rust-clippy/clippy_lints/src/derive.rs

423 lines
14 KiB
Rust
Raw Normal View History

use clippy_utils::diagnostics::{span_lint_and_help, span_lint_and_note, span_lint_and_then};
use clippy_utils::paths;
use clippy_utils::ty::{implements_trait, is_copy};
use clippy_utils::{get_trait_def_id, is_automatically_derived, is_lint_allowed, match_def_path};
2018-11-27 20:14:15 +00:00
use if_chain::if_chain;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{walk_expr, walk_fn, walk_item, FnKind, NestedVisitorMap, Visitor};
use rustc_hir::{
BlockCheckMode, BodyId, Expr, ExprKind, FnDecl, HirId, Impl, Item, ItemKind, TraitRef, UnsafeSource, Unsafety,
};
2020-01-12 06:08:41 +00:00
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::hir::map::Map;
use rustc_middle::ty::{self, Ty};
2020-01-11 11:37:08 +00:00
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::source_map::Span;
2018-03-28 13:24:26 +00:00
declare_clippy_lint! {
/// ### What it does
/// Checks for deriving `Hash` but implementing `PartialEq`
/// explicitly or vice versa.
///
/// ### Why is this bad?
/// The implementation of these traits must agree (for
/// example for use with `HashMap`) so its probably a bad idea to use a
/// default-generated `Hash` implementation with an explicitly defined
/// `PartialEq`. In particular, the following must hold for any type:
///
2019-03-05 22:23:50 +00:00
/// ```text
/// k1 == k2 ⇒ hash(k1) == hash(k2)
/// ```
///
/// ### Example
2019-03-05 22:23:50 +00:00
/// ```ignore
/// #[derive(Hash)]
/// struct Foo;
///
/// impl PartialEq for Foo {
/// ...
/// }
/// ```
2016-02-15 22:38:09 +00:00
pub DERIVE_HASH_XOR_EQ,
2018-03-28 13:24:26 +00:00
correctness,
"deriving `Hash` but implementing `PartialEq` explicitly"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for deriving `Ord` but implementing `PartialOrd`
/// explicitly or vice versa.
///
/// ### Why is this bad?
/// The implementation of these traits must agree (for
/// example for use with `sort`) so its probably a bad idea to use a
/// default-generated `Ord` implementation with an explicitly defined
/// `PartialOrd`. In particular, the following must hold for any type
/// implementing `Ord`:
///
/// ```text
/// k1.cmp(&k2) == k1.partial_cmp(&k2).unwrap()
/// ```
///
/// ### Example
/// ```rust,ignore
/// #[derive(Ord, PartialEq, Eq)]
/// struct Foo;
///
/// impl PartialOrd for Foo {
/// ...
/// }
/// ```
/// Use instead:
/// ```rust,ignore
/// #[derive(PartialEq, Eq)]
/// struct Foo;
///
/// impl PartialOrd for Foo {
/// fn partial_cmp(&self, other: &Foo) -> Option<Ordering> {
/// Some(self.cmp(other))
/// }
/// }
///
/// impl Ord for Foo {
/// ...
/// }
/// ```
/// or, if you don't need a custom ordering:
/// ```rust,ignore
/// #[derive(Ord, PartialOrd, PartialEq, Eq)]
/// struct Foo;
/// ```
pub DERIVE_ORD_XOR_PARTIAL_ORD,
correctness,
"deriving `Ord` but implementing `PartialOrd` explicitly"
}
2018-03-28 13:24:26 +00:00
declare_clippy_lint! {
/// ### What it does
/// Checks for explicit `Clone` implementations for `Copy`
/// types.
///
/// ### Why is this bad?
/// To avoid surprising behaviour, these traits should
/// agree and the behaviour of `Copy` cannot be overridden. In almost all
/// situations a `Copy` type should have a `Clone` implementation that does
/// nothing more than copy the object, which is what `#[derive(Copy, Clone)]`
/// gets you.
///
/// ### Example
/// ```rust,ignore
/// #[derive(Copy)]
/// struct Foo;
///
/// impl Clone for Foo {
/// // ..
/// }
/// ```
pub EXPL_IMPL_CLONE_ON_COPY,
2018-03-28 13:24:26 +00:00
pedantic,
"implementing `Clone` explicitly on `Copy` types"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for deriving `serde::Deserialize` on a type that
/// has methods using `unsafe`.
///
/// ### Why is this bad?
/// Deriving `serde::Deserialize` will create a constructor
/// that may violate invariants hold by another constructor.
///
/// ### Example
/// ```rust,ignore
/// use serde::Deserialize;
///
/// #[derive(Deserialize)]
/// pub struct Foo {
/// // ..
/// }
///
/// impl Foo {
/// pub fn new() -> Self {
/// // setup here ..
/// }
///
/// pub unsafe fn parts() -> (&str, &str) {
/// // assumes invariants hold
/// }
/// }
/// ```
pub UNSAFE_DERIVE_DESERIALIZE,
pedantic,
"deriving `serde::Deserialize` on a type that has methods using `unsafe`"
}
declare_lint_pass!(Derive => [
EXPL_IMPL_CLONE_ON_COPY,
DERIVE_HASH_XOR_EQ,
DERIVE_ORD_XOR_PARTIAL_ORD,
UNSAFE_DERIVE_DESERIALIZE
]);
impl<'tcx> LateLintPass<'tcx> for Derive {
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
if let ItemKind::Impl(Impl {
2020-01-18 05:14:36 +00:00
of_trait: Some(ref trait_ref),
..
}) = item.kind
2020-01-18 05:14:36 +00:00
{
let ty = cx.tcx.type_of(item.def_id);
2021-01-24 12:17:54 +00:00
let attrs = cx.tcx.hir().attrs(item.hir_id());
let is_automatically_derived = is_automatically_derived(attrs);
2016-02-15 22:38:09 +00:00
check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived);
check_ord_partial_ord(cx, item.span, trait_ref, ty, is_automatically_derived);
2016-02-15 22:38:09 +00:00
if is_automatically_derived {
check_unsafe_derive_deserialize(cx, item, trait_ref, ty);
} else {
2016-02-14 19:29:32 +00:00
check_copy_clone(cx, item, trait_ref, ty);
}
2016-06-05 18:46:27 +00:00
}
}
}
2016-02-15 22:38:09 +00:00
/// Implementation of the `DERIVE_HASH_XOR_EQ` lint.
fn check_hash_peq<'tcx>(
cx: &LateContext<'tcx>,
span: Span,
trait_ref: &TraitRef<'_>,
ty: Ty<'tcx>,
2017-08-09 07:30:56 +00:00
hash_is_automatically_derived: bool,
) {
if_chain! {
if let Some(peq_trait_def_id) = cx.tcx.lang_items().eq_trait();
if let Some(def_id) = trait_ref.trait_def_id();
if match_def_path(cx, def_id, &paths::HASH);
then {
// Look for the PartialEq implementations for `ty`
cx.tcx.for_each_relevant_impl(peq_trait_def_id, ty, |impl_id| {
let peq_is_automatically_derived = is_automatically_derived(cx.tcx.get_attrs(impl_id));
2017-11-04 19:55:56 +00:00
if peq_is_automatically_derived == hash_is_automatically_derived {
return;
}
2017-11-04 19:55:56 +00:00
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
2017-11-04 19:55:56 +00:00
// Only care about `impl PartialEq<Foo> for Foo`
// For `impl PartialEq<B> for A, input_types is [A, B]
if trait_ref.substs.type_at(1) == ty {
let mess = if peq_is_automatically_derived {
"you are implementing `Hash` explicitly but have derived `PartialEq`"
} else {
"you are deriving `Hash` but have implemented `PartialEq` explicitly"
};
2017-11-04 19:55:56 +00:00
span_lint_and_then(
cx,
DERIVE_HASH_XOR_EQ,
span,
mess,
|diag| {
if let Some(local_def_id) = impl_id.as_local() {
let hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id);
diag.span_note(
cx.tcx.hir().span(hir_id),
"`PartialEq` implemented here"
);
}
}
);
}
});
}
}
}
/// Implementation of the `DERIVE_ORD_XOR_PARTIAL_ORD` lint.
fn check_ord_partial_ord<'tcx>(
cx: &LateContext<'tcx>,
span: Span,
trait_ref: &TraitRef<'_>,
ty: Ty<'tcx>,
ord_is_automatically_derived: bool,
) {
if_chain! {
if let Some(ord_trait_def_id) = get_trait_def_id(cx, &paths::ORD);
if let Some(partial_ord_trait_def_id) = cx.tcx.lang_items().partial_ord_trait();
if let Some(def_id) = &trait_ref.trait_def_id();
if *def_id == ord_trait_def_id;
then {
// Look for the PartialOrd implementations for `ty`
cx.tcx.for_each_relevant_impl(partial_ord_trait_def_id, ty, |impl_id| {
let partial_ord_is_automatically_derived = is_automatically_derived(cx.tcx.get_attrs(impl_id));
if partial_ord_is_automatically_derived == ord_is_automatically_derived {
return;
}
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
// Only care about `impl PartialOrd<Foo> for Foo`
// For `impl PartialOrd<B> for A, input_types is [A, B]
if trait_ref.substs.type_at(1) == ty {
let mess = if partial_ord_is_automatically_derived {
"you are implementing `Ord` explicitly but have derived `PartialOrd`"
} else {
"you are deriving `Ord` but have implemented `PartialOrd` explicitly"
};
span_lint_and_then(
cx,
DERIVE_ORD_XOR_PARTIAL_ORD,
span,
mess,
|diag| {
if let Some(local_def_id) = impl_id.as_local() {
let hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id);
diag.span_note(
cx.tcx.hir().span(hir_id),
"`PartialOrd` implemented here"
);
}
}
);
}
});
}
}
}
/// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint.
