use clippy_utils::diagnostics::{span_lint, span_lint_and_sugg, span_lint_and_then, span_lint_hir_and_then}; use clippy_utils::source::{snippet, snippet_opt}; use clippy_utils::ty::implements_trait; use if_chain::if_chain; use rustc_ast::ast::LitKind; use rustc_errors::Applicability; use rustc_hir::intravisit::FnKind; use rustc_hir::{ self as hir, def, BinOpKind, BindingAnnotation, Body, Expr, ExprKind, FnDecl, HirId, Mutability, PatKind, Stmt, StmtKind, TyKind, UnOp, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::lint::in_external_macro; use rustc_middle::ty::{self, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::hygiene::DesugaringKind; use rustc_span::source_map::{ExpnKind, Span}; use rustc_span::symbol::sym; use clippy_utils::consts::{constant, Constant}; use clippy_utils::sugg::Sugg; use clippy_utils::{ expr_path_res, get_item_name, get_parent_expr, higher, in_constant, is_diag_trait_item, is_integer_const, iter_input_pats, last_path_segment, match_any_def_paths, paths, unsext, SpanlessEq, }; declare_clippy_lint! { /// ### What it does /// Checks for function arguments and let bindings denoted as /// `ref`. /// /// ### Why is this bad? /// The `ref` declaration makes the function take an owned /// value, but turns the argument into a reference (which means that the value /// is destroyed when exiting the function). This adds not much value: either /// take a reference type, or take an owned value and create references in the /// body. /// /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The /// type of `x` is more obvious with the former. /// /// ### Known problems /// If the argument is dereferenced within the function, /// removing the `ref` will lead to errors. This can be fixed by removing the /// dereferences, e.g., changing `*x` to `x` within the function. /// /// ### Example /// ```rust,ignore /// // Bad /// fn foo(ref x: u8) -> bool { /// true /// } /// /// // Good /// fn foo(x: &u8) -> bool { /// true /// } /// ``` pub TOPLEVEL_REF_ARG, style, "an entire binding declared as `ref`, in a function argument or a `let` statement" } declare_clippy_lint! { /// ### What it does /// Checks for comparisons to NaN. /// /// ### Why is this bad? /// NaN does not compare meaningfully to anything – not /// even itself – so those comparisons are simply wrong. /// /// ### Example /// ```rust /// # let x = 1.0; /// /// // Bad /// if x == f32::NAN { } /// /// // Good /// if x.is_nan() { } /// ``` pub CMP_NAN, correctness, "comparisons to `NAN`, which will always return false, probably not intended" } declare_clippy_lint! { /// ### What it does /// Checks for (in-)equality comparisons on floating-point /// values (apart from zero), except in functions called `*eq*` (which probably /// implement equality for a type involving floats). /// /// ### Why is this bad? /// Floating point calculations are usually imprecise, so /// asking if two values are *exactly* equal is asking for trouble. For a good /// guide on what to do, see [the floating point /// guide](http://www.floating-point-gui.de/errors/comparison). /// /// ### Example /// ```rust /// let x = 1.2331f64; /// let y = 1.2332f64; /// /// // Bad /// if y == 1.23f64 { } /// if y != x {} // where both are floats /// /// // Good /// let error_margin = f64::EPSILON; // Use an epsilon for comparison /// // Or, if Rust <= 1.42, use `std::f64::EPSILON` constant instead. /// // let error_margin = std::f64::EPSILON; /// if (y - 1.23f64).abs() < error_margin { } /// if (y - x).abs() > error_margin { } /// ``` pub FLOAT_CMP, correctness, "using `==` or `!