use clippy_utils::consts::{ constant, constant_simple, Constant, Constant::{Int, F32, F64}, }; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::higher; use clippy_utils::{eq_expr_value, get_parent_expr, in_constant, numeric_literal, peel_blocks, sugg}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::{BinOpKind, Expr, ExprKind, PathSegment, UnOp}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Spanned; use rustc_ast::ast; use std::f32::consts as f32_consts; use std::f64::consts as f64_consts; use sugg::Sugg; declare_clippy_lint! { /// ### What it does /// Looks for floating-point expressions that /// can be expressed using built-in methods to improve accuracy /// at the cost of performance. /// /// ### Why is this bad? /// Negatively impacts accuracy. /// /// ### Example /// ```rust /// let a = 3f32; /// let _ = a.powf(1.0 / 3.0); /// let _ = (1.0 + a).ln(); /// let _ = a.exp() - 1.0; /// ``` /// /// is better expressed as /// /// ```rust /// let a = 3f32; /// let _ = a.cbrt(); /// let _ = a.ln_1p(); /// let _ = a.exp_m1(); /// ``` #[clippy::version = "1.43.0"] pub IMPRECISE_FLOPS, nursery, "usage of imprecise floating point operations" } declare_clippy_lint! { /// ### What it does /// Looks for floating-point expressions that /// can be expressed using built-in methods to improve both /// accuracy and performance. /// /// ### Why is this bad? /// Negatively impacts accuracy and performance. /// /// ### Example /// ```rust /// use std::f32::consts::E; /// /// let a = 3f32; /// let _ = (2f32).powf(a); /// let _ = E.powf(a); /// let _ = a.powf(1.0 / 2.0); /// let _ = a.log(2.0); /// let _ = a.log(10.0); /// let _ = a.log(E); /// let _ = a.powf(2.0); /// let _ = a * 2.0 + 4.0; /// let _ = if a < 0.0 { /// -a /// } else { /// a /// }; /// let _ = if a < 0.0 { /// a /// } else { /// -a /// }; /// ``` /// /// is better expressed as /// /// ```rust /// use std::f32::consts::E; /// /// let a = 3f32; /// let _ = a.exp2(); /// let _ = a.exp(); /// let _ = a.sqrt(); /// let _ = a.log2(); /// let _ = a.log10(); /// let _ = a.ln(); /// let _ = a.powi(2); /// let _ = a.mul_add(2.0, 4.0); /// let _ = a.abs(); /// let _ = -a.abs(); /// ``` #[clippy::version = "1.43.0"] pub SUBOPTIMAL_FLOPS, nursery, "usage of sub-optimal floating point operations" } declare_lint_pass!(FloatingPointArithmetic => [ IMPRECISE_FLOPS, SUBOPTIMAL_FLOPS ]); // Returns the specialized log method for a given base if base is constant // and is one of 2, 10 and e fn get_specialized_log_method(cx: &LateContext<'_>, base: &Expr<'_>) -> Option<&'static str> { if let Some((value, _)) = constant(cx, cx.typeck_results(), base) { if F32(2.0) == value || F64(2.0) == value { return Some("log2"); } else if F32(10.0) == value || F64(10.0) == value { return Some("log10"); } else if F32(f32_consts::E) == value || F64(f64_consts::E) == value { return Some("ln"); } } None } // Adds type suffixes and parenthesis to method receivers if necessary fn prepare_receiver_sugg<'a>(cx: &LateContext<'_>, mut expr: &'a Expr<'a>) -> Sugg<'a> { let mut suggestion = Sugg::hir(cx, expr, ".."); if let ExprKind::Unary(UnOp::Neg, inner_expr) = &expr.kind { expr = inner_expr; } if_chain! { // if the expression is a float literal and it is unsuffixed then // add a suffix so the suggestion is valid and unambiguous if let ty::Float(float_ty) = cx.typeck_results().expr_ty(expr).kind(); if let ExprKind::Lit(lit) = &expr.kind; if let ast::LitKind::Float(sym, ast::LitFloatType::Unsuffixed) = lit.node; then { let op = format!( "{}{}{}", suggestion, // Check for float literals without numbers following the decimal // separator such as `2.