use rustc::hir::map::Node::{NodeImplItem, NodeItem}; use rustc::hir::*; use rustc::lint::*; use std::ops::Deref; use syntax::ast::LitKind; use syntax::ptr; use syntax::symbol::LocalInternedString; use syntax_pos::Span; use crate::utils::{is_expn_of, match_def_path, match_path, resolve_node, span_lint, span_lint_and_sugg}; use crate::utils::{opt_def_id, paths, last_path_segment}; /// **What it does:** This lint warns when you use `println!("")` to /// print a newline. /// /// **Why is this bad?** You should use `println!()`, which is simpler. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// println!(""); /// ``` declare_clippy_lint! { pub PRINTLN_EMPTY_STRING, style, "using `println!(\"\")` with an empty string" } /// **What it does:** This lint warns when you use `print!()` with a format /// string that /// ends in a newline. /// /// **Why is this bad?** You should use `println!()` instead, which appends the /// newline. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// print!("Hello {}!\n", name); /// ``` declare_clippy_lint! { pub PRINT_WITH_NEWLINE, style, "using `print!()` with a format string that ends in a newline" } /// **What it does:** Checks for printing on *stdout*. The purpose of this lint /// is to catch debugging remnants. /// /// **Why is this bad?** People often print on *stdout* while debugging an /// application and might forget to remove those prints afterward. /// /// **Known problems:** Only catches `print!` and `println!` calls. /// /// **Example:** /// ```rust /// println!("Hello world!"); /// ``` declare_clippy_lint! { pub PRINT_STDOUT, restriction, "printing on stdout" } /// **What it does:** Checks for use of `Debug` formatting. The purpose of this /// lint is to catch debugging remnants. /// /// **Why is this bad?** The purpose of the `Debug` trait is to facilitate /// debugging Rust code. It should not be used in in user-facing output. /// /// **Example:** /// ```rust /// println!("{:?}", foo); /// ``` declare_clippy_lint! { pub USE_DEBUG, restriction, "use of `Debug`-based formatting" } /// **What it does:** This lint warns about the use of literals as `print!`/`println!` args. /// /// **Why is this bad?** Using literals as `println!` args is inefficient /// (c.f., https://github.com/matthiaskrgr/rust-str-bench) and unnecessary /// (i.e., just put the literal in the format string) /// /// **Known problems:** Will also warn with macro calls as arguments that expand to literals /// -- e.g., `println!("{}", env!("FOO"))`. /// /// **Example:** /// ```rust /// println!("{}", "foo"); /// ``` declare_clippy_lint! { pub PRINT_LITERAL, style, "printing a literal with a format string" } /// **What it does:** This lint warns when you use `writeln!(buf, "")` to /// print a newline. /// /// **Why is this bad?** You should use `writeln!(buf)`, which is simpler. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// writeln!(""); /// ``` declare_clippy_lint! { pub WRITELN_EMPTY_STRING, style, "using `writeln!(\"\")` with an empty string" } /// **What it does:** This lint warns when you use `write!()` with a format /// string that /// ends in a newline. /// /// **Why is this bad?** You should use `writeln!()` instead, which appends the /// newline. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// write!(buf, "Hello {}!\n", name); /// ``` declare_clippy_lint! { pub WRITE_WITH_NEWLINE, style, "using `write!()` with a format string that ends in a newline" } /// **What it does:** This lint warns about the use of literals as `write!`/`writeln!` args. /// /// **Why is this bad?** Using literals as `writeln!` args is inefficient /// (c.f., https://github.com/matthiaskrgr/rust-str-bench) and unnecessary /// (i.e., just put the literal in the format string) /// /// **Known problems:** Will also warn with macro calls as arguments that expand to literals /// -- e.g., `writeln!(buf, "{}", env!("FOO"))`. /// /// **Example:** /// ```rust /// writeln!(buf, "{}", "foo"); /// ``` declare_clippy_lint! { pub WRITE_LITERAL, style, "writing a literal with a format string" } #[derive(Copy, Clone, Debug)] pub struct Pass; impl LintPass for Pass { fn get_lints(&self) -> LintArray { lint_array!( PRINT_WITH_NEWLINE, PRINTLN_EMPTY_STRING, PRINT_STDOUT, USE_DEBUG, PRINT_LITERAL, WRITE_WITH_NEWLINE, WRITELN_EMPTY_STRING, WRITE_LITERAL ) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { match expr.node { // print!() ExprKind::Call(ref fun, ref args) => { if_chain! { if let ExprKind::Path(ref qpath) = fun.node; if let Some(fun_id) = opt_def_id(resolve_node(cx, qpath, fun.hir_id)); then { check_print_variants(cx, expr, fun_id, args); } } }, // write!