=` on float values instead of comparing difference with an epsilon" } declare_clippy_lint! { /// ### What it does /// Checks for conversions to owned values just for the sake /// of a comparison. /// /// ### Why is this bad? /// The comparison can operate on a reference, so creating /// an owned value effectively throws it away directly afterwards, which is /// needlessly consuming code and heap space. /// /// ### Example /// ```rust /// # let x = "foo"; /// # let y = String::from("foo"); /// if x.to_owned() == y {} /// ``` /// Could be written as /// ```rust /// # let x = "foo"; /// # let y = String::from("foo"); /// if x == y {} /// ``` pub CMP_OWNED, perf, "creating owned instances for comparing with others, e.g., `x == \"foo\".to_string()`" } declare_clippy_lint! { /// ### What it does /// Checks for getting the remainder of a division by one or minus /// one. /// /// ### Why is this bad? /// The result for a divisor of one can only ever be zero; for /// minus one it can cause panic/overflow (if the left operand is the minimal value of /// the respective integer type) or results in zero. No one will write such code /// deliberately, unless trying to win an Underhanded Rust Contest. Even for that /// contest, it's probably a bad idea. Use something more underhanded. /// /// ### Example /// ```rust /// # let x = 1; /// let a = x % 1; /// let a = x % -1; /// ``` pub MODULO_ONE, correctness, "taking a number modulo +/-1, which can either panic/overflow or always returns 0" } declare_clippy_lint! { /// ### What it does /// Checks for the use of bindings with a single leading /// underscore. /// /// ### Why is this bad? /// A single leading underscore is usually used to indicate /// that a binding will not be used. Using such a binding breaks this /// expectation. /// /// ### Known problems /// The lint does not work properly with desugaring and /// macro, it has been allowed in the mean time. /// /// ### Example /// ```rust /// let _x = 0; /// let y = _x + 1; // Here we are using `_x`, even though it has a leading /// // underscore. We should rename `_x` to `x` /// ``` pub USED_UNDERSCORE_BINDING, pedantic, "using a binding which is prefixed with an underscore" } declare_clippy_lint! { /// ### What it does /// Checks for the use of short circuit boolean conditions as /// a /// statement. /// /// ### Why is this bad? /// Using a short circuit boolean condition as a statement /// may hide the fact that the second part is executed or not depending on the /// outcome of the first part. /// /// ### Example /// ```rust,ignore /// f() && g(); // We should write `if f() { g(); }`. /// ``` pub SHORT_CIRCUIT_STATEMENT, complexity, "using a short circuit boolean condition as a statement" } declare_clippy_lint! { /// ### What it does /// Catch casts from `0` to some pointer type /// /// ### Why is this bad? /// This generally means `null` and is better expressed as /// {`std`, `core`}`::ptr::`{`null`, `null_mut`}. /// /// ### Example /// ```rust /// // Bad /// let a = 0 as *const u32; /// /// // Good /// let a = std::ptr::null::(); /// ``` pub ZERO_PTR, style, "using `0 as *{const, mut} T`" } declare_clippy_lint! { /// ### What it does /// Checks for (in-)equality comparisons on floating-point /// value and constant, except in functions called `*eq*` (which probably /// implement equality for a type involving floats). /// /// ### Why is this bad? /// Floating point calculations are usually imprecise, so /// asking if two values are *exactly* equal is asking for trouble. For a good /// guide on what to do, see [the floating point /// guide](http://www.floating-point-gui.de/errors/comparison). /// /// ### Example /// ```rust /// let x: f64 = 1.0; /// const ONE: f64 = 1.00; /// /// // Bad /// if x == ONE { } // where both are floats /// /// // Good /// let error_margin = f64::EPSILON; // Use an epsilon for comparison /// // Or, if Rust <= 1.42, use `std::f64::EPSILON` constant instead. /// // let error_margin = std::f64::EPSILON; /// if (x - ONE).abs() < error_margin { } /// ``` pub FLOAT_CMP_CONST, restriction, "using `==` or `!=` on float constants instead of comparing difference with an epsilon" } declare_lint_pass!