fn visit_path(&mut self, path: &'tcx Path<'_>, _id: HirId) { if !path.segments.iter().any(|p| p.ident.span.is_dummy()) { if path.segments.len() >= 2 { let last_but_one = &path.segments[path.segments.len() - 2]; if last_but_one.ident.name != kw::SelfUpper { let enum_def_id = match path.res { Res::Def(DefKind::Variant, variant_def_id) => self.cx.tcx.parent(variant_def_id), Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), ctor_def_id) => { let variant_def_id = self.cx.tcx.parent(ctor_def_id); variant_def_id.and_then(|def_id| self.cx.tcx.parent(def_id)) }, _ => None, }; if self.item_path.res.opt_def_id() == enum_def_id { span_use_self_lint(self.cx, path, Some(last_but_one)); } } } if path.segments.last().expect(SEGMENTS_MSG).ident.name != kw::SelfUpper { if self.item_path.res == path.res { span_use_self_lint(self.cx, path, None); } else if let Res::Def(DefKind::Ctor(def::CtorOf::Struct, _), ctor_def_id) = path.res { if self.item_path.res.opt_def_id() == self.cx.tcx.parent(ctor_def_id) { span_use_self_lint(self.cx, path, None); } } } } walk_path(self, path); } fn visit_item(&mut self, item: &'tcx Item<'_>) { match item.kind { ItemKind::Use(..) | ItemKind::Static(..) | ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) | ItemKind::Impl { .. } | ItemKind::Fn(..) => { // Don't check statements that shadow `Self` or where `Self` can't be used }, _ => walk_item(self, item), } } fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::All(self.cx.tcx.hir()) } }