rust-clippy/clippy_lints/src/use_self.rs

258 lines
8.8 KiB
Rust
Raw Normal View History

use crate::utils::span_lint_and_sugg;
use if_chain::if_chain;
2018-12-27 16:27:42 +00:00
use rustc::hir::def::{CtorKind, Def};
2019-01-06 14:05:04 +00:00
use rustc::hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor};
use rustc::hir::*;
use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass};
use rustc::ty;
use rustc::{declare_tool_lint, lint_array};
use rustc_errors::Applicability;
use syntax_pos::symbol::keywords::SelfUpper;
/// **What it does:** Checks for unnecessary repetition of structure name when a
/// replacement with `Self` is applicable.
///
2017-09-03 21:15:15 +00:00
/// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
/// name
/// feels inconsistent.
///
2018-12-27 08:54:19 +00:00
/// **Known problems:**
/// - False positive when using associated types (#2843)
/// - False positives in some situations when using generics (#3410)
///
/// **Example:**
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Foo {
/// Foo {}
/// }
/// }
/// ```
/// could be
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Self {
/// Self {}
/// }
/// }
/// ```
2018-03-28 13:24:26 +00:00
declare_clippy_lint! {
pub USE_SELF,
2018-03-28 13:24:26 +00:00
pedantic,
"Unnecessary structure name repetition whereas `Self` is applicable"
}
#[derive(Copy, Clone, Default)]
pub struct UseSelf;
impl LintPass for UseSelf {
fn get_lints(&self) -> LintArray {
lint_array!(USE_SELF)
}
}
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path) {
// path segments only include actual path, no methods or fields
let last_path_span = path.segments.last().expect(SEGMENTS_MSG).ident.span;
// `to()` doesn't shorten span, so we shorten it with `until(..)`
// and then include it with `to(..)`
let span = path.span.until(last_path_span).to(last_path_span);
2018-07-18 05:57:50 +00:00
span_lint_and_sugg(
cx,
USE_SELF,
span,
2018-07-18 05:57:50 +00:00
"unnecessary structure name repetition",
"use the applicable keyword",
"Self".to_owned(),
Applicability::MachineApplicable,
2018-07-18 05:57:50 +00:00
);
2018-07-14 10:18:50 +00:00
}
struct TraitImplTyVisitor<'a, 'tcx: 'a> {
item_type: ty::Ty<'tcx>,
2018-07-14 10:18:50 +00:00
cx: &'a LateContext<'a, 'tcx>,
2018-07-17 06:20:49 +00:00
trait_type_walker: ty::walk::TypeWalker<'tcx>,
impl_type_walker: ty::walk::TypeWalker<'tcx>,
2018-07-14 10:18:50 +00:00
}
impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
fn visit_ty(&mut self, t: &'tcx Ty) {
2018-07-17 06:20:49 +00:00
let trait_ty = self.trait_type_walker.next();
let impl_ty = self.impl_type_walker.next();
2018-07-17 04:32:39 +00:00
if let TyKind::Path(QPath::Resolved(_, path)) = &t.node {
// The implementation and trait types don't match which means that
// the concrete type was specified by the implementation
if impl_ty != trait_ty {
if let Some(impl_ty) = impl_ty {
if self.item_type == impl_ty {
let is_self_ty = if let def::Def::SelfTy(..) = path.def {
true
} else {
false
};
if !is_self_ty {
span_use_self_lint(self.cx, path);
}
}
2018-07-14 10:18:50 +00:00
}
}
}
2018-07-14 10:18:50 +00:00
walk_ty(self, t)
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
fn check_trait_method_impl_decl<'a, 'tcx: 'a>(
cx: &'a LateContext<'a, 'tcx>,
item_type: ty::Ty<'tcx>,
2018-07-14 10:18:50 +00:00
impl_item: &ImplItem,
impl_decl: &'tcx FnDecl,
2018-07-25 04:34:29 +00:00
impl_trait_ref: &ty::TraitRef<'_>,
2018-07-14 10:18:50 +00:00
) {
let trait_method = cx
.tcx
.associated_items(impl_trait_ref.def_id)
.find(|assoc_item| {
assoc_item.kind == ty::AssociatedKind::Method
&& cx
.tcx
.hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
})
.expect("impl method matches a trait method");
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.id);
2018-07-17 06:20:49 +00:00
let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
2018-07-14 10:18:50 +00:00
let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
Some(&**ty)
} else {
None
};
2018-07-28 08:42:21 +00:00
// `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
// `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
// that declaration. We use `impl_decl_ty` to see if the type was declared as `Self`
// and use `impl_ty` to check its concrete type.
2018-07-17 06:20:49 +00:00
for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
impl_method_sig
.inputs_and_output
.iter()
.zip(trait_method_sig.inputs_and_output),
) {
2018-07-14 10:18:50 +00:00
let mut visitor = TraitImplTyVisitor {
cx,
item_type,
2018-07-17 06:20:49 +00:00
trait_type_walker: trait_ty.walk(),
impl_type_walker: impl_ty.walk(),
2018-07-14 10:18:50 +00:00
};
2018-07-17 06:20:49 +00:00
visitor.visit_ty(&impl_decl_ty);
2018-07-14 10:18:50 +00:00
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
if in_external_macro(cx.sess(), item.span) {
return;
}
if_chain! {
2018-07-16 13:07:39 +00:00
if let ItemKind::Impl(.., ref item_type, ref refs) = item.node;
2018-07-12 08:03:06 +00:00
if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node;
then {
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
let should_check = if let Some(ref params) = *parameters {
!params.parenthesized && !params.args.iter().any(|arg| match arg {
GenericArg::Lifetime(_) => true,
GenericArg::Type(_) => false,
})
} else {
true
2017-08-25 07:30:21 +00:00
};
2018-07-14 10:18:50 +00:00
if should_check {
let visitor = &mut UseSelfVisitor {
item_path,
cx,
};
let impl_def_id = cx.tcx.hir().local_def_id(item.id);
2018-07-14 10:18:50 +00:00
let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
if let Some(impl_trait_ref) = impl_trait_ref {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
2018-07-14 10:18:50 +00:00
if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id)
= &impl_item.node {
let item_type = cx.tcx.type_of(impl_def_id);
check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
let body = cx.tcx.hir().body(*impl_body_id);
2018-07-14 10:18:50 +00:00
visitor.visit_body(body);
} else {
visitor.visit_impl_item(impl_item);
}
}
} else {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
2018-07-14 10:18:50 +00:00
visitor.visit_impl_item(impl_item);
}
}
2017-08-25 07:30:21 +00:00
}
}
}
}
}
struct UseSelfVisitor<'a, 'tcx: 'a> {
item_path: &'a Path,
cx: &'a LateContext<'a, 'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
2018-08-08 06:00:23 +00:00
fn visit_path(&mut self, path: &'tcx Path, _id: HirId) {
2018-12-27 16:27:42 +00:00
if path.segments.last().expect(SEGMENTS_MSG).ident.name != SelfUpper.name() {
if self.item_path.def == path.def {
span_use_self_lint(self.cx, path);
2018-12-27 16:27:42 +00:00
} else if let Def::StructCtor(ctor_did, CtorKind::Fn) = path.def {
if self.item_path.def.opt_def_id() == self.cx.tcx.parent_def_id(ctor_did) {
span_use_self_lint(self.cx, path);
2018-12-27 16:27:42 +00:00
}
}
}
walk_path(self, path);
}
2019-01-06 14:05:04 +00:00
fn visit_item(&mut self, item: &'tcx Item) {
match item.node {
ItemKind::Use(..)
| ItemKind::Static(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
2019-01-07 13:11:53 +00:00
| ItemKind::Union(..)
| ItemKind::Impl(..) => {
2019-01-06 14:05:04 +00:00
// Don't check statements that shadow `Self` or where `Self` can't be used
},
_ => walk_item(self, item),
}
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.cx.tcx.hir())
}
}