Stabilize C string literals
RFC: https://rust-lang.github.io/rfcs/3348-c-str-literal.html
Tracking issue: https://github.com/rust-lang/rust/issues/105723
Documentation PR (reference manual): https://github.com/rust-lang/reference/pull/1423
# Stabilization report
Stabilizes C string and raw C string literals (`c"..."` and `cr#"..."#`), which are expressions of type [`&CStr`](https://doc.rust-lang.org/stable/core/ffi/struct.CStr.html). Both new literals require Rust edition 2021 or later.
```rust
const HELLO: &core::ffi::CStr = c"Hello, world!";
```
C strings may contain any byte other than `NUL` (`b'\x00'`), and their in-memory representation is guaranteed to end with `NUL`.
## Implementation
Originally implemented by PR https://github.com/rust-lang/rust/pull/108801, which was reverted due to unintentional changes to lexer behavior in Rust editions < 2021.
The current implementation landed in PR https://github.com/rust-lang/rust/pull/113476, which restricts C string literals to Rust edition >= 2021.
## Resolutions to open questions from the RFC
* Adding C character literals (`c'.'`) of type `c_char` is not part of this feature.
* Support for `c"..."` literals does not prevent `c'.'` literals from being added in the future.
* C string literals should not be blocked on making `&CStr` a thin pointer.
* It's possible to declare constant expressions of type `&'static CStr` in stable Rust (as of v1.59), so C string literals are not adding additional coupling on the internal representation of `CStr`.
* The unstable `concat_bytes!` macro should not accept `c"..."` literals.
* C strings have two equally valid `&[u8]` representations (with or without terminal `NUL`), so allowing them to be used in `concat_bytes!` would be ambiguous.
* Adding a type to represent C strings containing valid UTF-8 is not part of this feature.
* Support for a hypothetical `&Utf8CStr` may be explored in the future, should such a type be added to Rust.
This was made possible by the removal of plugin support, which
simplified lint store creation.
This simplifies the places in rustc and rustdoc that call
`describe_lints`, which are early on. The lint store is now built before
those places, so they don't have to create their own lint store for
temporary use, they can just use the main one.
Validate `feature` and `since` values inside `#[stable(…)]`
Previously the string passed to `#[unstable(feature = "...")]` would be validated as an identifier, but not `#[stable(feature = "...")]`. In the standard library there were `stable` attributes containing the empty string, and kebab-case string, neither of which should be allowed.
Pre-existing validation of `unstable`:
```rust
// src/lib.rs
#![allow(internal_features)]
#![feature(staged_api)]
#![unstable(feature = "kebab-case", issue = "none")]
#[unstable(feature = "kebab-case", issue = "none")]
pub struct Struct;
```
```console
error[E0546]: 'feature' is not an identifier
--> src/lib.rs:5:1
|
5 | #![unstable(feature = "kebab-case", issue = "none")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
For an `unstable` attribute, the need for an identifier is obvious because the downstream code needs to write a `#![feature(...)]` attribute containing that identifier. `#![feature(kebab-case)]` is not valid syntax and `#![feature(kebab_case)]` would not work if that is not the name of the feature.
Having a valid identifier even in `stable` is less essential but still useful because it allows for informative diagnostic about the stabilization of a feature. Compare:
```rust
// src/lib.rs
#![allow(internal_features)]
#![feature(staged_api)]
#![stable(feature = "kebab-case", since = "1.0.0")]
#[stable(feature = "kebab-case", since = "1.0.0")]
pub struct Struct;
```
```rust
// src/main.rs
#![feature(kebab_case)]
use repro::Struct;
fn main() {}
```
```console
error[E0635]: unknown feature `kebab_case`
--> src/main.rs:3:12
|
3 | #![feature(kebab_case)]
| ^^^^^^^^^^
```
vs the situation if we correctly use `feature = "snake_case"` and `#![feature(snake_case)]`, as enforced by this PR:
```console
warning: the feature `snake_case` has been stable since 1.0.0 and no longer requires an attribute to enable
--> src/main.rs:3:12
|
3 | #![feature(snake_case)]
| ^^^^^^^^^^
|
= note: `#[warn(stable_features)]` on by default
```
report `unused_import` for empty reexports even it is pub
Fixes#116032
An easy fix. r? `@petrochenkov`
(Discovered this issue while reviewing #115993.)
Avoid a `track_errors` by bubbling up most errors from `check_well_formed`
I believe `track_errors` is mostly papering over issues that a sufficiently convoluted query graph can hit. I made this change, while the actual change I want to do is to stop bailing out early on errors, and instead use this new `ErrorGuaranteed` to invoke `check_well_formed` for individual items before doing all the `typeck` logic on them.
