Fix ICE when `start` lang item has wrong generics
In my previous pr #87875 I missed the requirements on the `start` lang item due to its relative difficulty to test and opting for more conservative estimates. This fixes that by updating the requirement to be exactly one generic type.
The `start` lang item should have exactly one generic type for the return type of the `main` fn ptr passed to it. I believe having zero would previously *sometimes* compile (often with the use of `fn() -> ()` as the fn ptr but it was likely UB to call if the return type of `main` was not `()` as far as I know) however it also sometimes would not for various errors including ICEs and LLVM errors depending on exact situations. Having more than 1 generic has always failed with an ICE because only the one generic type is expected and provided.
Fixes#79559, fixes#73584, fixes#83117 (all duplicates)
Relevant to #9307
r? ````@cjgillot````
Introduce `Rvalue::ShallowInitBox`
Polished version of #88700.
Implements MCP rust-lang/compiler-team#460, and should allow #43596 to go forward.
In short, creating an empty box is split from a nullary-op `NullOp::Box` into two steps, first a call to `exchange_malloc`, then a `Rvalue::ShallowInitBox` which transmutes `*mut u8` to a shallow-initialized `Box<T>`. This allows the `exchange_malloc` call to unwind. Details can be found in the MCP.
`NullOp::Box` is not yet removed, purely to make reverting easier in case anything goes wrong as the result of this PR. If revert is needed a reversion of "Use Rvalue::ShallowInitBox for box expression" commit followed by a test bless should be sufficient.
Experiments in #88700 showed a very slight compile-time perf regression due to (supposedly) slightly more time spent in LLVM. We could omit unwind edge generation (in non-`oom=panic` case) in box expression MIR construction to restore perf; but I don't think it's necessary since runtime perf isn't affected and perf difference is rather small.
Be explicit about using Binder::dummy
This is somewhat of a late followup to the binder refactor PR. It removes `ToPredicate` and `ToPolyTraitImpls` that hide the use of `Binder::dummy`. While this does make code a bit more verbose, it allows us be more careful about where we create binders.
Another alternative here might be to add a new trait `ToBinder` or something with a `dummy()` fn. Which could still allow grepping but allows doing something like `trait_ref.dummy()` (but I also wonder if longer-term, it would be better to be even more explicit with a `bind_with_vars(ty::List::empty())` *but* that's not clear yet.
r? ``@nikomatsakis``
Rollup of 12 pull requests
Successful merges:
- #88795 (Print a note if a character literal contains a variation selector)
- #89015 (core::ascii::escape_default: reduce struct size)
- #89078 (Cleanup: Remove needless reference in ParentHirIterator)
- #89086 (Stabilize `Iterator::map_while`)
- #89096 ([bootstrap] Improve the error message when `ninja` is not found to link to installation instructions)
- #89113 (dont `.ensure()` the `thir_abstract_const` query call in `mir_build`)
- #89114 (Fixes a technicality regarding the size of C's `char` type)
- #89115 (⬆️ rust-analyzer)
- #89126 (Fix ICE when `indirect_structural_match` is allowed)
- #89141 (Impl `Error` for `FromSecsError` without foreign type)
- #89142 (Fix match for placeholder region)
- #89147 (add case for checking const refs in check_const_value_eq)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Migrate in-tree crates to 2021
This replaces #89075 (cherry picking some of the commits from there), and closes#88637 and fixes#89074.
It excludes a migration of the library crates for now (see tidy diff) because we have some pending bugs around macro spans to fix there.
I instrumented bootstrap during the migration to make sure all crates moved from 2018 to 2021 had the compatibility warnings applied first.
Originally, the intent was to support cargo fix --edition within bootstrap, but this proved fairly difficult to pull off. We'd need to architect the check functionality to support running cargo check and cargo fix within the same x.py invocation, and only resetting sysroots on check. Further, it was found that cargo fix doesn't behave too well with "not quite workspaces", such as Clippy which has several crates. Bootstrap runs with --manifest-path ... for all the tools, and this makes cargo fix only attempt migration for that crate. We can't use e.g. --workspace due to needing to maintain sysroots for different phases of compilation appropriately.
