use crate::consts::{constant, miri_to_const, Constant}; use crate::utils::paths; use crate::utils::sugg::Sugg; use crate::utils::usage::is_unused; use crate::utils::{ expr_block, get_arg_name, in_macro, indent_of, is_allowed, is_expn_of, is_refutable, is_wild, match_qpath, match_type, match_var, multispan_sugg, remove_blocks, snippet, snippet_block, snippet_with_applicability, span_lint_and_help, span_lint_and_note, span_lint_and_sugg, span_lint_and_then, walk_ptrs_ty, }; use if_chain::if_chain; use rustc::lint::in_external_macro; use rustc::ty::{self, Ty}; use rustc_errors::Applicability; use rustc_hir::def::CtorKind; use rustc_hir::*; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::Span; use std::cmp::Ordering; use std::collections::Bound; use syntax::ast::LitKind; declare_clippy_lint! { /// **What it does:** Checks for matches with a single arm where an `if let` /// will usually suffice. /// /// **Why is this bad?** Just readability – `if let` nests less than a `match`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # fn bar(stool: &str) {} /// # let x = Some("abc"); /// match x { /// Some(ref foo) => bar(foo), /// _ => (), /// } /// ``` pub SINGLE_MATCH, style, "a `match` statement with a single nontrivial arm (i.e., where the other arm is `_ => {}`) instead of `if let`" } declare_clippy_lint! { /// **What it does:** Checks for matches with two arms where an `if let else` will /// usually suffice. /// /// **Why is this bad?** Just readability – `if let` nests less than a `match`. /// /// **Known problems:** Personal style preferences may differ. /// /// **Example:** /// /// Using `match`: /// /// ```rust /// # fn bar(foo: &usize) {} /// # let other_ref: usize = 1; /// # let x: Option<&usize> = Some(&1); /// match x { /// Some(ref foo) => bar(foo), /// _ => bar(&other_ref), /// } /// ``` /// /// Using `if let` with `else`: /// /// ```rust /// # fn bar(foo: &usize) {} /// # let other_ref: usize = 1; /// # let x: Option<&usize> = Some(&1); /// if let Some(ref foo) = x { /// bar(foo); /// } else { /// bar(&other_ref); /// } /// ``` pub SINGLE_MATCH_ELSE, pedantic, "a `match` statement with two arms where the second arm's pattern is a placeholder instead of a specific match pattern" } declare_clippy_lint! { /// **What it does:** Checks for matches where all arms match a reference, /// suggesting to remove the reference and deref the matched expression /// instead. It also checks for `if let &foo = bar` blocks. /// /// **Why is this bad?** It just makes the code less readable. That reference /// destructuring adds nothing to the code. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// match x { /// &A(ref y) => foo(y), /// &B => bar(), /// _ => frob(&x), /// } /// ``` pub MATCH_REF_PATS, style, "a `match` or `if let` with all arms prefixed with `&` instead of deref-ing the match expression" } declare_clippy_lint! { /// **What it does:** Checks for matches where match expression is a `bool`. It /// suggests to replace the expression with an `if...else` block. /// /// **Why is this bad?** It makes the code less readable. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # fn foo() {} /// # fn bar() {} /// let condition: bool = true; /// match condition { /// true => foo(), /// false => bar(), /// } /// ``` /// Use if/else instead: /// ```rust /// # fn foo() {} /// # fn bar() {} /// let condition: bool = true; /// if condition { /// foo(); /// } else { /// bar(); /// } /// ``` pub MATCH_BOOL, style, "a `match` on a boolean expression instead of an `if..else` block" } declare_clippy_lint! { /// **What it does:** Checks for overlapping match arms. /// /// **Why is this bad?** It is likely to be an error and if not, makes the code /// less obvious. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x = 5; /// match x { /// 1...10 => println!("1 ... 10"), /// 5...15 => println!("5 ... 