rust-clippy/clippy_lints/src/ptr.rs

676 lines
25 KiB
Rust
Raw Normal View History

2016-03-19 16:48:29 +00:00
//! Checks for usage of `&Vec[_]` and `&String`.
use clippy_utils::diagnostics::{span_lint, span_lint_and_sugg, span_lint_and_then};
use clippy_utils::source::snippet_opt;
use clippy_utils::ty::expr_sig;
use clippy_utils::visitors::contains_unsafe_block;
use clippy_utils::{get_expr_use_or_unification_node, is_lint_allowed, path_def_id, path_to_local, paths};
2018-11-27 20:14:15 +00:00
use if_chain::if_chain;
use rustc_errors::{Applicability, MultiSpan};
use rustc_hir::def_id::DefId;
use rustc_hir::hir_id::HirIdMap;
use rustc_hir::intravisit::{walk_expr, Visitor};
2020-02-21 08:39:38 +00:00
use rustc_hir::{
self as hir, AnonConst, BinOpKind, BindingAnnotation, Body, Expr, ExprKind, FnRetTy, FnSig, GenericArg,
ImplItemKind, ItemKind, Lifetime, LifetimeName, Mutability, Node, Param, ParamName, PatKind, QPath, TraitFn,
TraitItem, TraitItemKind, TyKind, Unsafety,
2020-02-21 08:39:38 +00:00
};
2020-01-12 06:08:41 +00:00
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::hir::nested_filter;
2022-03-18 12:33:40 +00:00
use rustc_middle::ty::{self, Ty};
2020-01-11 11:37:08 +00:00
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::source_map::Span;
use rustc_span::sym;
use rustc_span::symbol::Symbol;
use std::fmt;
use std::iter;
2018-03-28 13:24:26 +00:00
declare_clippy_lint! {
/// ### What it does
/// This lint checks for function arguments of type `&String`, `&Vec`,
/// `&PathBuf`, and `Cow<_>`. It will also suggest you replace `.clone()` calls
/// with the appropriate `.to_owned()`/`to_string()` calls.
///
/// ### Why is this bad?
/// Requiring the argument to be of the specific size
/// makes the function less useful for no benefit; slices in the form of `&[T]`
/// or `&str` usually suffice and can be obtained from other types, too.
///
/// ### Known problems
/// There may be `fn(&Vec)`-typed references pointing to your function.
/// If you have them, you will get a compiler error after applying this lint's
/// suggestions. You then have the choice to undo your changes or change the
/// type of the reference.
///
/// Note that if the function is part of your public interface, there may be
/// other crates referencing it, of which you may not be aware. Carefully
/// deprecate the function before applying the lint suggestions in this case.
///
/// ### Example
2019-03-05 22:23:50 +00:00
/// ```ignore
/// // Bad
/// fn foo(&Vec<u32>) { .. }
///
/// // Good
/// fn foo(&[u32]) { .. }
/// ```
#[clippy::version = "pre 1.29.0"]
2018-11-27 20:49:09 +00:00
pub PTR_ARG,
style,
"fn arguments of the type `&Vec<...>` or `&String`, suggesting to use `&[...]` or `&str` instead, respectively"
}
2018-03-28 13:24:26 +00:00
declare_clippy_lint! {
/// ### What it does
/// This lint checks for equality comparisons with `ptr::null`
///
/// ### Why is this bad?
/// It's easier and more readable to use the inherent
/// `.is_null()`
/// method instead
///
/// ### Example
2019-03-05 22:23:50 +00:00
/// ```ignore
/// // Bad
/// if x == ptr::null {
/// ..
/// }
///
/// // Good
/// if x.is_null() {
/// ..
/// }
/// ```
#[clippy::version = "pre 1.29.0"]
pub CMP_NULL,
2018-03-28 13:24:26 +00:00
style,
"comparing a pointer to a null pointer, suggesting to use `.is_null()` instead"
}
2018-03-28 13:24:26 +00:00
declare_clippy_lint! {
/// ### What it does
/// This lint checks for functions that take immutable references and return
/// mutable ones. This will not trigger if no unsafe code exists as there
/// are multiple safe functions which will do this transformation
///
/// To be on the conservative side, if there's at least one mutable
/// reference with the output lifetime, this lint will not trigger.
///
/// ### Why is this bad?
/// Creating a mutable reference which can be repeatably derived from an
/// immutable reference is unsound as it allows creating multiple live
/// mutable references to the same object.
///
/// This [error](https://github.com/rust-lang/rust/issues/39465) actually
/// lead to an interim Rust release 1.15.1.