` and adds a trailing zero if sym.as_str().ends_with('.') { "0" } else { "" }, float_ty.name_str() ).into(); suggestion = match suggestion { Sugg::MaybeParen(_) => Sugg::MaybeParen(op), _ => Sugg::NonParen(op) }; } } suggestion.maybe_par() } fn check_log_base(cx: &LateContext<'_>, expr: &Expr<'_>, args: &[Expr<'_>]) { if let Some(method) = get_specialized_log_method(cx, &args[1]) { span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, "logarithm for bases 2, 10 and e can be computed more accurately", "consider using", format!("{}.{}()", Sugg::hir(cx, &args[0], ".."), method), Applicability::MachineApplicable, ); } } // TODO: Lint expressions of the form `(x + y).ln()` where y > 1 and // suggest usage of `(x + (y - 1)).ln_1p()` instead fn check_ln1p(cx: &LateContext<'_>, expr: &Expr<'_>, args: &[Expr<'_>]) { if let ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, lhs, rhs, ) = &args[0].kind { let recv = match ( constant(cx, cx.typeck_results(), lhs), constant(cx, cx.typeck_results(), rhs), ) { (Some((value, _)), _) if F32(1.0) == value || F64(1.0) == value => rhs, (_, Some((value, _))) if F32(1.0) == value || F64(1.0) == value => lhs, _ => return, }; span_lint_and_sugg( cx, IMPRECISE_FLOPS, expr.span, "ln(1 + x) can be computed more accurately", "consider using", format!("{}.ln_1p()", prepare_receiver_sugg(cx, recv)), Applicability::MachineApplicable, ); } } // Returns an integer if the float constant is a whole number and it can be // converted to an integer without loss of precision. For now we only check // ranges [-16777215, 16777216) for type f32 as whole number floats outside // this range are lossy and ambiguous. #[allow(clippy::cast_possible_truncation)] fn get_integer_from_float_constant(value: &Constant) -> Option { match value { F32(num) if num.fract() == 0.0 => { if (-16_777_215.0..16_777_216.0).contains(num) { Some(num.round() as i32) } else { None } }, F64(num) if num.fract() == 0.0 => { if (-2_147_483_648.0..2_147_483_648.0).contains(num) { Some(num.round() as i32) } else { None } }, _ => None, } } fn check_powf(cx: &LateContext<'_>, expr: &Expr<'_>, args: &[Expr<'_>]) { // Check receiver if let Some((value, _)) = constant(cx, cx.typeck_results(), &args[0]) { let method = if F32(f32_consts::E) == value || F64(f64_consts::E) == value { "exp" } else if F32(2.0) == value || F64(2.0) == value { "exp2" } else { return; }; span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, "exponent for bases 2 and e can be computed more accurately", "consider using", format!("{}.{}()", prepare_receiver_sugg(cx, &args[1]), method), Applicability::MachineApplicable, ); } // Check argument if let Some((value, _)) = constant(cx, cx.typeck_results(), &args[1]) { let (lint, help, suggestion) = if F32(1.0 / 2.0) == value || F64(1.0 / 2.0) == value { ( SUBOPTIMAL_FLOPS, "square-root of a number can be computed more efficiently and accurately", format!("{}.sqrt()", Sugg::hir(cx, &args[0], "..")), ) } else if F32(1.0 / 3.0) == value || F64(1.0 / 3.0) == value { ( IMPRECISE_FLOPS, "cube-root of a number can be computed more accurately", format!("{}.cbrt()", Sugg::hir(cx, &args[0], "..")), ) } else if let Some(exponent) = get_integer_from_float_constant(&value) { ( SUBOPTIMAL_FLOPS, "exponentiation with integer powers can be computed more efficiently", format!