rust-clippy/clippy_lints/src/casts/mod.rs

446 lines
14 KiB
Rust
Raw Normal View History

2021-03-09 02:44:52 +00:00
mod cast_lossless;
mod cast_possible_truncation;
mod cast_possible_wrap;
mod cast_precision_loss;
mod cast_ptr_alignment;
2021-03-09 08:22:21 +00:00
mod cast_ref_to_mut;
2021-03-09 03:37:46 +00:00
mod cast_sign_loss;
2021-03-09 08:28:56 +00:00
mod char_lit_as_u8;
mod fn_to_numeric_cast;
mod fn_to_numeric_cast_any;
mod fn_to_numeric_cast_with_truncation;
2021-03-09 11:04:19 +00:00
mod ptr_as_ptr;
mod unnecessary_cast;
mod utils;
2021-03-16 16:06:34 +00:00
use clippy_utils::is_hir_ty_cfg_dependant;
2021-03-09 11:04:19 +00:00
use rustc_hir::{Expr, ExprKind};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_semver::RustcVersion;
2021-03-09 11:04:19 +00:00
use rustc_session::{declare_tool_lint, impl_lint_pass};
declare_clippy_lint! {
/// ### What it does
/// Checks for casts from any numerical to a float type where
/// the receiving type cannot store all values from the original type without
/// rounding errors. This possible rounding is to be expected, so this lint is
/// `Allow` by default.
///
/// Basically, this warns on casting any integer with 32 or more bits to `f32`
/// or any 64-bit integer to `f64`.
///
/// ### Why is this bad?
/// It's not bad at all. But in some applications it can be
/// helpful to know where precision loss can take place. This lint can help find
/// those places in the code.
///
/// ### Example
/// ```rust
/// let x = u64::MAX;
/// x as f64;
/// ```
pub CAST_PRECISION_LOSS,
pedantic,
"casts that cause loss of precision, e.g., `x as f32` where `x: u64`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts from a signed to an unsigned numerical
/// type. In this case, negative values wrap around to large positive values,
/// which can be quite surprising in practice. However, as the cast works as
/// defined, this lint is `Allow` by default.
///
/// ### Why is this bad?
/// Possibly surprising results. You can activate this lint
/// as a one-time check to see where numerical wrapping can arise.
///
/// ### Example
/// ```rust
/// let y: i8 = -1;
/// y as u128; // will return 18446744073709551615
/// ```
pub CAST_SIGN_LOSS,
pedantic,
"casts from signed types to unsigned types, e.g., `x as u32` where `x: i32`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts between numerical types that may
/// truncate large values. This is expected behavior, so the cast is `Allow` by
/// default.
///
/// ### Why is this bad?
/// In some problem domains, it is good practice to avoid
/// truncation. This lint can be activated to help assess where additional
/// checks could be beneficial.
///
/// ### Example
/// ```rust
/// fn as_u8(x: u64) -> u8 {
/// x as u8
/// }
/// ```
pub CAST_POSSIBLE_TRUNCATION,
pedantic,
"casts that may cause truncation of the value, e.g., `x as u8` where `x: u32`, or `x as i32` where `x: f32`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts from an unsigned type to a signed type of
/// the same size. Performing such a cast is a 'no-op' for the compiler,
/// i.e., nothing is changed at the bit level, and the binary representation of
/// the value is reinterpreted. This can cause wrapping if the value is too big
/// for the target signed type. However, the cast works as defined, so this lint
/// is `Allow` by default.
///
/// ### Why is this bad?
/// While such a cast is not bad in itself, the results can
/// be surprising when this is not the intended behavior, as demonstrated by the
/// example below.
///
/// ### Example
/// ```rust
/// u32::MAX as i32; // will yield a value of `-1`
/// ```
pub CAST_POSSIBLE_WRAP,
pedantic,
"casts that may cause wrapping around the value, e.g., `x as i32` where `x: u32` and `x > i32::MAX`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts between numerical types that may
/// be replaced by safe conversion functions.
///
/// ### Why is this bad?
/// Rust's `as` keyword will perform many kinds of
/// conversions, including silently lossy conversions. Conversion functions such
/// as `i32::from` will only perform lossless conversions. Using the conversion
/// functions prevents conversions from turning into silent lossy conversions if
/// the types of the input expressions ever change, and make it easier for
/// people reading the code to know that the conversion is lossless.
///
/// ### Example
/// ```rust
/// fn as_u64(x: u8) -> u64 {
/// x as u64
/// }
/// ```
///
/// Using `::from` would look like this:
///
/// ```rust
/// fn as_u64(x: u8) -> u64 {
/// u64::from(x)
/// }
/// ```
pub CAST_LOSSLESS,
pedantic,
"casts using `as` that are known to be lossless, e.g., `x as u64` where `x: u8`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts to the same type, casts of int literals to integer types
/// and casts of float literals to float types.
