`SourceFile::lines` is a big part of metadata. It's stored in a compressed form
(a difference list) to save disk space. Decoding it is a big fraction of
compile time for very small crates/programs.
This commit introduces a new type `SourceFileLines` which has a `Lines`
form and a `Diffs` form. The latter is used when the metadata is first
read, and it is only decoded into the `Lines` form when line data is
actually needed. This avoids the decoding cost for many files,
especially in `std`. It's a performance win of up to 15% for tiny
crates/programs where metadata decoding is a high part of compilation
costs.
A `Lock` is needed because the methods that access lines data (which can
trigger decoding) take `&self` rather than `&mut self`. To allow for this,
`SourceFile::lines` now takes a `FnMut` that operates on the lines slice rather
than returning the lines slice.
Refactor call terminator to always include destination place
In #71117 people seemed to agree that call terminators should always have a destination place, even if the call was guaranteed to diverge. This implements that. Unsurprisingly, the diff touches a lot of code, but thankfully I had to do almost nothing interesting. The only interesting thing came up in const prop, where the stack frame having no return place was also used to indicate that the layout could not be computed (or similar). I replaced this with a ZST allocation, which should continue to do the right things.
cc `@RalfJung` `@eddyb` who were involved in the original conversation
r? rust-lang/mir-opt
Lifetime variance fixes for clippy
#97287 migrates rustc to a `Ty` type that is invariant over its lifetime `'tcx`, so I need to fix a bunch of places that assume that `Ty<'a>` and `Ty<'b>` can be shortened to some common lifetime.
This is doable, since everything is already `'tcx`, so all this PR does is be a bit more explicit that elided lifetimes are actually `'tcx`.
Split out from #97287 so the clippy team can review independently.
Drop Tracking: Implement `fake_read` callback
This PR updates drop tracking's use of `ExprUseVisitor` so that we treat `fake_read` events as borrows. Without doing this, we were not handling match expressions correctly, which showed up as a breakage in the `addassign-yield.rs` test. We did not previously notice this because we still had rather large temporary scopes that we held borrows for, which changed in #94309.
This PR also includes a variant of the `addassign-yield.rs` test case to make sure we continue to have correct behavior here with drop tracking.
r? `@nikomatsakis`
Change `Successors` to `impl Iterator<Item = BasicBlock>`
This PR fixes the FIXME in `compiler\rustc_middle\src\mir\mod.rs`.
This can omit several `&`, `*` or `cloned` operations on Successros' generated elements
Add a query for checking whether a function is an intrinsic.
work towards #93145
This will reduce churn when we add more ways to declare intrinsics
r? `@scottmcm`
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Support tool lints with the `#[expect]` attribute (RFC 2383)
This PR fixes the ICE https://github.com/rust-lang/rust/issues/94953 by making the assert for converted expectation IDs conditional.
Additionally, it moves the lint expectation check into a separate query to support rustdoc and other tools. On the way, I've also added some tests to ensure that the attribute works for Clippy and rustdoc lints.
The number of changes comes from the long test file. This may look like a monster PR, this may smell like a monster PR and this may be a monster PR, but it's a harmless monster. 🦕
---
Closes: https://github.com/rust-lang/rust/issues/94953
cc: https://github.com/rust-lang/rust/issues/85549
r? `@wesleywiser`
cc: `@rust-lang/rustdoc`
Track if a where bound comes from a impl Trait desugar
With https://github.com/rust-lang/rust/pull/93803 `impl Trait` function arguments get desugared to hidden where bounds. However, Clippy needs to know if a bound was originally a `impl Trait` or an actual bound. This adds a field to the `WhereBoundPredicate` struct to keep track of this information during AST->HIR lowering.
r? `@cjgillot`
cc `@estebank` (as the reviewer of #93803)
Create clippy lint against unexpectedly late drop for temporaries in match scrutinee expressions
A new clippy lint for issue 93883 (https://github.com/rust-lang/rust/issues/93883). Relies on a new trait in `marker` (called `SignificantDrop` to enable linting), which is why this PR is for the rust-lang repo and not the clippy repo.
changelog: new lint [`significant_drop_in_scrutinee`]
With #93803 `impl Trait` function arguments get desugared to hidden
where bounds. However, Clippy needs to know if a bound was originally a
impl Trait or an actual bound. This adds a field to the
`WhereBoundPredicate` struct to keep track of this information during
HIR lowering.
Allow inline consts to reference generic params
Tracking issue: #76001
The RFC says that inline consts cannot reference to generic parameters (for now), same as array length expressions. And expresses that it's desirable for it to reference in-scope generics, when array length expressions gain that feature as well.
However it is possible to implement this for inline consts before doing this for all anon consts, because inline consts are only used as values and they won't be used in the type system. So we can have:
```rust
fn foo<T>() {
let x = [4i32; std::mem::size_of::<T>()]; // NOT ALLOWED (for now)
let x = const { std::mem::size_of::<T>() }; // ALLOWED with this PR!
let x = [4i32; const { std::mem::size_of::<T>() }]; // NOT ALLOWED (for now)
}
```
This would make inline consts super useful for compile-time checks and assertions:
```rust
fn assert_zst<T>() {
const { assert!(std::mem::size_of::<T>() == 0) };
}
```
This would create an error during monomorphization when `assert_zst` is instantiated with non-ZST `T`s. A error during mono might sound scary, but this is exactly what a "desugared" inline const would do:
```rust
fn assert_zst<T>() {
struct F<T>(T);
impl<T> F<T> {
const V: () = assert!(std::mem::size_of::<T>() == 0);
}
let _ = F::<T>::V;
}
```
It should also be noted that the current inline const implementation can already reference the type params via type inference, so this resolver-level restriction is not any useful either:
```rust
fn foo<T>() -> usize {
let (_, size): (PhantomData<T>, usize) = const {
const fn my_size_of<T>() -> (PhantomData<T>, usize) {
(PhantomData, std::mem::size_of::<T>())
}
my_size_of()
};
size
}
```
```@rustbot``` label: F-inline_const
Overhaul `MacArgs`
Motivation:
- Clarify some code that I found hard to understand.
- Eliminate one use of three places where `TokenKind::Interpolated` values are created.
r? `@petrochenkov`
The value in `MacArgs::Eq` is currently represented as a `Token`.
Because of `TokenKind::Interpolated`, `Token` can be either a token or
an arbitrary AST fragment. In practice, a `MacArgs::Eq` starts out as a
literal or macro call AST fragment, and then is later lowered to a
literal token. But this is very non-obvious. `Token` is a much more
general type than what is needed.
This commit restricts things, by introducing a new type `MacArgsEqKind`
that is either an AST expression (pre-lowering) or an AST literal
(post-lowering). The downside is that the code is a bit more verbose in
a few places. The benefit is that makes it much clearer what the
possibilities are (though also shorter in some other places). Also, it
removes one use of `TokenKind::Interpolated`, taking us a step closer to
removing that variant, which will let us make `Token` impl `Copy` and
remove many "handle Interpolated" code paths in the parser.
Things to note:
- Error messages have improved. Messages like this:
```
unexpected token: `"bug" + "found"`
```
now say "unexpected expression", which makes more sense. Although
arbitrary expressions can exist within tokens thanks to
`TokenKind::Interpolated`, that's not obvious to anyone who doesn't
know compiler internals.
- In `parse_mac_args_common`, we no longer need to collect tokens for
the value expression.