15"), /// _ => (), /// } /// ``` pub MATCH_OVERLAPPING_ARM, style, "a `match` with overlapping arms" } declare_clippy_lint! { /// **What it does:** Checks for arm which matches all errors with `Err(_)` /// and take drastic actions like `panic!`. /// /// **Why is this bad?** It is generally a bad practice, just like /// catching all exceptions in java with `catch(Exception)` /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x: Result = Ok(3); /// match x { /// Ok(_) => println!("ok"), /// Err(_) => panic!("err"), /// } /// ``` pub MATCH_WILD_ERR_ARM, style, "a `match` with `Err(_)` arm and take drastic actions" } declare_clippy_lint! { /// **What it does:** Checks for match which is used to add a reference to an /// `Option` value. /// /// **Why is this bad?** Using `as_ref()` or `as_mut()` instead is shorter. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x: Option<()> = None; /// let r: Option<&()> = match x { /// None => None, /// Some(ref v) => Some(v), /// }; /// ``` pub MATCH_AS_REF, complexity, "a `match` on an Option value instead of using `as_ref()` or `as_mut`" } declare_clippy_lint! { /// **What it does:** Checks for wildcard enum matches using `_`. /// /// **Why is this bad?** New enum variants added by library updates can be missed. /// /// **Known problems:** Suggested replacements may be incorrect if guards exhaustively cover some /// variants, and also may not use correct path to enum if it's not present in the current scope. /// /// **Example:** /// ```rust /// # enum Foo { A(usize), B(usize) } /// # let x = Foo::B(1); /// match x { /// A => {}, /// _ => {}, /// } /// ``` pub WILDCARD_ENUM_MATCH_ARM, restriction, "a wildcard enum match arm using `_`" } declare_clippy_lint! { /// **What it does:** Checks for wildcard pattern used with others patterns in same match arm. /// /// **Why is this bad?** Wildcard pattern already covers any other pattern as it will match anyway. /// It makes the code less readable, especially to spot wildcard pattern use in match arm. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// match "foo" { /// "a" => {}, /// "bar" | _ => {}, /// } /// ``` pub WILDCARD_IN_OR_PATTERNS, complexity, "a wildcard pattern used with others patterns in same match arm" } declare_clippy_lint! { /// **What it does:** Checks for matches being used to destructure a single-variant enum /// or tuple struct where a `let` will suffice. /// /// **Why is this bad?** Just readability – `let` doesn't nest, whereas a `match` does. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// enum Wrapper { /// Data(i32), /// } /// /// let wrapper = Wrapper::Data(42); /// /// let data = match wrapper { /// Wrapper::Data(i) => i, /// }; /// ``` /// /// The correct use would be: /// ```rust /// enum Wrapper { /// Data(i32), /// } /// /// let wrapper = Wrapper::Data(42); /// let Wrapper::Data(data) = wrapper; /// ``` pub INFALLIBLE_DESTRUCTURING_MATCH, style, "a `match` statement with a single infallible arm instead of a `let`" } declare_clippy_lint! { /// **What it does:** Checks for useless match that binds to only one value. /// /// **Why is this bad?** Readability and needless complexity. /// /// **Known problems:** Suggested replacements may be incorrect when `match` /// is actually binding temporary value, bringing a 'dropped while borrowed' error. /// /// **Example:** /// ```rust /// # let a = 1; /// # let b = 2; /// /// // Bad /// match (a, b) { /// (c, d) => { /// // useless match /// } /// } /// /// // Good /// let (c, d) = (a, b); /// ``` pub MATCH_SINGLE_BINDING, complexity, "a match with a single binding instead of using `let` statement" } #[derive(Default)] pub struct Matches { infallible_destructuring_match_linted: bool, } impl_lint_pass!(Matches => [ SINGLE_MATCH, MATCH_REF_PATS, MATCH_BOOL, SINGLE_MATCH_ELSE, MATCH_OVERLAPPING_ARM, MATCH_WILD_ERR_ARM, MATCH_AS_REF, WILDCARD_ENUM_MATCH_ARM, WILDCARD_IN_OR_PATTERNS, MATCH_SINGLE_BINDING, INFALLIBLE_DESTRUCTURING_MATCH ]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Matches { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Match(ref ex, ref arms, MatchSource::Normal) = expr.kind { check_single_match(cx, ex, arms, expr); check_match_bool(cx, ex, arms, expr); check_overlapping_arms(cx, ex, arms); check_wild_err_arm(cx, ex, arms); check_wild_enum_match(cx, ex, arms); check_match_as_ref(cx, ex, arms, expr); check_wild_in_or_pats(cx, arms); if self.infallible_destructuring_match_linted { self.infallible_destructuring_match_linted = false; } else { check_match_single_binding(cx, ex, arms, expr); } } if let ExprKind::Match(ref ex, ref arms, _) = expr.kind { check_match_ref_pats(cx, ex, arms, expr); } } fn check_local(&mut self, cx: &LateContext<'a, 'tcx>, local: &'tcx Local<'_>) { if_chain! { if let Some(ref expr) = local.init; if let ExprKind::Match(ref target, ref arms, MatchSource::Normal) = expr.kind; if arms.len() == 1 && arms[0].guard.is_none(); if let PatKind::TupleStruct( QPath::Resolved(None, ref variant_name), ref args, _) = arms[0].pat.kind; if args.len() == 1; if let Some(arg) = get_arg_name(&args[0]); let body = remove_blocks(&arms[0].body); if match_var(body, arg); then { let mut applicability = Applicability::MachineApplicable; self.infallible_destructuring_match_linted = true; span_lint_and_sugg( cx, INFALLIBLE_DESTRUCTURING_MATCH, local.span, "you seem to be trying to use `match` to destructure a single infallible pattern. \ Consider using `let`", "try this", format!( "let {}({}) = {};", snippet_with_applicability(cx, variant_name.span, "..", &mut applicability), snippet_with_applicability(cx, local.pat.span, "..", &mut applicability), snippet_with_applicability(cx, target.span, "..", &mut applicability), ), applicability, ); } } } } #[rustfmt::skip] fn check_single_match(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { if arms.len() == 2 && arms[0].guard.is_none() && arms[1].guard.is_none() { if let PatKind::Or(..) = arms[0].pat.kind { // don't lint for or patterns for now, this makes // the lint noisy in unnecessary situations return; } let els = remove_blocks(&arms[1].body); let els = if is_unit_expr(els) { None } else if let ExprKind::Block(_, _) = els.kind { // matches with blocks that contain statements are prettier as `if let + else` Some(els) } else { // allow match arms with just expressions return; }; let ty = cx.tables.expr_ty(ex); if ty.kind != ty::Bool || is_allowed(cx, MATCH_BOOL, ex.hir_id) { check_single_match_single_pattern(cx, ex, arms, expr, els); check_single_match_opt_like(cx, ex, arms, expr, ty, els); } } } fn check_single_match_single_pattern( cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>, els: Option<&Expr<'_>>, ) { if is_wild(&arms[1].pat) { report_single_match_single_pattern(cx, ex, arms, expr, els); } } fn report_single_match_single_pattern( cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>, els: Option<&Expr<'_>>, ) { let lint = if els.is_some() { SINGLE_MATCH_ELSE } else { SINGLE_MATCH }; let els_str = els.map_or(String::new(), |els| { format!(" else {}", expr_block(cx, els, None, "..", Some(expr.span))) }); span_lint_and_sugg( cx, lint, expr.span, "you seem to be trying to use match for destructuring a single pattern. Consider using `if \ let`", "try this", format!( "if let {} = {} {}{}", snippet(cx, arms[0].pat.span, ".."), snippet(cx, ex.span, ".."), expr_block(cx, &arms[0].body, None, "..", Some(expr.span)), els_str, ), Applicability::HasPlaceholders, ); } fn check_single_match_opt_like( cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>, ty: Ty<'_>, els: Option<&Expr<'_>>, ) { // list of candidate `Enum`s we know will never get any more members let candidates = &[ (&paths::COW, "Borrowed"), (&paths::COW, "Cow::Borrowed"), (&paths::COW, "Cow::Owned"), (&paths::COW, "Owned"), (&paths::OPTION, "None"), (&paths::RESULT, "Err"), (&paths::RESULT, "Ok"), ]; let path = match arms[1].pat.kind { PatKind::TupleStruct(ref path, ref inner, _) => { // Contains any non wildcard patterns (e.g., `Err(err)`)? if !inner.iter().all(is_wild) { return; } print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)) }, PatKind::Binding(BindingAnnotation::Unannotated, .., ident, None) => ident.to_string(), PatKind::Path(ref path) => print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)), _ => return, }; for &(ty_path, pat_path) in candidates { if path == *pat_path && match_type(cx, ty, ty_path) { report_single_match_single_pattern(cx, ex, arms, expr, els); } } } fn check_match_bool(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { // Type of expression is `bool`. if cx.tables.expr_ty(ex).kind == ty::Bool { span_lint_and_then( cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression", move |db| { if arms.len() == 2 { // no guards let exprs = if let PatKind::Lit(ref arm_bool) = arms[0].pat.kind { if let ExprKind::Lit(ref lit) = arm_bool.kind { match lit.node { LitKind::Bool(true) => Some((&*arms[0].body, &*arms[1].body)), LitKind::Bool(false) => Some((&*arms[1].body, &*arms[0].body)), _ => None, } } else { None } } else { None }; if let Some((true_expr, false_expr)) = exprs { let sugg = match (is_unit_expr(true_expr), is_unit_expr(false_expr)) { (false, false) => Some(format!( "if {} {} else {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, "..", Some(expr.span)), expr_block(cx, false_expr, None, "..", Some(expr.span)) )), (false, true) => Some(format!( "if {} {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, "..", Some(expr.span)) )), (true, false) => { let test = Sugg::hir(cx, ex, ".."); Some(format!( "if {} {}", !test, expr_block(cx, false_expr, None, "..", Some(expr.span)) )) }, (true, true) => None, }; if let Some(sugg) = sugg { db.span_suggestion( expr.span, "consider using an `if`/`else` expression", sugg, Applicability::HasPlaceholders, ); } } } }, ); } } fn check_overlapping_arms<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ex: &'tcx Expr<'_>, arms: &'tcx [Arm<'_>]) { if arms.len() >= 2 && cx.tables.expr_ty(ex).is_integral() { let ranges = all_ranges(cx, arms, cx.tables.expr_ty(ex)); let type_ranges = type_ranges(&ranges); if !type_ranges.is_empty() { if let Some((start, end)) = overlapping(&type_ranges) { span_lint_and_note( cx, MATCH_OVERLAPPING_ARM, start.span, "some ranges overlap", end.span, "overlaps with this", ); } } } } fn check_wild_err_arm(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>]) { let ex_ty = walk_ptrs_ty(cx.tables.expr_ty(ex)); if match_type(cx, ex_ty, &paths::RESULT) { for arm in arms { if let PatKind::TupleStruct(ref path, ref inner, _) = arm.pat.kind { let path_str = print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)); if path_str == "Err" { let mut matching_wild = inner.iter().any(is_wild); let mut ident_bind_name = String::from("_"); if !matching_wild { // Looking for unused bindings (i.e.: `_e`) inner.iter().for_each(|pat| { if let PatKind::Binding(.., ident, None) = &pat.kind { if ident.as_str().starts_with('_') && is_unused(ident, arm.body) { ident_bind_name = (&ident.name.as_str()).to_string(); matching_wild = true; } } }); } if_chain! { if matching_wild; if let ExprKind::Block(ref block, _) = arm.body.kind; if is_panic_block(block); then { // `Err(_)` or `Err(_e)` arm with `panic!` found span_lint_and_note(cx, MATCH_WILD_ERR_ARM, arm.pat.span, &format!