///
/// ### Why is this bad?
/// It's just unnecessary.
///
/// ### Example
/// ```rust
/// let _ = 2i32 as i32;
/// let _ = 0.5 as f32;
/// ```
///
/// Better:
///
/// ```rust
/// let _ = 2_i32;
/// let _ = 0.5_f32;
/// ```
pub UNNECESSARY_CAST,
complexity,
"cast to the same type, e.g., `x as i32` where `x: i32`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts, using `as` or `pointer::cast`,
/// from a less-strictly-aligned pointer to a more-strictly-aligned pointer
///
/// ### Why is this bad?
/// Dereferencing the resulting pointer may be undefined
/// behavior.
///
/// ### Known problems
/// Using `std::ptr::read_unaligned` and `std::ptr::write_unaligned` or similar
/// on the resulting pointer is fine. Is over-zealous: Casts with manual alignment checks or casts like
/// u64-> u8 -> u16 can be fine. Miri is able to do a more in-depth analysis.
///
/// ### Example
/// ```rust
/// let _ = (&1u8 as *const u8) as *const u16;
/// let _ = (&mut 1u8 as *mut u8) as *mut u16;
///
/// (&1u8 as *const u8).cast::<u16>();
/// (&mut 1u8 as *mut u8).cast::<u16>();
/// ```
pub CAST_PTR_ALIGNMENT,
pedantic,
"cast from a pointer to a more-strictly-aligned pointer"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts of function pointers to something other than usize
///
/// ### Why is this bad?
/// Casting a function pointer to anything other than usize/isize is not portable across
/// architectures, because you end up losing bits if the target type is too small or end up with a
/// bunch of extra bits that waste space and add more instructions to the final binary than
/// strictly necessary for the problem
///
/// Casting to isize also doesn't make sense since there are no signed addresses.
///
/// ### Example
/// ```rust
/// // Bad
/// fn fun() -> i32 { 1 }
/// let a = fun as i64;
///
/// // Good
/// fn fun2() -> i32 { 1 }
/// let a = fun2 as usize;
/// ```
pub FN_TO_NUMERIC_CAST,
style,
"casting a function pointer to a numeric type other than usize"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts of a function pointer to a numeric type not wide enough to
/// store address.
///
/// ### Why is this bad?
/// Such a cast discards some bits of the function's address. If this is intended, it would be more
/// clearly expressed by casting to usize first, then casting the usize to the intended type (with
/// a comment) to perform the truncation.
///
/// ### Example
/// ```rust
/// // Bad
/// fn fn1() -> i16 {
/// 1
/// };
/// let _ = fn1 as i32;
///
/// // Better: Cast to usize first, then comment with the reason for the truncation
/// fn fn2() -> i16 {
/// 1
/// };
/// let fn_ptr = fn2 as usize;
/// let fn_ptr_truncated = fn_ptr as i32;
/// ```
pub FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
style,
"casting a function pointer to a numeric type not wide enough to store the address"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for casts of a function pointer to any integer type.
///
/// ### Why is this bad?
/// Casting a function pointer to an integer can have surprising results and can occur
/// accidentally if parantheses are omitted from a function call. If you aren't doing anything
/// low-level with function pointers then you can opt-out of casting functions to integers in
/// order to avoid mistakes. Alternatively, you can use this lint to audit all uses of function
/// pointer casts in your code.
///
/// ### Example
/// ```rust
/// // Bad: fn1 is cast as `usize`
/// fn fn1() -> u16 {
/// 1
/// };
/// let _ = fn1 as usize;
///
/// // Good: maybe you intended to call the function?
/// fn fn2() -> u16 {
/// 1
/// };
/// let _ = fn2() as usize;
///
/// // Good: maybe you intended to cast it to a function type?
/// fn fn3() -> u16 {
/// 1
/// }
/// let _ = fn3 as fn() -> u16;
/// ```
pub FN_TO_NUMERIC_CAST_ANY,
restriction,
"casting a function pointer to any integer type"
}
2021-03-09 08:22:21 +00:00
declare_clippy_lint! {
/// ### What it does
/// Checks for casts of `&T` to `&mut T` anywhere in the code.
2021-03-09 08:22:21 +00:00
///
/// ### Why is this bad?
/// Its basically guaranteed to be undefined behaviour.
2021-03-09 08:22:21 +00:00
/// `UnsafeCell` is the only way to obtain aliasable data that is considered
/// mutable.
///
/// ### Example
2021-03-09 08:22:21 +00:00
/// ```rust,ignore
/// fn x(r: &i32) {
/// unsafe {
/// *(r as *const _ as *mut _) += 1;
/// }
/// }
/// ```
///
/// Instead consider using interior mutability types.