(MiscLints => [ TOPLEVEL_REF_ARG, CMP_NAN, FLOAT_CMP, CMP_OWNED, MODULO_ONE, USED_UNDERSCORE_BINDING, SHORT_CIRCUIT_STATEMENT, ZERO_PTR, FLOAT_CMP_CONST ]); impl<'tcx> LateLintPass<'tcx> for MiscLints { fn check_fn( &mut self, cx: &LateContext<'tcx>, k: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, _: HirId, ) { if let FnKind::Closure = k { // Does not apply to closures return; } if in_external_macro(cx.tcx.sess, span) { return; } for arg in iter_input_pats(decl, body) { if let PatKind::Binding(BindingAnnotation::Ref | BindingAnnotation::RefMut, ..) = arg.pat.kind { span_lint( cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. \ Consider using a reference type instead", ); } } } fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) { if_chain! { if !in_external_macro(cx.tcx.sess, stmt.span); if let StmtKind::Local(local) = stmt.kind; if let PatKind::Binding(an, .., name, None) = local.pat.kind; if let Some(init) = local.init; if !higher::is_from_for_desugar(local); if an == BindingAnnotation::Ref || an == BindingAnnotation::RefMut; then { // use the macro callsite when the init span (but not the whole local span) // comes from an expansion like `vec![1, 2, 3]` in `let ref _ = vec![1, 2, 3];` let sugg_init = if init.span.from_expansion() && !local.span.from_expansion() { Sugg::hir_with_macro_callsite(cx, init, "..") } else { Sugg::hir(cx, init, "..") }; let (mutopt, initref) = if an == BindingAnnotation::RefMut { ("mut ", sugg_init.mut_addr()) } else { ("", sugg_init.addr()) }; let tyopt = if let Some(ty) = local.ty { format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "..")) } else { String::new() }; span_lint_hir_and_then( cx, TOPLEVEL_REF_ARG, init.hir_id, local.pat.span, "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead", |diag| { diag.span_suggestion( stmt.span, "try", format!( "let {name}{tyopt} = {initref};", name=snippet(cx, name.span, ".."), tyopt=tyopt, initref=initref, ), Applicability::MachineApplicable, ); } ); } }; if_chain! { if let StmtKind::Semi(expr) = stmt.kind; if let ExprKind::Binary(ref binop, a, b) = expr.kind; if binop.node == BinOpKind::And || binop.node == BinOpKind::Or; if let Some(sugg) = Sugg::hir_opt(cx, a); then { span_lint_hir_and_then( cx, SHORT_CIRCUIT_STATEMENT, expr.hir_id, stmt.span, "boolean short circuit operator in statement may be clearer using an explicit test", |diag| { let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg }; diag.span_suggestion( stmt.span, "replace it with", format!( "if {} {{ {}; }}", sugg, &snippet(cx, b.span, ".."), ), Applicability::MachineApplicable, // snippet ); }); } }; } fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { match expr.kind { ExprKind::Cast(e, ty) => { check_cast(cx, expr.span, e, ty); return; }, ExprKind::Binary(ref cmp, left, right) => { check_binary(cx, expr, cmp, left, right); return; }, _ => {}, } if in_attributes_expansion(expr) || expr.span.is_desugaring(DesugaringKind::Await) { // Don't lint things expanded by #[derive(...)], etc or `await` desugaring return; } let binding = match expr.kind { ExprKind::Path(ref qpath) if !matches!(qpath, hir::QPath::LangItem(..)) => { let binding = last_path_segment(qpath).ident.as_str(); if binding.starts_with('_') && !binding.starts_with("__") && binding != "_result" && // FIXME: #944 is_used(cx, expr) && // don't lint if the declaration is in a macro non_macro_local(cx, cx.qpath_res(qpath, expr.hir_id)) { Some(binding) } else { None } }, ExprKind::Field(_, ident) => { let name = ident.as_str(); if name.starts_with('_') && !name.starts_with("__") { Some(name) } else { None } }, _ => None, }; if let Some(binding) = binding { span_lint( cx, USED_UNDERSCORE_BINDING, expr.span, &format!( "used binding `{}` which is prefixed with an underscore. A leading \ underscore signals that a binding will not be used", binding ), ); } } } fn get_lint_and_message( is_comparing_constants: bool, is_comparing_arrays: bool, ) -> (&'static rustc_lint::Lint, &'static str) { if is_comparing_constants { ( FLOAT_CMP_CONST, if is_comparing_arrays { "strict comparison of `f32` or `f64` constant arrays" } else { "strict comparison of `f32` or `f64` constant" }, ) } else { ( FLOAT_CMP, if is_comparing_arrays { "strict comparison of `f32` or `f64` arrays" } else { "strict comparison of `f32` or `f64`" }, ) } } fn check_nan(cx: &LateContext<'_>, expr: &Expr<'_>, cmp_expr: &Expr<'_>) { if_chain! { if !in_constant(cx, cmp_expr.hir_id); if let Some((value, _)) = constant(cx, cx.typeck_results(), expr); if match