rust-analyzer/crates/ra_hir/src/ty.rs
2019-07-08 21:47:37 +02:00

608 lines
19 KiB
Rust

//! The type system. We currently use this to infer types for completion, hover
//! information and various assists.
mod autoderef;
pub(crate) mod primitive;
#[cfg(test)]
mod tests;
pub(crate) mod traits;
pub(crate) mod method_resolution;
mod op;
mod lower;
mod infer;
pub(crate) mod display;
use std::ops::Deref;
use std::sync::Arc;
use std::{fmt, mem};
use crate::{db::HirDatabase, type_ref::Mutability, AdtDef, GenericParams, Name, