Improve the "known problems" section of `interior_mutable_key`
* Remove the mention to `Rc` and `Arc` as these are `Freeze` (despite my intuition) so the lint correctly handles already.
* Instead, explain what could cause a false positive, and mention `bytes` as an example.
---
changelog: Improved the "known problems" section of `interior_mutable_key`
improve the suggestion of the lint `unit-arg`
Fixes#5823Fixes#6015
Changes
```
help: move the expression in front of the call...
|
3 | g();
|
help: ...and use a unit literal instead
|
3 | o.map_or((), |i| f(i))
|
```
into
```
help: move the expression in front of the call and replace it with the unit literal `()`
|
3 | g();
| o.map_or((), |i| f(i))
|
```
changelog: improve the suggestion of the lint `unit-arg`
Add CONST_ITEM_MUTATION lint
Fixes#74053Fixes#55721
This PR adds a new lint `CONST_ITEM_MUTATION`.
Given an item `const FOO: SomeType = ..`, this lint fires on:
* Attempting to write directly to a field (`FOO.field = some_val`) or
array entry (`FOO.array_field[0] = val`)
* Taking a mutable reference to the `const` item (`&mut FOO`), including
through an autoderef `FOO.some_mut_self_method()`
The lint message explains that since each use of a constant creates a
new temporary, the original `const` item will not be modified.
* Remove the mention to `Rc` and `Arc` as these are `Freeze`
so the lint correctly handles already.
* Instead, explain what could cause a false positive,
and mention `bytes` as an example.
We no longer lint assignments to const item fields in the
`temporary_assignment` lint, since this is now covered by the
`CONST_ITEM_MUTATION` lint.
Additionally, we `#![allow(const_item_mutation)]` in the
`borrow_interior_mutable_const.rs` test. Clippy UI tests are run with
`-D warnings`, which seems to cause builtin lints to prevent Clippy
lints from running.
Support dataflow problems on arbitrary lattices
This PR implements last of the proposed extensions I mentioned in the design meeting for the original dataflow refactor. It extends the current dataflow framework to work with arbitrary lattices, not just `BitSet`s. This is a prerequisite for dataflow-enabled MIR const-propagation. Personally, I am skeptical of the usefulness of doing const-propagation pre-monomorphization, since many useful constants only become known after monomorphization (e.g. `size_of::<T>()`) and users have a natural tendency to hand-optimize the rest. It's probably worth exprimenting with, however, and others have shown interest cc `@rust-lang/wg-mir-opt.`
The `Idx` associated type is moved from `AnalysisDomain` to `GenKillAnalysis` and replaced with an associated `Domain` type that must implement `JoinSemiLattice`. Like before, each `Analysis` defines the "bottom value" for its domain, but can no longer override the dataflow join operator. Analyses that want to use set intersection must now use the `lattice::Dual` newtype. `GenKillAnalysis` impls have an additional requirement that `Self::Domain: BorrowMut<BitSet<Self::Idx>>`, which effectively means that they must use `BitSet<Self::Idx>` or `lattice::Dual<BitSet<Self::Idx>>` as their domain.
Most of these changes were mechanical. However, because a `Domain` is no longer always a powerset of some index type, we can no longer use an `IndexVec<BasicBlock, GenKillSet<A::Idx>>>` to store cached block transfer functions. Instead, we use a boxed `dyn Fn` trait object. I discuss a few alternatives to the current approach in a commit message.
The majority of new lines of code are to preserve existing Graphviz diagrams for those unlucky enough to have to debug dataflow analyses. I find these diagrams incredibly useful when things are going wrong and considered regressing them unacceptable, especially the pretty-printing of `MovePathIndex`s, which are used in many dataflow analyses. This required a parallel `fmt` trait used only for printing dataflow domains, as well as a refactoring of the `graphviz` module now that we cannot expect the domain to be a `BitSet`. Some features did have to be removed, such as the gen/kill display mode (which I didn't use but existed to mirror the output of the old dataflow framework) and line wrapping. Since I had to rewrite much of it anyway, I took the opportunity to switch to a `Visitor` for printing dataflow state diffs instead of using cursors, which are error prone for code that must be generic over both forward and backward analyses. As a side-effect of this change, we no longer have quadratic behavior when writing graphviz diagrams for backward dataflow analyses.
r? `@pnkfelix`
Restrict unnecessary_sort_by to non-reference, Copy types
`Vec::sort_by_key` closure parameter is `F: FnMut(&T) -> K`. The lint's suggestion destructures the `T` parameter; this was probably done to avoid different unnamed lifetimes when `K = Reverse<&T>`.
This change fixes two issues:
* Destructuring T when T is non-reference requires the type to be Copy, otherwise we would try to move from a shared reference. We make sure `T: Copy` holds.
* Make sure `T` is actually non-reference. I didn't go for destructuring multiple levels of references, as we would have to compensate in the closure body by removing derefs and maybe adding parens, which would add more complexity.
changelog: Restrict [`unnecessary_sort_by`] to non-reference, Copy types
Fixes#6001