///
/// ### Known problems
/// This pattern is used by memory allocators to allow allocating multiple
/// objects while returning mutable references to each one. So long as
/// different mutable references are returned each time such a function may
/// be safe.
///
/// ### Example
2019-03-05 22:23:50 +00:00
/// ```ignore
/// fn foo(&Foo) -> &mut Bar { .. }
/// ```
#[clippy::version = "pre 1.29.0"]
pub MUT_FROM_REF,
2018-03-28 13:24:26 +00:00
correctness,
"fns that create mutable refs from immutable ref args"
}
declare_clippy_lint! {
/// ### What it does
/// This lint checks for invalid usages of `ptr::null`.
///
/// ### Why is this bad?
/// This causes undefined behavior.
///
/// ### Example
/// ```ignore
/// // Bad. Undefined behavior
/// unsafe { std::slice::from_raw_parts(ptr::null(), 0); }
/// ```
///
/// ```ignore
/// // Good
/// unsafe { std::slice::from_raw_parts(NonNull::dangling().as_ptr(), 0); }
/// ```
#[clippy::version = "1.53.0"]
pub INVALID_NULL_PTR_USAGE,
correctness,
"invalid usage of a null pointer, suggesting `NonNull::dangling()` instead"
}
declare_lint_pass!(Ptr => [PTR_ARG, CMP_NULL, MUT_FROM_REF, INVALID_NULL_PTR_USAGE]);
impl<'tcx> LateLintPass<'tcx> for Ptr {
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) {
if let TraitItemKind::Fn(sig, trait_method) = &item.kind {
if matches!(trait_method, TraitFn::Provided(_)) {
// Handled by check body.
return;
}
check_mut_from_ref(cx, sig, None);
for arg in check_fn_args(
cx,
cx.tcx.fn_sig(item.def_id).skip_binder().inputs(),
sig.decl.inputs,
&[],
)
.filter(|arg| arg.mutability() == Mutability::Not)
{
span_lint_and_sugg(
cx,
PTR_ARG,
arg.span,
&arg.build_msg(),
"change this to",
format!("{}{}", arg.ref_prefix, arg.deref_ty.display(cx)),
Applicability::Unspecified,
);
}
}
}
fn check_body(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'_>) {
let hir = cx.tcx.hir();
let mut parents = hir.parent_iter(body.value.hir_id);
let (item_id, sig, is_trait_item) = match parents.next() {
Some((_, Node::Item(i))) => {
if let ItemKind::Fn(sig, ..) = &i.kind {
(i.def_id, sig, false)
} else {
return;
}
},
Some((_, Node::ImplItem(i))) => {
if !matches!(parents.next(),
Some((_, Node::Item(i))) if matches!(&i.kind, ItemKind::Impl(i) if i.of_trait.is_none())
) {
return;
}
if let ImplItemKind::Fn(sig, _) = &i.kind {
(i.def_id, sig, false)
} else {
return;
}
},
Some((_, Node::TraitItem(i))) => {
if let TraitItemKind::Fn(sig, _) = &i.kind {
(i.def_id, sig, true)
} else {
return;
}
},
_ => return,
};
check_mut_from_ref(cx, sig, Some(body));
let decl = sig.decl;
let sig = cx.tcx.fn_sig(item_id).skip_binder();
let lint_args: Vec<_> = check_fn_args(cx, sig.inputs(), decl.inputs, body.params)
.filter(|arg| !is_trait_item || arg.mutability() == Mutability::Not)
.collect();
let results = check_ptr_arg_usage(cx, body, &lint_args);
for (result, args) in results.iter().zip(lint_args.iter()).filter(|(r, _)| !r.skip) {
span_lint_and_then(cx, PTR_ARG, args.span, &args.build_msg(), |diag| {
diag.multipart_suggestion(
"change this to",
iter::once((args.span, format!("{}{}", args.ref_prefix, args.deref_ty.display(cx))))
.chain(result.replacements.iter().map(|r| {
(
r.expr_span,
format!("{}{}", snippet_opt(cx, r.self_span).unwrap(), r.replacement),
)
}))
.collect(),
Applicability::Unspecified,
);
});
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if let ExprKind::Binary(ref op, l, r) = expr.kind {
if (op.node == BinOpKind::Eq || op.node == BinOpKind::Ne) && (is_null_path(cx, l) || is_null_path(cx, r)) {
2017-08-09 07:30:56 +00:00
span_lint(
cx,
CMP_NULL,
expr.span,
"comparing with null is better expressed by the `.is_null()` method",
2017-08-09 07:30:56 +00:00
);
}
} else {
check_invalid_ptr_usage(cx, expr);
}
}
}
fn check_invalid_ptr_usage<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
// (fn_path, arg_indices) - `arg_indices` are the `arg` positions where null would cause U.B.
