`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Llint for casting between raw slice pointers with different element sizes
This lint disallows using `as` to convert from a raw pointer to a slice (e.g. `*const [i32]`, `*mut [Foo]`) to any other raw pointer to a slice if the element types have different sizes. When a raw slice pointer is cast, the data pointer and count metadata are preserved. This means that when the size of the inner slice's element type changes, the total number of bytes pointed to by the count changes. For example a `*const [i32]` with length 4 (four `i32` elements) is cast `as *const [u8]` the resulting pointer points to four `u8` elements at the same address, losing most of the data. When the size *increases* the resulting pointer will point to *more* data, and accessing that data will be UB.
On its own, *producing* the pointer isn't actually a problem, but because any use of the pointer as a slice will either produce surprising behavior or cause UB I believe this is a correctness lint. If the pointer is not intended to be used as a slice, the user should instead use any of a number of methods to produce just a data pointer including an `as` cast to a thin pointer (e.g. `p as *const i32`) or if the pointer is being created from a slice, the `as_ptr` method on slices. Detecting the intended use of the pointer is outside the scope of this lint, but I believe this lint will also lead users to realize that a slice pointer is only for slices.
There is an exception to this lint when either of the slice element types are zero sized (e.g `*mut [()]`). The total number of bytes pointed to by the slice with a zero sized element is zero. In that case preserving the length metadata is likely intended as a workaround to get the length metadata of a slice pointer though a zero sized slice.
The lint does not forbid casting pointers to slices with the *same* element size as the cast was likely intended to reinterpret the data in the slice as some equivalently sized data and the resulting pointer will behave as intended.
---
changelog: Added ``[`cast_slice_different_sizes`]``, a lint that disallows using `as`-casts to convert between raw pointers to slices when the elements have different sizes.
Only point at the end of the crate. We could try making it point at the
beginning of the crate, but that is confused with `DUMMY_SP`, causing
the output to be *worse*.
This change will make it so that VSCode will *not* underline the whole
file when `main` is missing, so other errors will be visible.
Add lint to detect `allow` attributes without reason
I was considering putting this lint into the pedantic group. However, that would result in countless warnings for existing projects. Having it in restriction also seems good to me 🙃 (And now I need sleep 💤 )
---
changelog: New lint [`allow_lint_without_reason`] (Requires the `lint_reasons` feature)
Closes: rust-lang/rust-clippy#8502
Use `.into_iter()` rather than `.drain(..)`
Replacing `.drain(..)` with `.into_iter()` makes my project's binary size smaller.
Fixes#1908
Applicability of this suggestion is `MaybeIncorrect` rather than `MachineApplicable` due to the complexity of "checking otherwise usage" X-|
changelog: Add new lint [`iter_with_drain`]
Miri/CTFE: properly treat overflow in (signed) division/rem as UB
To my surprise, it looks like LLVM treats overflow of signed div/rem as UB. From what I can tell, MIR `Div`/`Rem` directly lowers to the corresponding LLVM operation, so to make that correct we also have to consider these overflows UB in the CTFE/Miri interpreter engine.
r? `@oli-obk`
There's still open discussion if this lint is ready to be enabled by
default. We want to give us more time to figure this out and prevent
this lint from getting to stable as an enabled-by-default lint.
Add `unnecessary_find_map` lint
This PR adds an `unnecessary_find_map` lint. It is essentially just a minor enhancement of `unnecessary_filter_map`.
Closes#8467
changelog: New lint `unnecessary_find_map`
new lint: `missing-spin-loop`
This fixes#7809. I went with the shorter name because the function is called `std::hint::spin_loop`. It doesn't yet detect `while let` loops. I left that for a follow-up PR.
---
changelog: new lint: [`missing_spin_loop`]
Transmute_undefined_repr to nursery again
This PR reinstates #8418, which was reverted in #8425 (incorrectly I think).
I don't want to start a revert war over this but I feel very strongly that this lint is not in a state that would be a net benefit to users of clippy. In its current form, making this an enabled-by-default `correctness` lint with authoritative-sounding proclamations of undefined behavior does more harm than the benefit of the true positive cases.
I can file a bunch more examples of false positives but I don't want to give the author of this lint the impression that it is ready to graduate from `nursery` as soon as I've exhausted the amount of time I am willing to spend revising this lint.
Instead I would recommend that the author of the lint try running it on some reputable codebases containing transmutes. Everywhere that the lint triggers please consider critically whether it should be triggering. For cases that you think are true positives, please raise a few of them with the crate authors (in a PR or issue) to better understand their perspective if they think the transmute is correct.
---
*Please write a short comment explaining your change (or "none" for internal only changes)*
changelog: Re-remove [`transmute_undefined_repr`] from default set of enabled lints
tests: use std:🧵:available_parallelism() instead of num_cpus to get thread count
removes the dependency added in https://github.com/rust-lang/rust-clippy/pull/8451
---
*Please write a short comment explaining your change (or "none" for internal only changes)*
changelog: tests: use std:🧵:available_parallelism() instead of num_cpus to get thread count
Move testing of cargo dev new_lint to cargo dev workflow
This should be placed there. No need to run this in PR CI, if clippy_dev
isn't touched. (It will be run by bors anyway)
changelog: none
Implement internal lint for MSRV lints
This internal lint checks if the `extract_msrv_attrs!` macro is used if
a lint has a MSRV. If not, it suggests to add this attribute to the lint
pass implementation.
Following up https://github.com/rust-lang/rust-clippy/pull/8280#discussion_r785226072. This currently doesn't implement the documentation check. But since this is just an extension of this lint, I think this is a good MVP of this lint.
r? `@camsteffen`
cc `@xFrednet`
changelog: none
This internal lint checks if the `extract_msrv_attrs!` macro is used if
a lint has a MSRV. If not, it suggests to add this attribute to the lint
pass implementation.
Fix some `unnecessary_filter_map` false positives
This is a proposed fix for #4433.
It moves `clone_or_copy_needed` out of `unnecessary_iter_cloned.rs` and into `methods::utils`. It then adds a check of this function to `unnecessary_filter_map::check`.
Fixes#4433
changelog: none
Update edition in rustfmt.toml
I noticed that our `rustfmt.toml` still has the edition 2018 listed. This updates the configuration to use 2021.
This luckily doesn't introduce any formatting changes 🙃
changelog: none
fix false positives of large_enum_variant
fixes: #8321
The size of enums containing generic type was calculated to be 0.
I changed [large_enum_variant] so that such enums are not linted.
changelog: none
Add `print_in_format_impl` lint
changelog: new lint: [`print_in_format_impl`]
Lints the use of `print`-like macros in manual `Display`/`Debug` impls. I feel like I make this mistake every time I write one 😄
r? `@camsteffen`