("`Err({})` matches all errors", &ident_bind_name), arm.pat.span, "match each error separately or use the error output", ); } } } } } } } fn check_wild_enum_match(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>]) { let ty = cx.tables.expr_ty(ex); if !ty.is_enum() { // If there isn't a nice closed set of possible values that can be conveniently enumerated, // don't complain about not enumerating the mall. return; } // First pass - check for violation, but don't do much book-keeping because this is hopefully // the uncommon case, and the book-keeping is slightly expensive. let mut wildcard_span = None; let mut wildcard_ident = None; for arm in arms { if let PatKind::Wild = arm.pat.kind { wildcard_span = Some(arm.pat.span); } else if let PatKind::Binding(_, _, ident, None) = arm.pat.kind { wildcard_span = Some(arm.pat.span); wildcard_ident = Some(ident); } } if let Some(wildcard_span) = wildcard_span { // Accumulate the variants which should be put in place of the wildcard because they're not // already covered. let mut missing_variants = vec![]; if let ty::Adt(def, _) = ty.kind { for variant in &def.variants { missing_variants.push(variant); } } for arm in arms { if arm.guard.is_some() { // Guards mean that this case probably isn't exhaustively covered. Technically // this is incorrect, as we should really check whether each variant is exhaustively // covered by the set of guards that cover it, but that's really hard to do. continue; } if let PatKind::Path(ref path) = arm.pat.kind { if let QPath::Resolved(_, p) = path { missing_variants.retain(|e| e.ctor_def_id != Some(p.res.def_id())); } } else if let PatKind::TupleStruct(ref path, ..) = arm.pat.kind { if let QPath::Resolved(_, p) = path { missing_variants.retain(|e| e.ctor_def_id != Some(p.res.def_id())); } } } let mut suggestion: Vec = missing_variants .iter() .map(|v| { let suffix = match v.ctor_kind { CtorKind::Fn => "(..)", CtorKind::Const | CtorKind::Fictive => "", }; let ident_str = if let Some(ident) = wildcard_ident { format!("{} @ ", ident.name) } else { String::new() }; // This path assumes that the enum type is imported into scope. format!("{}{}{}", ident_str, cx.tcx.def_path_str(v.def_id), suffix) }) .collect(); if suggestion.is_empty() { return; } let mut message = "wildcard match will miss any future added variants"; if let ty::Adt(def, _) = ty.kind { if def.is_variant_list_non_exhaustive() { message = "match on non-exhaustive enum doesn't explicitly match all known variants"; suggestion.push(String::from("_")); } } span_lint_and_sugg( cx, WILDCARD_ENUM_MATCH_ARM, wildcard_span, message, "try this", suggestion.join(" | "), Applicability::MachineApplicable, ) } } // If the block contains only a `panic!` macro (as expression or statement) fn is_panic_block(block: &Block<'_>) -> bool { match (&block.expr, block.stmts.len(), block.stmts.first()) { (&Some(ref exp), 0, _) => { is_expn_of(exp.span, "panic").is_some() && is_expn_of(exp.span, "unreachable").is_none() }, (&None, 1, Some(stmt)) => { is_expn_of(stmt.span, "panic").is_some() && is_expn_of(stmt.span, "unreachable").is_none() }, _ => false, } } fn check_match_ref_pats(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { if has_only_ref_pats(arms) { let mut suggs = Vec::new(); let (title, msg) = if let ExprKind::AddrOf(BorrowKind::Ref, Mutability::Not, ref inner) = ex.kind { let span = ex.span.source_callsite(); suggs.push((span, Sugg::hir_with_macro_callsite(cx, inner, "..").to_string())); ( "you don't need to add `&` to both the expression and the patterns", "try", ) } else { let span = ex.span.source_callsite(); suggs.push((span, Sugg::hir_with_macro_callsite(cx, ex, "..").deref().to_string())); ( "you don't need to add `&` to all patterns", "instead of prefixing all patterns with `&`, you can dereference the expression", ) }; suggs.extend(arms.iter().filter_map(|a| { if let PatKind::Ref(ref refp, _) = a.pat.kind { Some((a.pat.span, snippet(cx, refp.span, "..").to_string())) } else { None } })); span_lint_and_then(cx, MATCH_REF_PATS, expr.span, title, |db| { if !expr.span.from_expansion() { multispan_sugg(db, msg.to_owned(), suggs); } }); } } fn check_match_as_ref(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { if arms.len() == 2 && arms[0].guard.is_none() && arms[1].guard.is_none() { let arm_ref: Option = if is_none_arm(&arms[0]) { is_ref_some_arm(&arms[1]) } else if is_none_arm(&arms[1]) { is_ref_some_arm(&arms[0]) } else { None }; if let Some(rb) = arm_ref { let suggestion = if rb == BindingAnnotation::Ref { "as_ref" } else { "as_mut" }; let output_ty = cx.tables.expr_ty(expr); let input_ty = cx.tables.expr_ty(ex); let cast = if_chain! { if let ty::Adt(_, substs) = input_ty.kind; let input_ty = substs.type_at(0); if let ty::Adt(_, substs) = output_ty.kind; let output_ty = substs.type_at(0); if let ty::Ref(_, output_ty, _) = output_ty.kind; if input_ty != output_ty; then { ".map(|x| x as _)" } else { "" } }; let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, MATCH_AS_REF, expr.span, &format!("use `{}()` instead", suggestion), "try this", format!( "{}.{}(){}", snippet_with_applicability(cx, ex.span, "_", &mut applicability), suggestion, cast, ), applicability, ) } } } fn check_wild_in_or_pats(cx: &LateContext<'_, '_>, arms: &[Arm<'_>]) { for arm in arms { if let PatKind::Or(ref fields) = arm.pat.kind { // look for multiple fields in this arm that contains at least one Wild pattern if fields.len() > 1 && fields.iter().any(is_wild) { span_lint_and_help( cx, WILDCARD_IN_OR_PATTERNS, arm.pat.span, "wildcard pattern covers any other pattern as it will match anyway.", "Consider handling `_` separately.", ); } } } } fn check_match_single_binding(cx: &LateContext<'_, '_>, ex: &Expr<'_>, arms: &[Arm<'_>], expr: &Expr<'_>) { if in_macro(expr.span) || arms.len() != 1 || is_refutable(cx, arms[0].pat) { return; } let matched_vars = ex.span; let bind_names = arms[0].pat.span; let match_body = remove_blocks(&arms[0].body); let mut snippet_body = if match_body.span.from_expansion() { Sugg::hir_with_macro_callsite(cx, match_body, "..").to_string() } else { snippet_block(cx, match_body.span, "..", Some(expr.span)).to_string() }; // Do we need to add ';' to suggestion ? match match_body.kind { ExprKind::Block(block, _) => { // macro + expr_ty(body) == () if block.span.from_expansion() && cx.tables.expr_ty(&match_body).is_unit() { snippet_body.push(';'); } }, _ => { // expr_ty(body) == () if cx.tables.expr_ty(&match_body).is_unit() { snippet_body.push(';'); } }, } let mut applicability = Applicability::MaybeIncorrect; match arms[0].pat.kind { PatKind::Binding(..) | PatKind::Tuple(_, _) | PatKind::Struct(..) => { span_lint_and_sugg( cx, MATCH_SINGLE_BINDING, expr.span, "this match could be written as a `let` statement", "consider using `let` statement", format!( "let {} = {};\n{}{}", snippet_with_applicability(cx, bind_names, "..", &mut applicability), snippet_with_applicability(cx, matched_vars, "..", &mut applicability), " ".repeat(indent_of(cx, expr.span).unwrap_or(0)), snippet_body, ), applicability, ); }, PatKind::Wild => { span_lint_and_sugg( cx, MATCH_SINGLE_BINDING, expr.span, "this match could be replaced by its body itself", "consider using the match body instead", snippet_body, Applicability::MachineApplicable, ); }, _ => (), } } /// Gets all arms that are unbounded `PatRange`s. fn all_ranges<'a, 'tcx>( cx: &LateContext<'a, 'tcx>, arms: &'tcx [Arm<'_>], ty: Ty<'tcx>, ) -> Vec> { arms.iter() .flat_map(|arm| { if let Arm { ref pat, guard: None, .. } = *arm { if let PatKind::Range(ref lhs, ref rhs, range_end) = pat.kind { let lhs = match lhs { Some(lhs) => constant(cx, cx.tables, lhs)?.0, None => miri_to_const(ty.numeric_min_val(cx.tcx)?)?, }; let rhs = match rhs { Some(rhs) => constant(cx, cx.tables, rhs)?.0, None => miri_to_const(ty.numeric_max_val(cx.tcx)?)