( "{}.powi({})", Sugg::hir(cx, &args[0], ".."), numeric_literal::format(&exponent.to_string(), None, false) ), ) } else { return; }; span_lint_and_sugg( cx, lint, expr.span, help, "consider using", suggestion, Applicability::MachineApplicable, ); } } fn check_powi(cx: &LateContext<'_>, expr: &Expr<'_>, args: &[Expr<'_>]) { if let Some((value, _)) = constant(cx, cx.typeck_results(), &args[1]) { if value == Int(2) { if let Some(parent) = get_parent_expr(cx, expr) { if let Some(grandparent) = get_parent_expr(cx, parent) { if let ExprKind::MethodCall(PathSegment { ident: method_name, .. }, _, args, _) = grandparent.kind { if method_name.as_str() == "sqrt" && detect_hypot(cx, args).is_some() { return; } } } if let ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, lhs, rhs, ) = parent.kind { let other_addend = if lhs.hir_id == expr.hir_id { rhs } else { lhs }; span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, parent.span, "multiply and add expressions can be calculated more efficiently and accurately", "consider using", format!( "{}.mul_add({}, {})", Sugg::hir(cx, &args[0], ".."), Sugg::hir(cx, &args[0], ".."), Sugg::hir(cx, other_addend, ".."), ), Applicability::MachineApplicable, ); } } } } } fn detect_hypot(cx: &LateContext<'_>, args: &[Expr<'_>]) -> Option { if let ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, add_lhs, add_rhs, ) = args[0].kind { // check if expression of the form x * x + y * y if_chain! { if let ExprKind::Binary(Spanned { node: BinOpKind::Mul, .. }, lmul_lhs, lmul_rhs) = add_lhs.kind; if let ExprKind::Binary(Spanned { node: BinOpKind::Mul, .. }, rmul_lhs, rmul_rhs) = add_rhs.kind; if eq_expr_value(cx, lmul_lhs, lmul_rhs); if eq_expr_value(cx, rmul_lhs, rmul_rhs); then { return Some(format!("{}.hypot({})", Sugg::hir(cx, lmul_lhs, "..").maybe_par(), Sugg::hir(cx, rmul_lhs, ".."))); } } // check if expression of the form x.powi(2) + y.powi(2) if_chain! { if let ExprKind::MethodCall( PathSegment { ident: lmethod_name, .. }, _lspan, [largs_0, largs_1, ..], _ ) = &add_lhs.kind; if let ExprKind::MethodCall( PathSegment { ident: rmethod_name, .. }, _rspan, [rargs_0, rargs_1, ..], _ ) = &add_rhs.kind; if lmethod_name.as_str() == "powi" && rmethod_name.as_str() == "powi"; if let Some((lvalue, _)) = constant(cx, cx.typeck_results(), largs_1); if let Some((rvalue, _)) = constant(cx, cx.typeck_results(), rargs_1); if Int(2) == lvalue && Int(2) == rvalue; then { return Some(format!("{}.hypot({})", Sugg::hir(cx, largs_0, "..").maybe_par(), Sugg::hir(cx, rargs_0, ".."))); } } } None } fn check_hypot(cx: &LateContext<'_>, expr: &Expr<'_>, args: &[Expr<'_>]) { if let Some(message) = detect_hypot(cx, args) { span_lint_and_sugg( cx, IMPRECISE_FLOPS, expr.span, "hypotenuse can be computed more accurately", "consider using", message, Applicability::MachineApplicable, ); } } // TODO: Lint expressions of the form `x.exp() - y` where y > 1 // and suggest usage of `x.exp_m1() - (y - 1)` instead fn check_expm1(cx: &LateContext<'_>, expr: &Expr<'_>) { if_chain! { if let ExprKind::Binary(Spanned { node: BinOpKind::Sub, .. }, lhs, rhs) = expr.kind; if cx.typeck_results().expr_ty(lhs).is_floating_point(); if let Some((value, _)) = constant(cx, cx.typeck_results(), rhs); if F32(1.0) == value || F64(1.0) == value; if let ExprKind::MethodCall(path, _, [self_arg, ..], _) = &lhs.kind; if cx.typeck_results().expr_ty(self_arg).is_floating_point(); if path.ident.name.as_str() == "exp"; then { span_lint_and_sugg( cx, IMPRECISE_FLOPS, expr.span, "(e.pow(x) - 1) can be computed more accurately", "consider using", format!