It is recommended to skip the mass migration of Cargo.toml's to 2021 for review purposes; you can also use `git diff d6cd2c6c877110748296760aefddc21a0ea1d316 -I'^edition = .20...$'` to ignore the edition = 2018/21 lines in the diff.
This allows the format_args! macro to keep the pre-expansion code out of
the unsafe block without doing gymnastics with nested `match`
expressions. This reduces codegen.
This just applies the suggested fixes from the compatibility warnings,
leaving any that are in practice spurious in. This is primarily intended to
provide a starting point to identify possible fixes to the migrations (e.g., by
avoiding spurious warnings).
A secondary commit cleans these up where they are false positives (as is true in
many of the cases).
Introduce NullOp::AlignOf
This PR introduces `Rvalue::NullaryOp(NullOp::AlignOf, ty)`, which will be lowered from `align_of`, similar to `size_of` lowering to `Rvalue::NullaryOp(NullOp::SizeOf, ty)`.
The changes are originally part of #88700 but since it's not dependent on other changes and could have performance impact on its own, it's separated into its own PR.
Encode spans relative to the enclosing item
The aim of this PR is to avoid recomputing queries when code is moved without modification.
MCP at https://github.com/rust-lang/compiler-team/issues/443
This is achieved by :
1. storing the HIR owner LocalDefId information inside the span;
2. encoding and decoding spans relative to the enclosing item in the incremental on-disk cache;
3. marking a dependency to the `source_span(LocalDefId)` query when we translate a span from the short (`Span`) representation to its explicit (`SpanData`) representation.
Since all client code uses `Span`, step 3 ensures that all manipulations
of span byte positions actually create the dependency edge between
the caller and the `source_span(LocalDefId)`.
This query return the actual absolute span of the parent item.
As a consequence, any source code motion that changes the absolute byte position of a node will either:
- modify the distance to the parent's beginning, so change the relative span's hash;
- dirty `source_span`, and trigger the incremental recomputation of all code that
depends on the span's absolute byte position.
With this scheme, I believe the dependency tracking to be accurate.
For the moment, the spans are marked during lowering.
I'd rather do this during def-collection,
but the AST MutVisitor is not practical enough just yet.
The only difference is that we attach macro-expanded spans
to their expansion point instead of the macro itself.
rustc: use more correct span data in for loop desugaring
Fixes#82462
Before:
help: consider adding semicolon after the expression so its temporaries are dropped sooner, before the local variables declared by the block are dropped
|
LL | for x in DroppingSlice(&*v).iter(); {
| +
After:
help: consider adding semicolon after the expression so its temporaries are dropped sooner, before the local variables declared by the block are dropped
|
LL | };
| +
This seems like a reasonable fix: since the desugared "expr_drop_temps_mut" contains the entire desugared loop construct, its span should contain the entire loop construct as well.
Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
Path remapping: Make behavior of diagnostics output dependent on presence of --remap-path-prefix.
This PR fixes a regression (#87745) with `--remap-path-prefix` where the flag stopped causing diagnostic messages to be remapped as well. The regression was introduced in https://github.com/rust-lang/rust/pull/83813 where we erroneously assumed that remapping of diagnostic messages was not desired anymore (because #70642 partially undid that functionality with nobody objecting).
The issue is fixed by making `--remap-path-prefix` remap diagnostic messages again, including for paths that have been remapped in upstream crates (e.g. the standard library). This means that "sysroot-localization" (implemented in #70642) is also disabled if `rustc` is invoked with `--remap-path-prefix`. The assumption is that once someone starts explicitly remapping paths they also don't want paths to their local Rust installation in their build output.
In the future we might want to give more fine-grained control over this behavior via compiler flags (see https://github.com/rust-lang/rfcs/pull/3127 for a related RFC). For now this PR is intended as a regression fix.
This PR is an alternative to https://github.com/rust-lang/rust/pull/88191, which makes diagnostic messages be remapped unconditionally. That approach, however, would effectively revert #70642.
Fixes https://github.com/rust-lang/rust/issues/87745.
cc `@cbeuw`
r? `@ghost`