Use mir constant in thir instead of ty::Const
This is blocked on https://github.com/rust-lang/rust/pull/94059 (does include its changes, the first two commits in this PR correspond to those changes) and https://github.com/rust-lang/rust/pull/93800 being reinstated (which had to be reverted). Mainly opening since `@lcnr` offered to give some feedback and maybe also for a perf-run (if necessary).
This currently contains a lot of duplication since some of the logic of `ty::Const` had to be copied to `mir::ConstantKind`, but with the introduction of valtrees a lot of that functionality will disappear from `ty::Const`.
Only the last commit contains changes that need to be reviewed here. Did leave some `FIXME` comments regarding future implementation decisions and some things that might be incorrectly implemented.
r? `@oli-obk`
`MultiSpan` contains labels, which are more complicated with the
introduction of diagnostic translation and will use types from
`rustc_errors` - however, `rustc_errors` depends on `rustc_span` so
`rustc_span` cannot use types like `DiagnosticMessage` without
dependency cycles. Introduce a new `rustc_error_messages` crate that can
contain `DiagnosticMessage` and `MultiSpan`.
Signed-off-by: David Wood <david.wood@huawei.com>
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
Create `core::fmt::ArgumentV1` with generics instead of fn pointer
Split from (and prerequisite of) #90488, as this seems to have perf implication.
`@rustbot` label: +T-libs
Replace `NestedVisitorMap` with generic `NestedFilter`
This is an attempt to make the `intravisit::Visitor` API simpler and "more const" with regard to nested visiting.
With this change, `intravisit::Visitor` does not visit nested things by default, unless you specify `type NestedFilter = nested_filter::OnlyBodies` (or `All`). `nested_visit_map` returns `Self::Map` instead of `NestedVisitorMap<Self::Map>`. It panics by default (unreachable if `type NestedFilter` is omitted).
One somewhat trixty thing here is that `nested_filter::{OnlyBodies, All}` live in `rustc_middle` so that they may have `type Map = map::Map` and so that `impl Visitor`s never need to specify `type Map` - it has a default of `Self::NestedFilter::Map`.
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Closure capture cleanup & refactor
Follow up of #89648
Each commit is self-contained and the rationale/changes are documented in the commit message, so it's advisable to review commit by commit.
The code is significantly cleaner (at least IMO), but that could have some perf implication, so I'd suggest a perf run.
r? `@wesleywiser`
cc `@arora-aman`
Region info is completely unnecessary for upvar capture kind computation
and is only needed to create the final upvar tuple ty. Doing so makes
creation of UpvarCapture very cheap and expose further cleanup opportunity.
Remove `NullOp::Box`
Follow up of #89030 and MCP rust-lang/compiler-team#460.
~1 month later nothing seems to be broken, apart from a small regression that #89332 (1aac85bb716c09304b313d69d30d74fe7e8e1a8e) shows could be regained by remvoing the diverging path, so it shall be safe to continue and remove `NullOp::Box` completely.
r? `@jonas-schievink`
`@rustbot` label T-compiler
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
Implement let-else type annotations natively
Tracking issue: #87335Fixes#89688, fixes#89807, edit: fixes #89960 as well
As explained in https://github.com/rust-lang/rust/issues/89688#issuecomment-940405082, the previous desugaring moved the let-else scrutinee into a dummy variable, which meant if you wanted to refer to it again in the else block, it had moved.
This introduces a new hir type, ~~`hir::LetExpr`~~ `hir::Let`, which takes over all the fields of `hir::ExprKind::Let(...)` and adds an optional type annotation. The `hir::Let` is then treated like a `hir::Local` when type checking a function body, specifically:
* `GatherLocalsVisitor` overrides a new `Visitor::visit_let_expr` and does pretty much exactly what it does for `visit_local`, assigning a local type to the `hir::Let` ~~(they could be deduplicated but they are right next to each other, so at least we know they're the same)~~
* It reuses the code in `check_decl_local` to typecheck the `hir::Let`, simply returning 'bool' for the expression type after doing that.
* ~~`FnCtxt::check_expr_let` passes this local type in to `demand_scrutinee_type`, and then imitates check_decl_local's pattern checking~~
* ~~`demand_scrutinee_type` (the blindest change for me, please give this extra scrutiny) uses this local type instead of of creating a new one~~
* ~~Just realised the `check_expr_with_needs` was passing NoExpectation further down, need to pass the type there too. And apparently this Expectation API already exists.~~
Some other misc notes:
* ~~Is the clippy code supposed to be autoformatted? I tried not to give huge diffs but maybe some rustfmt changes simply haven't hit it yet.~~
* in `rustc_ast_lowering/src/block.rs`, I noticed some existing `self.alias_attrs()` calls in `LoweringContext::lower_stmts` seem to be copying attributes from the lowered locals/etc to the statements. Is that right? I'm new at this, I don't know.
By changing `as_str()` to take `&self` instead of `self`, we can just
return `&str`. We're still lying about lifetimes, but it's a smaller lie
than before, where `SymbolStr` contained a (fake) `&'static str`!
Stabilize `iter::zip`
Hello all!