const INVALID_NULL_PTR_USAGE_TABLE: [(&[&str], &[usize]); 16] = [
(&paths::SLICE_FROM_RAW_PARTS, &[0]),
(&paths::SLICE_FROM_RAW_PARTS_MUT, &[0]),
(&paths::PTR_COPY, &[0, 1]),
(&paths::PTR_COPY_NONOVERLAPPING, &[0, 1]),
(&paths::PTR_READ, &[0]),
(&paths::PTR_READ_UNALIGNED, &[0]),
(&paths::PTR_READ_VOLATILE, &[0]),
(&paths::PTR_REPLACE, &[0]),
(&paths::PTR_SLICE_FROM_RAW_PARTS, &[0]),
(&paths::PTR_SLICE_FROM_RAW_PARTS_MUT, &[0]),
(&paths::PTR_SWAP, &[0, 1]),
(&paths::PTR_SWAP_NONOVERLAPPING, &[0, 1]),
(&paths::PTR_WRITE, &[0]),
(&paths::PTR_WRITE_UNALIGNED, &[0]),
(&paths::PTR_WRITE_VOLATILE, &[0]),
(&paths::PTR_WRITE_BYTES, &[0]),
];
if_chain! {
if let ExprKind::Call(fun, args) = expr.kind;
if let ExprKind::Path(ref qpath) = fun.kind;
if let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id();
let fun_def_path = cx.get_def_path(fun_def_id).into_iter().map(Symbol::to_ident_string).collect::<Vec<_>>();
if let Some(&(_, arg_indices)) = INVALID_NULL_PTR_USAGE_TABLE
.iter()
.find(|&&(fn_path, _)| fn_path == fun_def_path);
then {
for &arg_idx in arg_indices {
if let Some(arg) = args.get(arg_idx).filter(|arg| is_null_path(cx, arg)) {
span_lint_and_sugg(
cx,
INVALID_NULL_PTR_USAGE,
arg.span,
"pointer must be non-null",
"change this to",
"core::ptr::NonNull::dangling().as_ptr()".to_string(),
Applicability::MachineApplicable,
);
}
}
}
}
}
#[derive(Default)]
struct PtrArgResult {
skip: bool,
replacements: Vec<PtrArgReplacement>,
}
struct PtrArgReplacement {
expr_span: Span,
self_span: Span,
replacement: &'static str,
}
struct PtrArg<'tcx> {
idx: usize,
span: Span,
ty_did: DefId,
ty_name: Symbol,
method_renames: &'static [(&'static str, &'static str)],
ref_prefix: RefPrefix,
deref_ty: DerefTy<'tcx>,
}
impl PtrArg<'_> {
fn build_msg(&self) -> String {
format!(
"writing `&{}{}` instead of `&{}{}` involves a new object where a slice will do",
self.ref_prefix.mutability.prefix_str(),
self.ty_name,
self.ref_prefix.mutability.prefix_str(),
self.deref_ty.argless_str(),
)
}
fn mutability(&self) -> Mutability {
self.ref_prefix.mutability
}
}
struct RefPrefix {
lt: LifetimeName,
mutability: Mutability,
}
impl fmt::Display for RefPrefix {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use fmt::Write;
f.write_char('&')?;
match self.lt {
LifetimeName::Param(ParamName::Plain(name)) => {
name.fmt(f)?;
f.write_char(' ')?;
},
LifetimeName::Underscore => f.write_str("'_ ")?,
LifetimeName::Static => f.write_str("'static ")?,
_ => (),
}
f.write_str(self.mutability.prefix_str())
}
}
struct DerefTyDisplay<'a, 'tcx>(&'a LateContext<'tcx>, &'a DerefTy<'tcx>);
impl fmt::Display for DerefTyDisplay<'_, '_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use std::fmt::Write;
match self.1 {
DerefTy::Str => f.write_str("str"),
DerefTy::Path => f.write_str("Path"),
DerefTy::Slice(hir_ty, ty) => {
f.write_char('[')?;
match hir_ty.and_then(|s| snippet_opt(self.0, s)) {
Some(s) => f.write_str(&s)?,
None => ty.fmt(f)?,
}
f.write_char(']')
},
}
}
}
enum DerefTy<'tcx> {
Str,
Path,
Slice(Option<Span>, Ty<'tcx>),
}
impl<'tcx> DerefTy<'tcx> {
fn argless_str(&self) -> &'static str {
match *self {
Self::Str => "str",
Self::Path => "Path",
Self::Slice(..) => "[_]",
}
}
fn display<'a>(&'a self, cx: &'a LateContext<'tcx>) -> DerefTyDisplay<'a, 'tcx> {
DerefTyDisplay(cx, self)
}
}
fn check_fn_args<'cx, 'tcx: 'cx>(
cx: &'cx LateContext<'tcx>,
tys: &'tcx [Ty<'_>],
hir_tys: &'tcx [hir::Ty<'_>],
params: &'tcx [Param<'_>],
) -> impl Iterator<Item = PtrArg<'tcx>> + 'cx {
tys.iter()
.zip(hir_tys.iter())
.enumerate()
.filter_map(|(i, (ty, hir_ty))| {
if_chain! {
if let ty::Ref(_, ty, mutability) = *ty.kind();
if let ty::Adt(adt, substs) = *ty.kind();
if let TyKind::Rptr(lt, ref ty) = hir_ty.kind;
if let TyKind::Path(QPath::Resolved(None, path)) = ty.ty.kind;
// Check that the name as typed matches the actual name of the type.
// e.g. `fn foo(_: &Foo)` shouldn't trigger the lint when `Foo` is an alias for `Vec`
if let [.., name] = path.segments;
if cx.tcx.item_name(adt.did()) == name.ident.name;
if !is_lint_allowed(cx, PTR_ARG, hir_ty.hir_id);
if params.get(i).map_or(true, |p| !is_lint_allowed(cx, PTR_ARG, p.hir_id));
then {
2022-03-18 12:33:40 +00:00
let (method_renames, deref_ty) = match cx.tcx.get_diagnostic_name(adt.did()) {
Some(sym::Vec) => (
[("clone", ".to_owned()")].as_slice(),
DerefTy::Slice(
name.args
.and_then(|args| args.args.first())
.and_then(|arg| if let GenericArg::Type(ty) = arg {
Some(ty.span)
} else {
None
}),
substs.type_at(0),
),
),
Some(sym::String) => (
[("clone", ".to_owned()"), ("as_str", "")].as_slice(),
DerefTy::Str,
),
Some(sym::PathBuf) => (
[("clone", ".to_path_buf()"), ("as_path", "")].as_slice(),
DerefTy::Path,
),
Some(sym::Cow) if mutability == Mutability::Not => {
let ty_name = name.args
.and_then(|args| {
args.args.iter().find_map(|a| match a {
GenericArg::Type(x) => Some(x),
_ => None,
})
})
.and_then(|arg| snippet_opt(cx, arg.span))
.unwrap_or_else(|| substs.type_at(1).to_string());
span_lint_and_sugg(
cx,
PTR_ARG,
hir_ty.span,
"using a reference to `Cow` is not recommended",
"change this to",
format!("&{}{}", mutability.prefix_str(), ty_name),
Applicability::Unspecified,
);
return None;
},
_ => return None,
};
return Some(PtrArg {
idx: i,
span: hir_ty.span,
ty_did: adt.did(),
ty_name: name.ident.name,
method_renames,
ref_prefix: RefPrefix {
lt: lt.name,
mutability,
},
deref_ty,
});
}
}
None
})
}
fn check_mut_from_ref<'tcx>(cx: &LateContext<'tcx>, sig: &FnSig<'_>, body: Option<&'tcx Body<'_>>) {
if let FnRetTy::Return(ty) = sig.decl.output
&& let Some((out, Mutability::Mut, _)) = get_rptr_lm(ty)
{
let args: Option<Vec<_>> = sig
.decl
.inputs
.iter()
.filter_map(get_rptr_lm)
.filter(|&(lt, _, _)| lt.name == out.name)
.map(|(_, mutability, span)| (mutability == Mutability::Not).then(|| span))
.collect();
if let Some(args) = args
&& !args.is_empty()
&& body.map_or(true, |body| {
sig.header.unsafety == Unsafety::Unsafe || contains_unsafe_block(cx, &body.value)
})
{
2018-11-27 20:14:15 +00:00
span_lint_and_then(
cx,
MUT_FROM_REF,
ty.span,
"mutable borrow from immutable input(s)",
|diag| {
let ms = MultiSpan::from_spans(args);
diag.span_note(ms, "immutable borrow here");
2018-11-27 20:14:15 +00:00
},
);
}
}
}
#[expect(clippy::too_many_lines)]
fn check_ptr_arg_usage<'tcx>(cx: &LateContext<'tcx>, body: &'tcx Body<'_>, args: &[PtrArg<'tcx>]) -> Vec<PtrArgResult> {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
/// Map from a local id to which argument it came from (index into `Self::args` and
/// `Self::results`)
bindings: HirIdMap<usize>,
/// The arguments being checked.
args: &'cx [PtrArg<'tcx>],
/// The results for each argument (len should match args.len)
results: Vec<PtrArgResult>,
/// The number of arguments which can't be linted. Used to return early.
skip_count: usize,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_anon_const(&mut self, _: &'tcx AnonConst) {}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if self.skip_count == self.args.len() {
return;
}
// Check if this is local we care about
let args_idx = match path_to_local(e).and_then(|id| self.bindings.get(&id)) {
Some(&i) => i,
None => return walk_expr(self, e),
};
let args = &self.args[args_idx];
let result = &mut self.results[args_idx];
// Helper function to handle early returns.
let mut set_skip_flag = || {
if !result.skip {
self.skip_count += 1;
}
result.skip = true;
};
match get_expr_use_or_unification_node(self.cx.tcx, e) {
Some((Node::Stmt(_), _)) => (),
Some((Node::Local(l), _)) => {
// Only trace simple bindings. e.g `let x = y;`
if let PatKind::Binding(BindingAnnotation::Unannotated, id, _, None) = l.pat.kind {
self.bindings.insert(id, args_idx);
} else {
set_skip_flag();
}
},
Some((Node::Expr(e), child_id)) => match e.kind {
ExprKind::Call(f, expr_args) => {
let i = expr_args.iter().position(|arg| arg.hir_id == child_id).unwrap_or(0);
if expr_sig(self.cx, f)
.map(|sig| sig.input(i).skip_binder().peel_refs())
.map_or(true, |ty| match *ty.kind() {
ty::Param(_) => true,
ty::Adt(def, _) => def.did() == args.ty_did,
_ => false,
})
{
// Passed to a function taking the non-dereferenced type.
set_skip_flag();
}
},
ExprKind::MethodCall(name, expr_args @ [self_arg, ..], _) => {
let i = expr_args.iter().position(|arg| arg.hir_id == child_id).unwrap_or(0);
if i == 0 {
// Check if the method can be renamed.
let name = name.ident.as_str();
if let Some((_, replacement)) = args.method_renames.iter().find(|&&(x, _)| x == name) {
result.replacements.push(PtrArgReplacement {
expr_span: e.span,
self_span: self_arg.span,
replacement,
});
return;
}
}
let id = if let Some(x) = self.cx.typeck_results().type_dependent_def_id(e.hir_id) {
x
} else {
set_skip_flag();
return;
};
match *self.cx.tcx.fn_sig(id).skip_binder().inputs()[i].peel_refs().kind() {
ty::Param(_) => {
set_skip_flag();
},
// If the types match check for methods which exist on both types. e.g. `Vec::len` and
// `slice::len`
ty::Adt(def, _) if def.did() == args.ty_did => {
set_skip_flag();
},
_ => (),
}
},
// Indexing is fine for currently supported types.
ExprKind::Index(e, _) if e.hir_id == child_id => (),
_ => set_skip_flag(),
},
_ => set_skip_flag(),
}
}
}
let mut skip_count = 0;
let mut results = args.iter().map(|_| PtrArgResult::default()).collect::<Vec<_>>();
let mut v = V {
cx,
bindings: args
.iter()
.enumerate()
.filter_map(|(i, arg)| {
let param = &body.params[arg.idx];
match param.pat.kind {
PatKind::Binding(BindingAnnotation::Unannotated, id, _, None)
if !is_lint_allowed(cx, PTR_ARG, param.hir_id) =>
{
Some((id, i))
},
_ => {
skip_count += 1;
results[i].skip = true;
None
},
}
})
.collect(),
args,
results,
skip_count,
};
v.visit_expr(&body.value);
v.results
}
fn get_rptr_lm<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> Option<(&'tcx Lifetime, Mutability, Span)> {
2019-09-27 15:16:06 +00:00
if let TyKind::Rptr(ref lt, ref m) = ty.kind {
2017-02-12 12:53:30 +00:00
Some((lt, m.mutbl, ty.span))
} else {
None
}
}
fn is_null_path(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
if let ExprKind::Call(pathexp, []) = expr.kind {
path_def_id(cx, pathexp).map_or(false, |id| {
matches!(cx.tcx.get_diagnostic_name(id), Some(sym::ptr_null | sym::ptr_null_mut))
})
} else {
false
}
}