value { Constant::F32(num) => num.is_nan(), Constant::F64(num) => num.is_nan(), _ => false, }; then { span_lint( cx, CMP_NAN, cmp_expr.span, "doomed comparison with `NAN`, use `{f32,f64}::is_nan()` instead", ); } } } fn is_named_constant<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool { if let Some((_, res)) = constant(cx, cx.typeck_results(), expr) { res } else { false } } fn is_allowed<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool { match constant(cx, cx.typeck_results(), expr) { Some((Constant::F32(f), _)) => f == 0.0 || f.is_infinite(), Some((Constant::F64(f), _)) => f == 0.0 || f.is_infinite(), Some((Constant::Vec(vec), _)) => vec.iter().all(|f| match f { Constant::F32(f) => *f == 0.0 || (*f).is_infinite(), Constant::F64(f) => *f == 0.0 || (*f).is_infinite(), _ => false, }), _ => false, } } // Return true if `expr` is the result of `signum()` invoked on a float value. fn is_signum(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { // The negation of a signum is still a signum if let ExprKind::Unary(UnOp::Neg, child_expr) = expr.kind { return is_signum(cx, child_expr); } if_chain! { if let ExprKind::MethodCall(method_name, _, [ref self_arg, ..], _) = expr.kind; if sym!(signum) == method_name.ident.name; // Check that the receiver of the signum() is a float (expressions[0] is the receiver of // the method call) then { return is_float(cx, self_arg); } } false } fn is_float(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { let value = &cx.typeck_results().expr_ty(expr).peel_refs().kind(); if let ty::Array(arr_ty, _) = value { return matches!(arr_ty.kind(), ty::Float(_)); }; matches!(value, ty::Float(_)) } fn is_array(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { matches!(&cx.typeck_results().expr_ty(expr).peel_refs().kind(), ty::Array(_, _)) } fn check_to_owned(cx: &LateContext<'_>, expr: &Expr<'_>, other: &Expr<'_>, left: bool) { #[derive(Default)] struct EqImpl { ty_eq_other: bool, other_eq_ty: bool, } impl EqImpl { fn is_implemented(&self) -> bool { self.ty_eq_other || self.other_eq_ty } } fn symmetric_partial_eq<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, other: Ty<'tcx>) -> Option { cx.tcx.lang_items().eq_trait().map(|def_id| EqImpl { ty_eq_other: implements_trait(cx, ty, def_id, &[other.into()]), other_eq_ty: implements_trait(cx, other, def_id, &[ty.into()]), }) } let (arg_ty, snip) = match expr.kind { ExprKind::MethodCall(.., args, _) if args.len() == 1 => { if_chain!( if let Some(expr_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id); if is_diag_trait_item(cx, expr_def_id, sym::ToString) || is_diag_trait_item(cx, expr_def_id, sym::ToOwned); then { (cx.typeck_results().expr_ty(&args[0]), snippet(cx, args[0].span, "..")) } else { return; } ) }, ExprKind::Call(path, [arg]) => { if expr_path_res(cx, path) .opt_def_id() .and_then(|id| match_any_def_paths(cx, id, &[&paths::FROM_STR_METHOD, &paths::FROM_FROM])) .is_some() { (cx.typeck_results().expr_ty(arg), snippet(cx, arg.span, "..")) } else { return; } }, _ => return, }; let other_ty = cx.typeck_results().expr_ty(other); let without_deref = symmetric_partial_eq(cx, arg_ty, other_ty).unwrap_or_default(); let with_deref = arg_ty .builtin_deref(true) .and_then(|tam| symmetric_partial_eq(cx, tam.ty, other_ty)) .unwrap_or_default(); if !with_deref.is_implemented() && !without_deref.is_implemented() { return; } let other_gets_derefed = matches!(other.kind, ExprKind::Unary(UnOp::Deref, _)); let lint_span = if other_gets_derefed { expr.span.to(other.span) } else { expr.span }; span_lint_and_then( cx, CMP_OWNED, lint_span, "this creates an owned instance just for comparison", |diag| { // This also catches `PartialEq` implementations that call `to_owned`. if other_gets_derefed { diag.span_label(lint_span, "try implementing the comparison without allocating"); return; } let expr_snip; let eq_impl; if with_deref.is_implemented() { expr_snip = format!("*{}", snip); eq_impl = with_deref; } else { expr_snip = snip.to_string(); eq_impl = without_deref; }; let span; let hint; if (eq_impl.ty_eq_other && left) || (eq_impl.other_eq_ty && !left) { span = expr.span; hint = expr_snip; } else { span = expr.span.to(other.span); if eq_impl.ty_eq_other { hint = format!