() ExprKind::MethodCall(ref fun, _, ref args) => { if fun.ident.name == "write_fmt" { check_write_variants(cx, expr, args); } }, _ => (), } } } fn check_write_variants<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr, write_args: &ptr::P<[Expr]>) { // `writeln!` uses `write!`. if let Some(span) = is_expn_of(expr.span, "write") { let (span, name) = match is_expn_of(span, "writeln") { Some(span) => (span, "writeln"), None => (span, "write"), }; if_chain! { // ensure we're calling Arguments::new_v1 or Arguments::new_v1_formatted if write_args.len() == 2; if let ExprKind::Call(ref args_fun, ref args_args) = write_args[1].node; if let ExprKind::Path(ref qpath) = args_fun.node; if let Some(const_def_id) = opt_def_id(resolve_node(cx, qpath, args_fun.hir_id)); if match_def_path(cx.tcx, const_def_id, &paths::FMT_ARGUMENTS_NEWV1) || match_def_path(cx.tcx, const_def_id, &paths::FMT_ARGUMENTS_NEWV1FORMATTED); then { // Check for literals in the write!/writeln! args check_fmt_args_for_literal(cx, args_args, |span| { span_lint(cx, WRITE_LITERAL, span, "writing a literal with an empty format string"); }); if_chain! { if args_args.len() >= 2; if let ExprKind::AddrOf(_, ref match_expr) = args_args[1].node; if let ExprKind::Match(ref args, _, _) = match_expr.node; if let ExprKind::Tup(ref args) = args.node; if let Some((fmtstr, fmtlen)) = get_argument_fmtstr_parts(&args_args[0]); then { match name { "write" => if has_newline_end(args, fmtstr, fmtlen) { span_lint(cx, WRITE_WITH_NEWLINE, span, "using `write!()` with a format string that ends in a \ newline, consider using `writeln!()` instead"); }, "writeln" => if let Some(final_span) = has_empty_arg(cx, span, fmtstr, fmtlen) { span_lint_and_sugg( cx, WRITE_WITH_NEWLINE, final_span, "using `writeln!(v, \"\")`", "replace it with", "writeln!(v)".to_string(), ); }, _ => (), } } } } } } } fn check_print_variants<'a, 'tcx>( cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr, fun_id: def_id::DefId, args: &ptr::P<[Expr]>, ) { // Search for `std::io::_print(..)` which is unique in a // `print!` expansion. if match_def_path(cx.tcx, fun_id, &paths::IO_PRINT) { if let Some(span) = is_expn_of(expr.span, "print") { // `println!` uses `print!`. let (span, name) = match is_expn_of(span, "println") { Some(span) => (span, "println"), None => (span, "print"), }; span_lint(cx, PRINT_STDOUT, span, &format!("use of `{}!`", name)); if_chain! { // ensure we're calling Arguments::new_v1 if args.len() == 1; if let ExprKind::Call(ref args_fun, ref args_args) = args[0].node; then { // Check for literals in the print!/println! args check_fmt_args_for_literal(cx, args_args, |span| { span_lint(cx, PRINT_LITERAL, span, "printing a literal with an empty format string"); }); if_chain! { if let ExprKind::Path(ref qpath) = args_fun.node; if let Some(const_def_id) = opt_def_id(resolve_node(cx, qpath, args_fun.hir_id)); if match_def_path(cx.tcx, const_def_id, &paths::FMT_ARGUMENTS_NEWV1); if args_args.len() == 2; if let ExprKind::AddrOf(_, ref match_expr) = args_args[1].node; if let ExprKind::Match(ref args, _, _) = match_expr.node; if let ExprKind::Tup(ref args) = args.node; if let Some((fmtstr, fmtlen)) = get_argument_fmtstr_parts(&args_args[0]); then { match name { "print" => if has_newline_end(args, fmtstr, fmtlen) { span_lint(cx, PRINT_WITH_NEWLINE, span, "using `print!()` with a format string that ends in a \ newline, consider using `println!()` instead"); }, "println" => if let Some(final_span) = has_empty_arg(cx, span, fmtstr, fmtlen) { span_lint_and_sugg( cx, PRINT_WITH_NEWLINE, final_span, "using `println!(\"\")`", "replace it with", "println!()".to_string(), ); }, _ => (), } } } } } } } // Search for something like // `::std::fmt::ArgumentV1::new(__arg0, ::std::fmt::Debug::fmt)` else if args.len() == 2 && match_def_path(cx.tcx, fun_id, &paths::FMT_ARGUMENTV1_NEW) { if let ExprKind::Path(ref qpath) = args[1].node { if let Some(def_id) = opt_def_id(cx.tables.qpath_def(qpath, args[1].hir_id)) { if match_def_path(cx.tcx, def_id, &paths::DEBUG_FMT_METHOD) && !is_in_debug_impl(cx, expr) && is_expn_of(expr.span, "panic").is_none() { span_lint(cx, USE_DEBUG, args[0].span, "use of `Debug`-based formatting"); } } } } } // Check for literals in write!/writeln! and print!/println! args // ensuring the format string for the literal is `DISPLAY_FMT_METHOD` // e.g., `writeln!(buf, "... {} ...", "foo")` // ^ literal in `writeln!` // e.g., `println!