?, }; let rhs = match range_end { RangeEnd::Included => Bound::Included(rhs), RangeEnd::Excluded => Bound::Excluded(rhs), }; return Some(SpannedRange { span: pat.span, node: (lhs, rhs), }); } if let PatKind::Lit(ref value) = pat.kind { let value = constant(cx, cx.tables, value)?.0; return Some(SpannedRange { span: pat.span, node: (value.clone(), Bound::Included(value)), }); } } None }) .collect() } #[derive(Debug, Eq, PartialEq)] pub struct SpannedRange { pub span: Span, pub node: (T, Bound), } type TypedRanges = Vec>; /// Gets all `Int` ranges or all `Uint` ranges. Mixed types are an error anyway /// and other types than /// `Uint` and `Int` probably don't make sense. fn type_ranges(ranges: &[SpannedRange]) -> TypedRanges { ranges .iter() .filter_map(|range| match range.node { (Constant::Int(start), Bound::Included(Constant::Int(end))) => Some(SpannedRange { span: range.span, node: (start, Bound::Included(end)), }), (Constant::Int(start), Bound::Excluded(Constant::Int(end))) => Some(SpannedRange { span: range.span, node: (start, Bound::Excluded(end)), }), (Constant::Int(start), Bound::Unbounded) => Some(SpannedRange { span: range.span, node: (start, Bound::Unbounded), }), _ => None, }) .collect() } fn is_unit_expr(expr: &Expr<'_>) -> bool { match expr.kind { ExprKind::Tup(ref v) if v.is_empty() => true, ExprKind::Block(ref b, _) if b.stmts.is_empty() && b.expr.is_none() => true, _ => false, } } // Checks if arm has the form `None => None` fn is_none_arm(arm: &Arm<'_>) -> bool { match arm.pat.kind { PatKind::Path(ref path) if match_qpath(path, &paths::OPTION_NONE) => true, _ => false, } } // Checks if arm has the form `Some(ref v) => Some(v)` (checks for `ref` and `ref mut`) fn is_ref_some_arm(arm: &Arm<'_>) -> Option { if_chain! { if let PatKind::TupleStruct(ref path, ref pats, _) = arm.pat.kind; if pats.len() == 1 && match_qpath(path, &paths::OPTION_SOME); if let PatKind::Binding(rb, .., ident, _) = pats[0].kind; if rb == BindingAnnotation::Ref || rb == BindingAnnotation::RefMut; if let ExprKind::Call(ref e, ref args) = remove_blocks(&arm.body).kind; if let ExprKind::Path(ref some_path) = e.kind; if match_qpath(some_path, &paths::OPTION_SOME) && args.len() == 1; if let ExprKind::Path(ref qpath) = args[0].kind; if let &QPath::Resolved(_, ref path2) = qpath; if path2.segments.len() == 1 && ident.name == path2.segments[0].ident.name; then { return Some(rb) } } None } fn has_only_ref_pats(arms: &[Arm<'_>]) -> bool { let mapped = arms .iter() .map(|a| { match a.pat.kind { PatKind::Ref(..) => Some(true), // &-patterns PatKind::Wild => Some(false), // an "anything" wildcard is also fine _ => None, // any other pattern is not fine } }) .collect::>>(); // look for Some(v) where there's at least one true element mapped.map_or(false, |v| v.iter().any(|el| *el)) } pub fn overlapping(ranges: &[SpannedRange]) -> Option<(&SpannedRange, &SpannedRange)> where T: Copy + Ord, { #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum Kind<'a, T> { Start(T, &'a SpannedRange), End(Bound, &'a SpannedRange), } impl<'a, T: Copy> Kind<'a, T> { fn range(&self) -> &'a SpannedRange { match *self { Kind::Start(_, r) | Kind::End(_, r) => r, } } fn value(self) -> Bound { match self { Kind::Start(t, _) => Bound::Included(t), Kind::End(t, _) => t, } } } impl<'a, T: Copy + Ord> PartialOrd for Kind<'a, T> { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl<'a, T: Copy + Ord> Ord for Kind<'a, T> { fn cmp(&self, other: &Self) -> Ordering { match (self.value(), other.value()) { (Bound::Included(a), Bound::Included(b)) | (Bound::Excluded(a), Bound::Excluded(b)) => a.cmp(&b), // Range patterns cannot be unbounded (yet) (Bound::Unbounded, _) | (_, Bound::Unbounded) => unimplemented!(), (Bound::Included(a), Bound::Excluded(b)) => match a.cmp(&b) { Ordering::Equal => Ordering::Greater, other => other, }, (Bound::Excluded(a), Bound::Included(b)) => match a.cmp(&b) { Ordering::Equal => Ordering::Less, other => other, }, } } } let mut values = Vec::with_capacity(2 * ranges.len()); for r in ranges { values.push(Kind::Start(r.node.0, r)); values.push(Kind::End(r.node.1, r)); } values.sort(); for (a, b) in values.iter().zip(values.iter().skip(1)) { match (a, b) { (&Kind::Start(_, ra), &Kind::End(_, rb)) => { if ra.node != rb.node { return Some((ra, rb)); } }, (&Kind::End(a, _), &Kind::Start(b, _)) if a != Bound::Included(b) => (), _ => return Some((a.range(), b.range())), } } None }