rust-analyzer/crates/ra_parser/src/grammar.rs

298 lines
7.6 KiB
Rust

//! This is the actual "grammar" of the Rust language.
//!
//! Each function in this module and its children corresponds
//! to a production of the format grammar. Submodules roughly
//! correspond to different *areas* of the grammar. By convention,
//! each submodule starts with `use super::*` import and exports
//! "public" productions via `pub(super)`.
//!
//! See docs for `Parser` to learn about API, available to the grammar,
//! and see docs for `Event` to learn how this actually manages to
//! produce parse trees.
//!
//! Code in this module also contains inline tests, which start with
//! `// test name-of-the-test` comment and look like this:
//!
//! ```
//! // test function_with_zero_parameters
//! // fn foo() {}
//! ```
//!
//! After adding a new inline-test, run `cargo collect-tests` to extract
//! it as a standalone text-fixture into `tests/data/parser/inline`, and
//! run `cargo test` once to create the "gold" value.
//!
//! Coding convention: rules like `where_clause` always produce either a
//! node or an error, rules like `opt_where_clause` may produce nothing.
//! Non-opt rules typically start with `assert!(p.at(FIRST_TOKEN))`, the
//! caller is responsible for branching on the first token.
mod attributes;
mod expressions;
mod items;
mod params;
mod paths;
mod patterns;
mod type_args;
mod type_params;
mod types;
use crate::{
parser::{CompletedMarker, Marker, Parser},
SyntaxKind::{self, *},
TokenSet,
};
pub(crate) fn root(p: &mut Parser) {
let m = p.start();
p.eat(SHEBANG);
items::mod_contents(p, false);
m.complete(p, SOURCE_FILE);
}
pub(crate) fn macro_items(p: &mut Parser) {
let m = p.start();
items::mod_contents(p, false);
m.complete(p, MACRO_ITEMS);
}
pub(crate) fn macro_stmts(p: &mut Parser) {
let m = p.start();
while !p.at(EOF) {
if p.current() == T![;] {
p.bump();
continue;
}
expressions::stmt(p, expressions::StmtWithSemi::Optional);
}
m.complete(p, MACRO_STMTS);
}
pub(crate) fn path(p: &mut Parser) {
paths::type_path(p);
}
pub(crate) fn expr(p: &mut Parser) {
expressions::expr(p);
}
pub(crate) fn type_(p: &mut Parser) {
types::type_(p)
}
pub(crate) fn pattern(p: &mut Parser) {
patterns::pattern(p)
}
pub(crate) fn stmt(p: &mut Parser, with_semi: bool) {
let with_semi =
if with_semi { expressions::StmtWithSemi::Yes } else { expressions::StmtWithSemi::No };
expressions::stmt(p, with_semi)
}
pub(crate) fn block(p: &mut Parser) {
expressions::block(p);
}
// Parse a meta item , which excluded [], e.g : #[ MetaItem ]
pub(crate) fn meta_item(p: &mut Parser) {
fn is_delimiter(p: &mut Parser) -> bool {
match p.current() {
T!['{'] | T!['('] | T!['['] => true,
_ => false,
}
}
if is_delimiter(p) {
items::token_tree(p);
return;
}
let m = p.start();
while !p.at(EOF) {
if is_delimiter(p) {
items::token_tree(p);
break;
} else {
// https://doc.rust-lang.org/reference/attributes.html
// https://doc.rust-lang.org/reference/paths.html#simple-paths
// The start of an meta must be a simple path
match p.current() {
IDENT | T![::] | T![super] | T![self] | T![crate] => p.bump(),
T![=] => {
p.bump();
match p.current() {
c if c.is_literal() => p.bump(),
T![true] | T![false] => p.bump(),
_ => {}
}
break;
}
_ => break,
}
}
}
m.complete(p, TOKEN_TREE);
}
pub(crate) fn item(p: &mut Parser) {
items::item_or_macro(p, true, items::ItemFlavor::Mod)
}
pub(crate) fn reparser(
node: SyntaxKind,
first_child: Option<SyntaxKind>,
parent: Option<SyntaxKind>,
) -> Option<fn(&mut Parser)> {
let res = match node {
BLOCK => expressions::block,
NAMED_FIELD_DEF_LIST => items::named_field_def_list,
NAMED_FIELD_LIST => items::named_field_list,
ENUM_VARIANT_LIST => items::enum_variant_list,
MATCH_ARM_LIST => items::match_arm_list,
USE_TREE_LIST => items::use_tree_list,
EXTERN_ITEM_LIST => items::extern_item_list,
TOKEN_TREE if first_child? == T!['{'] => items::token_tree,
ITEM_LIST => match parent? {
IMPL_BLOCK => items::impl_item_list,
TRAIT_DEF => items::trait_item_list,
MODULE => items::mod_item_list,
_ => return None,
},
_ => return None,
};
Some(res)
}
#[derive(Clone, Copy, PartialEq, Eq)]
enum BlockLike {
Block,
NotBlock,
}
impl BlockLike {
fn is_block(self) -> bool {
self == BlockLike::Block
}
}
pub(crate) fn opt_visibility(p: &mut Parser) -> bool {
match p.current() {
T![pub] => {
let m = p.start();
p.bump();
if p.at(T!['(']) {
match p.nth(1) {
// test crate_visibility
// pub(crate) struct S;
// pub(self) struct S;
// pub(self) struct S;
// pub(self) struct S;
T![crate] | T![self] | T![super] => {
p.bump();
p.bump();
p.expect(T![')']);
}
T![in] => {
p.bump();
p.bump();
paths::use_path(p);
p.expect(T![')']);
}
_ => (),
}
}
m.complete(p, VISIBILITY);
}
// test crate_keyword_vis
// crate fn main() { }
// struct S { crate field: u32 }
// struct T(crate u32);
//
// test crate_keyword_path
// fn foo() { crate::foo(); }
T![crate] if p.nth(1) != T![::] => {
let m = p.start();
p.bump();
m.complete(p, VISIBILITY);
}
_ => return false,
}
true
}
fn opt_alias(p: &mut Parser) {
if p.at(T![as]) {
let m = p.start();
p.bump();
if !p.eat(T![_]) {
name(p);
}
m.complete(p, ALIAS);
}
}
fn abi(p: &mut Parser) {
assert!(p.at(T![extern]));
let abi = p.start();
p.bump();
match p.current() {
STRING | RAW_STRING => p.bump(),
_ => (),
}
abi.complete(p, ABI);
}
fn opt_fn_ret_type(p: &mut Parser) -> bool {
if p.at(T![->]) {
let m = p.start();
p.bump();
types::type_(p);
m.complete(p, RET_TYPE);
true
} else {
false
}
}
fn name_r(p: &mut Parser, recovery: TokenSet) {
if p.at(IDENT) {
let m = p.start();
p.bump();
m.complete(p, NAME);
} else {
p.err_recover("expected a name", recovery);
}
}
fn name(p: &mut Parser) {
name_r(p, TokenSet::empty())
}
fn name_ref(p: &mut Parser, allow_numeric_names: bool) {
if p.at(IDENT) || (allow_numeric_names && p.at(INT_NUMBER)) {
let m = p.start();
p.bump();
m.complete(p, NAME_REF);
} else if p.at(T![self]) {
let m = p.start();
p.bump();
m.complete(p, T![self]);
} else {
p.err_and_bump("expected identifier");
}
}
fn error_block(p: &mut Parser, message: &str) {
assert!(p.at(T!['{']));
let m = p.start();
p.error(message);
p.bump();
expressions::expr_block_contents(p);
p.eat(T!['}']);
m.complete(p, ERROR);
}