fn check_copy_clone<'tcx>(cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &TraitRef<'_>, ty: Ty<'tcx>) {
let clone_id = match cx.tcx.lang_items().clone_trait() {
Some(id) if trait_ref.trait_def_id() == Some(id) => id,
_ => return,
};
let copy_id = match cx.tcx.lang_items().copy_trait() {
Some(id) => id,
None => return,
};
let (ty_adt, ty_subs) = match *ty.kind() {
// Unions can't derive clone.
ty::Adt(adt, subs) if !adt.is_union() => (adt, subs),
_ => return,
};
// If the current self type doesn't implement Copy (due to generic constraints), search to see if
// there's a Copy impl for any instance of the adt.
if !is_copy(cx, ty) {
if ty_subs.non_erasable_generics().next().is_some() {
let has_copy_impl = cx.tcx.all_local_trait_impls(()).get(&copy_id).map_or(false, |impls| {
impls
.iter()
.any(|&id| matches!(cx.tcx.type_of(id).kind(), ty::Adt(adt, _) if ty_adt.did == adt.did))
});
if !has_copy_impl {
return;
}
} else {
return;
}
}
// Derive constrains all generic types to requiring Clone. Check if any type is not constrained for
// this impl.
if ty_subs.types().any(|ty| !implements_trait(cx, ty, clone_id, &[])) {
return;
}
span_lint_and_note(
cx,
EXPL_IMPL_CLONE_ON_COPY,
item.span,
"you are implementing `Clone` explicitly on a `Copy` type",
Some(item.span),
"consider deriving `Clone` or removing `Copy`",
);
}
/// Implementation of the `UNSAFE_DERIVE_DESERIALIZE` lint.
fn check_unsafe_derive_deserialize<'tcx>(
cx: &LateContext<'tcx>,
item: &Item<'_>,
trait_ref: &TraitRef<'_>,
ty: Ty<'tcx>,
) {
fn item_from_def_id<'tcx>(cx: &LateContext<'tcx>, def_id: DefId) -> &'tcx Item<'tcx> {
let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
cx.tcx.hir().expect_item(hir_id)
}
fn has_unsafe<'tcx>(cx: &LateContext<'tcx>, item: &'tcx Item<'_>) -> bool {
let mut visitor = UnsafeVisitor { cx, has_unsafe: false };
walk_item(&mut visitor, item);
visitor.has_unsafe
}
if_chain! {
if let Some(trait_def_id) = trait_ref.trait_def_id();
if match_def_path(cx, trait_def_id, &paths::SERDE_DESERIALIZE);
if let ty::Adt(def, _) = ty.kind();
if let Some(local_def_id) = def.did.as_local();
let adt_hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id);
if !is_lint_allowed(cx, UNSAFE_DERIVE_DESERIALIZE, adt_hir_id);
if cx.tcx.inherent_impls(def.did)
.iter()
.map(|imp_did| item_from_def_id(cx, *imp_did))
.any(|imp| has_unsafe(cx, imp));
then {
span_lint_and_help(
cx,
UNSAFE_DERIVE_DESERIALIZE,
item.span,
"you are deriving `serde::Deserialize` on a type that has methods using `unsafe`",
None,
"consider implementing `serde::Deserialize` manually. See https://serde.rs/impl-deserialize.html"
);
}
}
}
struct UnsafeVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
has_unsafe: bool,
}
impl<'tcx> Visitor<'tcx> for UnsafeVisitor<'_, 'tcx> {
type Map = Map<'tcx>;
fn visit_fn(&mut self, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body_id: BodyId, span: Span, id: HirId) {
if self.has_unsafe {
return;
}
if_chain! {
if let Some(header) = kind.header();
if header.unsafety == Unsafety::Unsafe;
then {
self.has_unsafe = true;
}
}
walk_fn(self, kind, decl, body_id, span, id);
}
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
if self.has_unsafe {
return;
}
if let ExprKind::Block(block, _) = expr.kind {
if block.rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) {
self.has_unsafe = true;
}
}
walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::All(self.cx.tcx.hir())
}
}