( "{}.exp_m1()", Sugg::hir(cx, self_arg, "..") ), Applicability::MachineApplicable, ); } } } fn is_float_mul_expr<'a>(cx: &LateContext<'_>, expr: &'a Expr<'a>) -> Option<(&'a Expr<'a>, &'a Expr<'a>)> { if_chain! { if let ExprKind::Binary(Spanned { node: BinOpKind::Mul, .. }, lhs, rhs) = &expr.kind; if cx.typeck_results().expr_ty(lhs).is_floating_point(); if cx.typeck_results().expr_ty(rhs).is_floating_point(); then { return Some((lhs, rhs)); } } None } // TODO: Fix rust-lang/rust-clippy#4735 fn check_mul_add(cx: &LateContext<'_>, expr: &Expr<'_>) { if let ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, lhs, rhs, ) = &expr.kind { if let Some(parent) = get_parent_expr(cx, expr) { if let ExprKind::MethodCall(PathSegment { ident: method_name, .. }, _, args, _) = parent.kind { if method_name.as_str() == "sqrt" && detect_hypot(cx, args).is_some() { return; } } } let (recv, arg1, arg2) = if let Some((inner_lhs, inner_rhs)) = is_float_mul_expr(cx, lhs) { (inner_lhs, inner_rhs, rhs) } else if let Some((inner_lhs, inner_rhs)) = is_float_mul_expr(cx, rhs) { (inner_lhs, inner_rhs, lhs) } else { return; }; span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, "multiply and add expressions can be calculated more efficiently and accurately", "consider using", format!( "{}.mul_add({}, {})", prepare_receiver_sugg(cx, recv), Sugg::hir(cx, arg1, ".."), Sugg::hir(cx, arg2, ".."), ), Applicability::MachineApplicable, ); } } /// Returns true iff expr is an expression which tests whether or not /// test is positive or an expression which tests whether or not test /// is nonnegative. /// Used for check-custom-abs function below fn is_testing_positive(cx: &LateContext<'_>, expr: &Expr<'_>, test: &Expr<'_>) -> bool { if let ExprKind::Binary(Spanned { node: op, .. }, left, right) = expr.kind { match op { BinOpKind::Gt | BinOpKind::Ge => is_zero(cx, right) && eq_expr_value(cx, left, test), BinOpKind::Lt | BinOpKind::Le => is_zero(cx, left) && eq_expr_value(cx, right, test), _ => false, } } else { false } } /// See [`is_testing_positive`] fn is_testing_negative(cx: &LateContext<'_>, expr: &Expr<'_>, test: &Expr<'_>) -> bool { if let ExprKind::Binary(Spanned { node: op, .. }, left, right) = expr.kind { match op { BinOpKind::Gt | BinOpKind::Ge => is_zero(cx, left) && eq_expr_value(cx, right, test), BinOpKind::Lt | BinOpKind::Le => is_zero(cx, right) && eq_expr_value(cx, left, test), _ => false, } } else { false } } /// Returns true iff expr is some zero literal fn is_zero(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { match constant_simple(cx, cx.typeck_results(), expr) { Some(Constant::Int(i)) => i == 0, Some(Constant::F32(f)) => f == 0.0, Some(Constant::F64(f)) => f == 0.0, _ => false, } } /// If the two expressions are negations of each other, then it returns /// a tuple, in which the first element is true iff expr1 is the /// positive expressions, and the second element is the positive /// one of the two expressions /// If the two expressions are not negations of each other, then it /// returns None. fn are_negated<'a>(cx: &LateContext<'_>, expr1: &'a Expr<'a>, expr2: &'a Expr<'a>) -> Option<(bool, &'a Expr<'a>)> { if let ExprKind::Unary(UnOp::Neg, expr1_negated) = &expr1.kind { if eq_expr_value(cx, expr1_negated, expr2) { return Some((false, expr2)); } } if let ExprKind::Unary(UnOp::Neg, expr2_negated) = &expr2.kind { if eq_expr_value(cx, expr1, expr2_negated) { return Some((true, expr1)); } } None } fn check_custom_abs(cx: &LateContext<'_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::If { cond, then, r#else: Some(r#else) }) = higher::If::hir(expr); let if_body_expr = peel_blocks(then); let else_body_expr = peel_blocks(r#else); if let Some((if_expr_positive, body)) = are_negated(cx, if_body_expr, else_body_expr); then { let positive_abs_sugg = ( "manual implementation of `abs` method", format!("{}.abs()", Sugg::hir(cx, body, "..")), ); let negative_abs_sugg = ( "manual implementation of negation of `abs` method", format!