("... {} ...", "foo")` // ^ literal in `println!` fn check_fmt_args_for_literal<'a, 'tcx, F>(cx: &LateContext<'a, 'tcx>, args: &HirVec, lint_fn: F) where F: Fn(Span), { if_chain! { if args.len() >= 2; // the match statement if let ExprKind::AddrOf(_, ref match_expr) = args[1].node; if let ExprKind::Match(ref matchee, ref arms, _) = match_expr.node; if let ExprKind::Tup(ref tup) = matchee.node; if arms.len() == 1; if let ExprKind::Array(ref arm_body_exprs) = arms[0].body.node; then { // it doesn't matter how many args there are in the `write!`/`writeln!`, // if there's one literal, we should warn the user for (idx, tup_arg) in tup.iter().enumerate() { if_chain! { // first, make sure we're dealing with a literal (i.e., an ExprKind::Lit) if let ExprKind::AddrOf(_, ref tup_val) = tup_arg.node; if let ExprKind::Lit(_) = tup_val.node; // next, check the corresponding match arm body to ensure // this is DISPLAY_FMT_METHOD if let ExprKind::Call(_, ref body_args) = arm_body_exprs[idx].node; if body_args.len() == 2; if let ExprKind::Path(ref body_qpath) = body_args[1].node; if let Some(fun_def_id) = opt_def_id(resolve_node(cx, body_qpath, body_args[1].hir_id)); if match_def_path(cx.tcx, fun_def_id, &paths::DISPLAY_FMT_METHOD); then { if args.len() == 2 { lint_fn(tup_val.span); } // ensure the format str has no options (e.g., width, precision, alignment, etc.) // and is just "{}" if_chain! { if args.len() == 3; if let ExprKind::AddrOf(_, ref format_expr) = args[2].node; if let ExprKind::Array(ref format_exprs) = format_expr.node; if format_exprs.len() >= 1; if let ExprKind::Struct(_, ref fields, _) = format_exprs[idx].node; if let Some(format_field) = fields.iter().find(|f| f.ident.name == "format"); if check_unformatted(&format_field.expr); then { lint_fn(tup_val.span); } } } } } } } } /// Check for fmtstr = "... \n" fn has_newline_end(args: &HirVec, fmtstr: LocalInternedString, fmtlen: usize) -> bool { if_chain! { // check the final format string part if let Some('\n') = fmtstr.chars().last(); // "foo{}bar" is made into two strings + one argument, // if the format string starts with `{}` (eg. "{}foo"), // the string array is prepended an empty string "". // We only want to check the last string after any `{}`: if args.len() < fmtlen; then { return true } } false } /// Check for writeln!(v, "") / println!("") fn has_empty_arg<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, span: Span, fmtstr: LocalInternedString, fmtlen: usize) -> Option { if_chain! { // check that the string is empty if fmtlen == 1; if fmtstr.deref() == "\n"; // check the presence of that string if let Ok(snippet) = cx.sess().codemap().span_to_snippet(span); if snippet.contains("\"\""); then { if snippet.ends_with(';') { return Some(cx.sess().codemap().span_until_char(span, ';')); } return Some(span) } } None } /// Returns the slice of format string parts in an `Arguments::new_v1` call. fn get_argument_fmtstr_parts(expr: &Expr) -> Option<(LocalInternedString, usize)> { if_chain! { if let ExprKind::AddrOf(_, ref expr) = expr.node; // &["…", "…", …] if let ExprKind::Array(ref exprs) = expr.node; if let Some(expr) = exprs.last(); if let ExprKind::Lit(ref lit) = expr.node; if let LitKind::Str(ref lit, _) = lit.node; then { return Some((lit.as_str(), exprs.len())); } } None } fn is_in_debug_impl(cx: &LateContext, expr: &Expr) -> bool { let map = &cx.tcx.hir; // `fmt` method if let Some(NodeImplItem(item)) = map.find(map.get_parent(expr.id)) { // `Debug` impl if let Some(NodeItem(item)) = map.find(map.get_parent(item.id)) { if let ItemKind::Impl(_, _, _, _, Some(ref tr), _, _) = item.node { return match_path(&tr.path, &["Debug"]); } } } false } /// Checks if the expression matches /// ```rust,ignore /// &[_ { /// format: _ { /// width: _::Implied, /// ... /// }, /// ..., /// }] /// ``` pub fn check_unformatted(format_field: &Expr) -> bool { if_chain! { if let ExprKind::Struct(_, ref fields, _) = format_field.node; if let Some(width_field) = fields.iter().find(|f| f.ident.name == "width"); if let ExprKind::Path(ref qpath) = width_field.expr.node; if last_path_segment(qpath).ident.name == "Implied"; if let Some(align_field) = fields.iter().find(|f| f.ident.name == "align"); if let ExprKind::Path(ref qpath) = align_field.expr.node; if last_path_segment(qpath).ident.name == "Unknown"; if let Some(precision_field) = fields.iter().find(|f| f.ident.name == "precision"); if let ExprKind::Path(ref qpath_precision) = precision_field.expr.node; if last_path_segment(qpath_precision).ident.name == "Implied"; then { return true; } } false }