This works towards resolving https://github.com/rust-lang/rust/issues/97477 and various other ICEs, as well as allowing us to use parallel rustc more (which is currently rather limited/bottlenecked due to the very sequential nature in which we do `rustc_hir_analysis::check_crate`)
cc `@SparrowLii` `@Zoxc` for the new `try_par_for_each_in` function
Partially outline code inside the panic! macro
This outlines code inside the panic! macro in some cases. This is split out from https://github.com/rust-lang/rust/pull/115562 to exclude changes to rustc.
move required_consts check to general post-mono-check function
This factors some code that is common between the interpreter and the codegen backends into shared helper functions. Also as a side-effect the interpreter now uses the same `eval` functions as everyone else to get the evaluated MIR constants.
Also this is in preparation for another post-mono check that will be needed for (the current hackfix for) https://github.com/rust-lang/rust/issues/115709: ensuring that all locals are dynamically sized.
I didn't expect this to change diagnostics, but it's just cycle errors that change.
r? `@oli-obk`
Also stabilizes saturating_int_assign_impl, gh-92354.
And also make pub fns const where the underlying saturating_*
fns became const in the meantime since the Saturating type was
created.
Correctly handle async blocks for NEEDLESS_PASS_BY_REF_MUT
Fixes https://github.com/rust-lang/rust-clippy/issues/11299.
The problem was that the `async block`s are popping a closure which we didn't go into, making it miss the mutable access to the variables.
cc `@Centri3`
changelog: none
[`useless_conversion`]: only lint on paths to fn items and fix FP in macro
Fixes#11065 (which is actually two issues: an ICE and a false positive)
It now makes sure that the function call path points to a function-like item (and not e.g. a `const` like in the linked issue), so that calling `TyCtxt::fn_sig` later in the lint does not ICE (fixes https://github.com/rust-lang/rust-clippy/issues/11065#issuecomment-1616836099).
It *also* makes sure that the expression is not part of a macro call (fixes https://github.com/rust-lang/rust-clippy/issues/11065#issuecomment-1616919639). ~~I'm not sure if there's a better way to check this other than to walk the parent expr chain and see if any of them are expansions.~~ (edit: it doesn't do this anymore)
changelog: [`useless_conversion`]: fix ICE when call receiver is a non-fn item
changelog: [`useless_conversion`]: don't lint if argument is a macro argument (fixes a FP)
r? `@llogiq` (reviewed #10814, which introduced these issues)
Add `internal_features` lint
Implements https://github.com/rust-lang/compiler-team/issues/596
Also requires some more test blessing for codegen tests etc
`@jyn514` had the idea of just `allow`ing the lint by default in the test suite. I'm not sure whether this is a good idea, but it's definitely one worth considering. Additional input encouraged.
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Rename and allow `cast_ref_to_mut` lint
This PR is a small subset of https://github.com/rust-lang/rust/pull/112431, that is the renaming of the lint (`cast_ref_to_mut` -> `invalid_reference_casting`).
BUT also temporarily change the default level of the lint from deny-by-default to allow-by-default until https://github.com/rust-lang/rust/pull/112431 is merged.
r? `@Nilstrieb`
Currently, Clippy, Miri, Rustfmt, and rustc all use an environment variable to
indicate that output should be blessed, but they use different variable names.
In order to improve consistency, this patch applies the following changes:
- Emit `RUSTC_BLESS` within `prepare_cargo_test` so it is always
available
- Change usage of `MIRI_BLESS` in the Miri subtree to use `RUSTC_BLESS`
- Change usage of `BLESS` in the Clippy subtree to `RUSTC_BLESS`
- Change usage of `BLESS` in the Rustfmt subtree to `RUSTC_BLESS`
- Adjust the blessable test in `rustc_errors` to use this same
convention
- Update documentation where applicable
Any tools that uses `RUSTC_BLESS` should check that it is set to any value
other than `"0"`.
Uplift `clippy::fn_null_check` lint
This PR aims at uplifting the `clippy::fn_null_check` lint into rustc.
## `incorrect_fn_null_checks`
(warn-by-default)
The `incorrect_fn_null_checks` lint checks for expression that checks if a function pointer is null.
### Example
```rust
let fn_ptr: fn() = /* somehow obtained nullable function pointer */
if (fn_ptr as *const ()).is_null() { /* ... */ }
```
### Explanation
Function pointers are assumed to be non-null, checking for their nullity is incorrect.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler