rust-clippy/clippy_lints/src/derive.rs

181 lines
6.2 KiB
Rust
Raw Normal View History

use rustc::lint::*;
use rustc::ty::subst::Subst;
use rustc::ty::TypeVariants;
use rustc::ty;
use rustc::hir::*;
2016-02-12 17:35:44 +00:00
use syntax::ast::{Attribute, MetaItemKind};
use syntax::codemap::Span;
2016-04-14 16:13:15 +00:00
use utils::paths;
use utils::{match_path, span_lint_and_then};
/// **What it does:** This lint warns about deriving `Hash` but implementing `PartialEq`
/// explicitly.
///
/// **Why is this bad?** The implementation of these traits must agree (for example for use with
/// `HashMap`) so its probably a bad idea to use a default-generated `Hash` implementation with
/// an explicitly defined `PartialEq`. In particular, the following must hold for any type:
///
/// ```rust
/// k1 == k2 ⇒ hash(k1) == hash(k2)
/// ```
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// #[derive(Hash)]
/// struct Foo;
///
/// impl PartialEq for Foo {
/// ..
/// }
/// ```
declare_lint! {
2016-02-15 22:38:09 +00:00
pub DERIVE_HASH_XOR_EQ,
Warn,
"deriving `Hash` but implementing `PartialEq` explicitly"
}
/// **What it does:** This lint warns about explicit `Clone` implementation for `Copy` types.
///
/// **Why is this bad?** To avoid surprising behaviour, these traits should agree and the behaviour
/// of `Copy` cannot be overridden. In almost all situations a `Copy` type should have a `Clone`
/// implementation that does nothing more than copy the object, which is what
/// `#[derive(Copy, Clone)]` gets you.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// #[derive(Copy)]
/// struct Foo;
///
/// impl Clone for Foo {
/// ..
/// }
/// ```
declare_lint! {
pub EXPL_IMPL_CLONE_ON_COPY,
Warn,
"implementing `Clone` explicitly on `Copy` types"
}
pub struct Derive;
impl LintPass for Derive {
fn get_lints(&self) -> LintArray {
2016-02-15 22:38:09 +00:00
lint_array!(EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ)
}
}
impl LateLintPass for Derive {
fn check_item(&mut self, cx: &LateContext, item: &Item) {
if_let_chain! {[
let ItemImpl(_, _, _, Some(ref trait_ref), _, _) = item.node
], {
let ty = cx.tcx.lookup_item_type(cx.tcx.map.local_def_id(item.id)).ty;
2016-02-15 22:38:09 +00:00
let is_automatically_derived = item.attrs.iter().any(is_automatically_derived);
check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived);
if !is_automatically_derived {
2016-02-14 19:29:32 +00:00
check_copy_clone(cx, item, trait_ref, ty);
}
}}
}
}
2016-02-15 22:38:09 +00:00
/// Implementation of the `DERIVE_HASH_XOR_EQ` lint.
fn check_hash_peq<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, span: Span, trait_ref: &TraitRef, ty: ty::Ty<'tcx>, hash_is_automatically_derived: bool) {
if_let_chain! {[
2016-04-14 16:13:15 +00:00
match_path(&trait_ref.path, &paths::HASH),
let Some(peq_trait_def_id) = cx.tcx.lang_items.eq_trait()
], {
let peq_trait_def = cx.tcx.lookup_trait_def(peq_trait_def_id);
// Look for the PartialEq implementations for `ty`
peq_trait_def.for_each_relevant_impl(cx.tcx, ty, |impl_id| {
let peq_is_automatically_derived = cx.tcx.get_attrs(impl_id).iter().any(is_automatically_derived);
2016-02-15 22:38:09 +00:00
if peq_is_automatically_derived == hash_is_automatically_derived {
return;
}
2016-02-15 22:38:09 +00:00
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
// Only care about `impl PartialEq<Foo> for Foo`
if trait_ref.input_types()[0] == ty {
let mess = if peq_is_automatically_derived {
"you are implementing `Hash` explicitly but have derived `PartialEq`"
} else {
"you are deriving `Hash` but have implemented `PartialEq` explicitly"
};
2016-02-15 22:38:09 +00:00
span_lint_and_then(
cx, DERIVE_HASH_XOR_EQ, span,
mess,
|db| {
if let Some(node_id) = cx.tcx.map.as_local_node_id(impl_id) {
db.span_note(
cx.tcx.map.span(node_id),
"`PartialEq` implemented here"
);
}
});
}
});
}}
}
/// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint.
2016-02-29 11:19:32 +00:00
fn check_copy_clone<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, item: &Item, trait_ref: &TraitRef, ty: ty::Ty<'tcx>) {
2016-04-14 16:13:15 +00:00
if match_path(&trait_ref.path, &paths::CLONE_TRAIT) {
2016-02-14 19:29:32 +00:00
let parameter_environment = ty::ParameterEnvironment::for_item(cx.tcx, item.id);
let subst_ty = ty.subst(cx.tcx, parameter_environment.free_substs);
if subst_ty.moves_by_default(cx.tcx.global_tcx(), &parameter_environment, item.span) {
return; // ty is not Copy
}
// Some types are not Clone by default but could be cloned `by hand` if necessary
match ty.sty {
TypeVariants::TyEnum(def, substs) | TypeVariants::TyStruct(def, substs) => {
for variant in &def.variants {
for field in &variant.fields {
match field.ty(cx.tcx, substs).sty {
TypeVariants::TyArray(_, size) if size > 32 => {
return;
}
TypeVariants::TyFnPtr(..) => {
return;
}
TypeVariants::TyTuple(ref tys) if tys.len() > 12 => {
return;
}
_ => (),
}
}
}
}
_ => (),
}
2016-01-30 12:48:39 +00:00
span_lint_and_then(cx,
EXPL_IMPL_CLONE_ON_COPY,
2016-02-14 19:29:32 +00:00
item.span,
2016-01-30 12:48:39 +00:00
"you are implementing `Clone` explicitly on a `Copy` type",
|db| {
2016-02-14 19:29:32 +00:00
db.span_note(item.span, "consider deriving `Clone` or removing `Copy`");
2016-01-30 12:48:39 +00:00
});
}
}
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d implementations have.
fn is_automatically_derived(attr: &Attribute) -> bool {
2016-02-12 17:35:44 +00:00
if let MetaItemKind::Word(ref word) = attr.node.value.node {
word == &"automatically_derived"
2016-01-30 12:48:39 +00:00
} else {
false
}
}