("{} == {}", expr_snip, snippet(cx, other.span, "..")); } else { hint = format!("{} == {}", snippet(cx, other.span, ".."), expr_snip); } } diag.span_suggestion( span, "try", hint, Applicability::MachineApplicable, // snippet ); }, ); } /// Heuristic to see if an expression is used. Should be compatible with /// `unused_variables`'s idea /// of what it means for an expression to be "used". fn is_used(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { get_parent_expr(cx, expr).map_or(true, |parent| match parent.kind { ExprKind::Assign(_, rhs, _) | ExprKind::AssignOp(_, _, rhs) => SpanlessEq::new(cx).eq_expr(rhs, expr), _ => is_used(cx, parent), }) } /// Tests whether an expression is in a macro expansion (e.g., something /// generated by `#[derive(...)]` or the like). fn in_attributes_expansion(expr: &Expr<'_>) -> bool { use rustc_span::hygiene::MacroKind; if expr.span.from_expansion() { let data = expr.span.ctxt().outer_expn_data(); matches!(data.kind, ExpnKind::Macro(MacroKind::Attr, _)) } else { false } } /// Tests whether `res` is a variable defined outside a macro. fn non_macro_local(cx: &LateContext<'_>, res: def::Res) -> bool { if let def::Res::Local(id) = res { !cx.tcx.hir().span(id).from_expansion() } else { false } } fn check_cast(cx: &LateContext<'_>, span: Span, e: &Expr<'_>, ty: &hir::Ty<'_>) { if_chain! { if let TyKind::Ptr(ref mut_ty) = ty.kind; if let ExprKind::Lit(ref lit) = e.kind; if let LitKind::Int(0, _) = lit.node; if !in_constant(cx, e.hir_id); then { let (msg, sugg_fn) = match mut_ty.mutbl { Mutability::Mut => ("`0 as *mut _` detected", "std::ptr::null_mut"), Mutability::Not => ("`0 as *const _` detected", "std::ptr::null"), }; let (sugg, appl) = if let TyKind::Infer = mut_ty.ty.kind { (format!("{}()", sugg_fn), Applicability::MachineApplicable) } else if let Some(mut_ty_snip) = snippet_opt(cx, mut_ty.ty.span) { (format!("{}::<{}>()", sugg_fn, mut_ty_snip), Applicability::MachineApplicable) } else { // `MaybeIncorrect` as type inference may not work with the suggested code (format!("{}()", sugg_fn), Applicability::MaybeIncorrect) }; span_lint_and_sugg(cx, ZERO_PTR, span, msg, "try", sugg, appl); } } } fn check_binary( cx: &LateContext<'a>, expr: &Expr<'_>, cmp: &rustc_span::source_map::Spanned, left: &'a Expr<'_>, right: &'a Expr<'_>, ) { let op = cmp.node; if op.is_comparison() { check_nan(cx, left, expr); check_nan(cx, right, expr); check_to_owned(cx, left, right, true); check_to_owned(cx, right, left, false); } if (op == BinOpKind::Eq || op == BinOpKind::Ne) && (is_float(cx, left) || is_float(cx, right)) { if is_allowed(cx, left) || is_allowed(cx, right) { return; } // Allow comparing the results of signum() if is_signum(cx, left) && is_signum(cx, right) { return; } if let Some(name) = get_item_name(cx, expr) { let name = name.as_str(); if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") || name.ends_with("_eq") { return; } } let is_comparing_arrays = is_array(cx, left) || is_array(cx, right); let (lint, msg) = get_lint_and_message( is_named_constant(cx, left) || is_named_constant(cx, right), is_comparing_arrays, ); span_lint_and_then(cx, lint, expr.span, msg, |diag| { let lhs = Sugg::hir(cx, left, ".."); let rhs = Sugg::hir(cx, right, ".."); if !is_comparing_arrays { diag.span_suggestion( expr.span, "consider comparing them within some margin of error", format!( "({}).abs() {} error_margin", lhs - rhs, if op == BinOpKind::Eq { '<' } else { '>' } ), Applicability::HasPlaceholders, // snippet ); } diag.note("`f32::EPSILON` and `f64::EPSILON` are available for the `error_margin`"); }); } else if op == BinOpKind::Rem { if is_integer_const(cx, right, 1) { span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0"); } if let ty::Int(ity) = cx.typeck_results().expr_ty(right).kind() { if is_integer_const(cx, right, unsext(cx.tcx, -1, *ity)) { span_lint( cx, MODULO_ONE, expr.span, "any number modulo -1 will panic/overflow or result in 0", ); } }; } }