("-{}.abs()", Sugg::hir(cx, body, "..")), ); let sugg = if is_testing_positive(cx, cond, body) { if if_expr_positive { positive_abs_sugg } else { negative_abs_sugg } } else if is_testing_negative(cx, cond, body) { if if_expr_positive { negative_abs_sugg } else { positive_abs_sugg } } else { return; }; span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, sugg.0, "try", sugg.1, Applicability::MachineApplicable, ); } } } fn are_same_base_logs(cx: &LateContext<'_>, expr_a: &Expr<'_>, expr_b: &Expr<'_>) -> bool { if_chain! { if let ExprKind::MethodCall(PathSegment { ident: method_name_a, .. }, _, args_a, _) = expr_a.kind; if let ExprKind::MethodCall(PathSegment { ident: method_name_b, .. }, _, args_b, _) = expr_b.kind; then { return method_name_a.as_str() == method_name_b.as_str() && args_a.len() == args_b.len() && ( ["ln", "log2", "log10"].contains(&&*method_name_a.as_str()) || method_name_a.as_str() == "log" && args_a.len() == 2 && eq_expr_value(cx, &args_a[1], &args_b[1]) ); } } false } fn check_log_division(cx: &LateContext<'_>, expr: &Expr<'_>) { // check if expression of the form x.logN() / y.logN() if_chain! { if let ExprKind::Binary( Spanned { node: BinOpKind::Div, .. }, lhs, rhs, ) = &expr.kind; if are_same_base_logs(cx, lhs, rhs); if let ExprKind::MethodCall(_, _, [largs_self, ..], _) = &lhs.kind; if let ExprKind::MethodCall(_, _, [rargs_self, ..], _) = &rhs.kind; then { span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, "log base can be expressed more clearly", "consider using", format!("{}.log({})", Sugg::hir(cx, largs_self, ".."), Sugg::hir(cx, rargs_self, ".."),), Applicability::MachineApplicable, ); } } } fn check_radians(cx: &LateContext<'_>, expr: &Expr<'_>) { if_chain! { if let ExprKind::Binary( Spanned { node: BinOpKind::Div, .. }, div_lhs, div_rhs, ) = &expr.kind; if let ExprKind::Binary( Spanned { node: BinOpKind::Mul, .. }, mul_lhs, mul_rhs, ) = &div_lhs.kind; if let Some((rvalue, _)) = constant(cx, cx.typeck_results(), div_rhs); if let Some((lvalue, _)) = constant(cx, cx.typeck_results(), mul_rhs); then { // TODO: also check for constant values near PI/180 or 180/PI if (F32(f32_consts::PI) == rvalue || F64(f64_consts::PI) == rvalue) && (F32(180_f32) == lvalue || F64(180_f64) == lvalue) { span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, "conversion to degrees can be done more accurately", "consider using", format!("{}.to_degrees()", Sugg::hir(cx, mul_lhs, "..")), Applicability::MachineApplicable, ); } else if (F32(180_f32) == rvalue || F64(180_f64) == rvalue) && (F32(f32_consts::PI) == lvalue || F64(f64_consts::PI) == lvalue) { span_lint_and_sugg( cx, SUBOPTIMAL_FLOPS, expr.span, "conversion to radians can be done more accurately", "consider using", format!("{}.to_radians()", Sugg::hir(cx, mul_lhs, "..")), Applicability::MachineApplicable, ); } } } } impl<'tcx> LateLintPass<'tcx> for FloatingPointArithmetic { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { // All of these operations are currently not const. if in_constant(cx, expr.hir_id) { return; } if let ExprKind::MethodCall(path, _, args, _) = &expr.kind { let recv_ty = cx.typeck_results().expr_ty(&args[0]); if recv_ty.is_floating_point() { match &*path.ident.name.as_str() { "ln" => check_ln1p(cx, expr, args), "log" => check_log_base(cx, expr, args), "powf" => check_powf(cx, expr, args), "powi" => check_powi(cx, expr, args), "sqrt" => check_hypot(cx, expr, args), _ => {}, } } } else { check_expm1(cx, expr); check_mul_add(cx, expr); check_custom_abs(cx, expr); check_log_division(cx, expr); check_radians(cx, expr); } } }