As the tracking issue (#83574) for `iter::zip` completed the final commenting period without any concerns being raised, I hereby submit this stabilization PR on the issue.
As the pull request that introduced the feature (#82917) states, the `iter::zip` function is a shorter way to zip two iterators. As it's generally a quality-of-life/ergonomic improvement, it has been integrated into the codebase without any trouble, and has been
used in many places across the rust compiler and standard library since March without any issues.
For more details, I would refer to `@cuviper's` original PR, or the [function's documentation](https://doc.rust-lang.org/std/iter/fn.zip.html).
fix clippy format using `cargo fmt -p clippy_{lints,utils}`
manually revert rustfmt line truncations
rename to hir::Let in clippy
Undo the shadowing of various `expr` variables after renaming `scrutinee`
reduce destructuring of hir::Let to avoid `expr` collisions
cargo fmt -p clippy_{lints,utils}
bless new clippy::author output
Don't destructure args tuple in format_args!
This allows Clippy to parse the HIR more simply since `arg0` is changed to `_args.0`. (cc rust-lang/rust-clippy#7843). From rustc's perspective, I think this is something between a lateral move and a tiny improvement since there are fewer bindings.
r? `@m-ou-se`
TraitKind -> Trait
TyAliasKind -> TyAlias
ImplKind -> Impl
FnKind -> Fn
All `*Kind`s in AST are supposed to be enums.
Tuple structs are converted to braced structs for the types above, and fields are reordered in syntactic order.
Also, mutable AST visitor now correctly visit spans in defaultness, unsafety, impl polarity and constness.
Coerce const FnDefs to implement const Fn traits
You can now pass a FnDef to a function expecting `F` where `F: ~const FnTrait`.
r? ``@oli-obk``
``@rustbot`` label T-compiler F-const_trait_impl
Introduce `Rvalue::ShallowInitBox`
Polished version of #88700.
Implements MCP rust-lang/compiler-team#460, and should allow #43596 to go forward.
In short, creating an empty box is split from a nullary-op `NullOp::Box` into two steps, first a call to `exchange_malloc`, then a `Rvalue::ShallowInitBox` which transmutes `*mut u8` to a shallow-initialized `Box<T>`. This allows the `exchange_malloc` call to unwind. Details can be found in the MCP.
`NullOp::Box` is not yet removed, purely to make reverting easier in case anything goes wrong as the result of this PR. If revert is needed a reversion of "Use Rvalue::ShallowInitBox for box expression" commit followed by a test bless should be sufficient.
Experiments in #88700 showed a very slight compile-time perf regression due to (supposedly) slightly more time spent in LLVM. We could omit unwind edge generation (in non-`oom=panic` case) in box expression MIR construction to restore perf; but I don't think it's necessary since runtime perf isn't affected and perf difference is rather small.
This allows the format_args! macro to keep the pre-expansion code out of
the unsafe block without doing gymnastics with nested `match`
expressions. This reduces codegen.
Introduce NullOp::AlignOf
This PR introduces `Rvalue::NullaryOp(NullOp::AlignOf, ty)`, which will be lowered from `align_of`, similar to `size_of` lowering to `Rvalue::NullaryOp(NullOp::SizeOf, ty)`.
The changes are originally part of #88700 but since it's not dependent on other changes and could have performance impact on its own, it's separated into its own PR.
Get piece unchecked in `write`
We already use specialized `zip`, but it seems like we can do a little better by not checking `pieces` length at all.
`Arguments` constructors are now unsafe. So the `format_args!` expansion now includes an `unsafe` block.
<details>
<summary>Local Bench Diff</summary>
```text
name before ns/iter after ns/iter diff ns/iter diff % speedup
fmt::write_str_macro1 22,967 19,718 -3,249 -14.15% x 1.16
fmt::write_str_macro2 35,527 32,654 -2,873 -8.09% x 1.09
fmt::write_str_macro_debug 571,953 575,973 4,020 0.70% x 0.99
fmt::write_str_ref 9,579 9,459 -120 -1.25% x 1.01
fmt::write_str_value 9,573 9,572 -1 -0.01% x 1.00
fmt::write_u128_max 176 173 -3 -1.70% x 1.02
fmt::write_u128_min 138 134 -4 -2.90% x 1.03
fmt::write_u64_max 139 136 -3 -2.16% x 1.02
fmt::write_u64_min 129 135 6 4.65% x 0.96
fmt::write_vec_macro1 24,401 22,273 -2,128 -8.72% x 1.10
fmt::write_vec_macro2 37,096 35,602 -1,494 -4.03% x 1.04
fmt::write_vec_macro_debug 588,291 589,575 1,284 0.22% x 1.00
fmt::write_vec_ref 9,568 9,732 164 1.71% x 0.98
fmt::write_vec_value 9,516 9,625 109 1.15% x 0.99
```
</details>
Fix clippy::collapsible_match with let expressions
This fixes rust-lang/rust-clippy#7575 which is a regression from #80357. I am fixing the bug here instead of in the clippy repo (if that's okay) because a) the regression has not been synced yet and b) I would like to land the fix on nightly asap.
The fix is basically to re-generalize `match` and `if let` for the lint implementation (they were split because `if let` no longer desugars to `match` in the HIR).
Also fixesrust-lang/rust-clippy#7586 and fixesrust-lang/rust-clippy#7591
cc `@rust-lang/clippy`
`@xFrednet` do you want to review this?
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Remove refs from Pat slices
Changes `PatKind::Or(&'hir [&'hir Pat<'hir>])` to `PatKind::Or(&'hir [Pat<'hir>])` and others. This is more consistent with `ExprKind`, saves a little memory, and is a little easier to use.
This PR implements span quoting, allowing proc-macros to produce spans
pointing *into their own crate*. This is used by the unstable
`proc_macro::quote!` macro, allowing us to get error messages like this:
```
error[E0412]: cannot find type `MissingType` in this scope
--> $DIR/auxiliary/span-from-proc-macro.rs:37:20
|
LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream {
| ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]`
...
LL | field: MissingType
| ^^^^^^^^^^^ not found in this scope
|
::: $DIR/span-from-proc-macro.rs:8:1
|
LL | #[error_from_attribute]
| ----------------------- in this macro invocation
```
Here, `MissingType` occurs inside the implementation of the proc-macro
`#[error_from_attribute]`. Previosuly, this would always result in a
span pointing at `#[error_from_attribute]`
This will make many proc-macro-related error message much more useful -
when a proc-macro generates code containing an error, users will get an
error message pointing directly at that code (within the macro
definition), instead of always getting a span pointing at the macro
invocation site.
This is implemented as follows:
* When a proc-macro crate is being *compiled*, it causes the `quote!`
macro to get run. This saves all of the sapns in the input to `quote!`
into the metadata of *the proc-macro-crate* (which we are currently
compiling). The `quote!` macro then expands to a call to
`proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an
opaque identifier for the span in the crate metadata.
* When the same proc-macro crate is *run* (e.g. it is loaded from disk
and invoked by some consumer crate), the call to
`proc_macro::Span::recover_proc_macro_span` causes us to load the span
from the proc-macro crate's metadata. The proc-macro then produces a
`TokenStream` containing a `Span` pointing into the proc-macro crate
itself.
The recursive nature of 'quote!' can be difficult to understand at
first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows
the output of the `quote!` macro, which should make this eaier to
understand.
This PR also supports custom quoting spans in custom quote macros (e.g.
the `quote` crate). All span quoting goes through the
`proc_macro::quote_span` method, which can be called by a custom quote
macro to perform span quoting. An example of this usage is provided in
`src/test/ui/proc-macro/auxiliary/custom-quote.rs`
Custom quoting currently has a few limitations:
In order to quote a span, we need to generate a call to
`proc_macro::Span::recover_proc_macro_span`. However, proc-macros
support renaming the `proc_macro` crate, so we can't simply hardcode
this path. Previously, the `quote_span` method used the path
`crate::Span` - however, this only works when it is called by the
builtin `quote!` macro in the same crate. To support being called from
arbitrary crates, we need access to the name of the `proc_macro` crate
to generate a path. This PR adds an additional argument to `quote_span`
to specify the name of the `proc_macro` crate. Howver, this feels kind
of hacky, and we may want to change this before stabilizing anything
quote-related.
Additionally, using `quote_span` currently requires enabling the
`proc_macro_internals` feature. The builtin `quote!` macro
has an `#[allow_internal_unstable]` attribute, but this won't work for
custom quote implementations. This will likely require some additional
tricks to apply `allow_internal_unstable` to the span of
`proc_macro::Span::recover_proc_macro_span`.
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.
This currently creates a field which is always false on GenericParamDefKind for future use when
consts are permitted to have defaults
Update const_generics:default locations
Previously just ignored them, now actually do something about them.
Fix using type check instead of value
Add parsing
This adds all the necessary changes to lower const-generics defaults from parsing.
Change P<Expr> to AnonConst
This matches the arguments passed to instantiations of const generics, and makes it specific to
just anonymous constants.
Attempt to fix lowering bugs
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
Store HIR attributes in a side table
Same idea as #72015 but for attributes.
The objective is to reduce incr-comp invalidations due to modified attributes.
Notably, those due to modified doc comments.
Implementation:
- collect attributes during AST->HIR lowering, in `LocalDefId -> ItemLocalId -> &[Attributes]` nested tables;
- access the attributes through a `hir_owner_attrs` query;
- local refactorings to use this access;
- remove `attrs` from HIR data structures one-by-one.
Change in behaviour:
- the HIR visitor traverses all attributes at once instead of parent-by-parent;
- attribute arrays are sometimes duplicated: for statements and variant constructors;
- as a consequence, attributes are marked as used after unused-attribute lint emission to avoid duplicate lints.
~~Current bug: the lint level is not correctly applied in `std::backtrace_rs`, triggering an unused attribute warning on `#![no_std]`. I welcome suggestions.~~
This updates all places where match branches check on StatementKind or UseContext.
This doesn't properly implement them, but adds TODOs where they are, and also adds some best
guesses to what they should be in some cases.