///
/// ```rust
/// use std::cell::UnsafeCell;
///
/// fn x(r: &UnsafeCell<i32>) {
/// unsafe {
/// *r.get() += 1;
/// }
/// }
/// ```
pub CAST_REF_TO_MUT,
correctness,
"a cast of reference to a mutable pointer"
}
2021-03-09 08:28:56 +00:00
declare_clippy_lint! {
/// ### What it does
/// Checks for expressions where a character literal is cast
2021-03-09 08:28:56 +00:00
/// to `u8` and suggests using a byte literal instead.
///
/// ### Why is this bad?
/// In general, casting values to smaller types is
2021-03-09 08:28:56 +00:00
/// error-prone and should be avoided where possible. In the particular case of
/// converting a character literal to u8, it is easy to avoid by just using a
/// byte literal instead. As an added bonus, `b'a'` is even slightly shorter
/// than `'a' as u8`.
///
/// ### Example
2021-03-09 08:28:56 +00:00
/// ```rust,ignore
/// 'x' as u8
/// ```
///
/// A better version, using the byte literal:
///
/// ```rust,ignore
/// b'x'
/// ```
pub CHAR_LIT_AS_U8,
complexity,
"casting a character literal to `u8` truncates"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for `as` casts between raw pointers without changing its mutability,
/// namely `*const T` to `*const U` and `*mut T` to `*mut U`.
///
/// ### Why is this bad?
/// Though `as` casts between raw pointers is not terrible, `pointer::cast` is safer because
/// it cannot accidentally change the pointer's mutability nor cast the pointer to other types like `usize`.
///
/// ### Example
/// ```rust
/// let ptr: *const u32 = &42_u32;
/// let mut_ptr: *mut u32 = &mut 42_u32;
/// let _ = ptr as *const i32;
/// let _ = mut_ptr as *mut i32;
/// ```
/// Use instead:
/// ```rust
/// let ptr: *const u32 = &42_u32;
/// let mut_ptr: *mut u32 = &mut 42_u32;
/// let _ = ptr.cast::<i32>();
/// let _ = mut_ptr.cast::<i32>();
/// ```
pub PTR_AS_PTR,
pedantic,
"casting using `as` from and to raw pointers that doesn't change its mutability, where `pointer::cast` could take the place of `as`"
}
2021-03-09 11:04:19 +00:00
pub struct Casts {
msrv: Option<RustcVersion>,
}
2021-03-09 11:04:19 +00:00
impl Casts {
#[must_use]
pub fn new(msrv: Option<RustcVersion>) -> Self {
Self { msrv }
}
}
2021-03-09 11:04:19 +00:00
impl_lint_pass!(Casts => [
CAST_PRECISION_LOSS,
CAST_SIGN_LOSS,
CAST_POSSIBLE_TRUNCATION,
CAST_POSSIBLE_WRAP,
CAST_LOSSLESS,
CAST_REF_TO_MUT,
CAST_PTR_ALIGNMENT,
UNNECESSARY_CAST,
FN_TO_NUMERIC_CAST_ANY,
2021-03-09 11:04:19 +00:00
FN_TO_NUMERIC_CAST,
FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
CHAR_LIT_AS_U8,
PTR_AS_PTR,
]);
2021-03-09 11:04:19 +00:00
impl<'tcx> LateLintPass<'tcx> for Casts {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if expr.span.from_expansion() {
return;
}
if let ExprKind::Cast(cast_expr, cast_to) = expr.kind {
2021-03-09 11:04:19 +00:00
if is_hir_ty_cfg_dependant(cx, cast_to) {
return;
}
let (cast_from, cast_to) = (
cx.typeck_results().expr_ty(cast_expr),
cx.typeck_results().expr_ty(expr),
);
if unnecessary_cast::check(cx, expr, cast_expr, cast_from, cast_to) {
return;
}
fn_to_numeric_cast_any::check(cx, expr, cast_expr, cast_from, cast_to);
2021-03-09 11:04:19 +00:00
fn_to_numeric_cast::check(cx, expr, cast_expr, cast_from, cast_to);
fn_to_numeric_cast_with_truncation::check(cx, expr, cast_expr, cast_from, cast_to);
if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx.sess(), expr.span) {
cast_possible_truncation::check(cx, expr, cast_from, cast_to);
cast_possible_wrap::check(cx, expr, cast_from, cast_to);
cast_precision_loss::check(cx, expr, cast_from, cast_to);
cast_lossless::check(cx, expr, cast_expr, cast_from, cast_to);
cast_sign_loss::check(cx, expr, cast_expr, cast_from, cast_to);
}
}
2021-03-09 11:04:19 +00:00
cast_ref_to_mut::check(cx, expr);
cast_ptr_alignment::check(cx, expr);
char_lit_as_u8::check(cx, expr);
ptr_as_ptr::check(cx, expr, &self.msrv);
}
extract_msrv_attr!(LateContext);
}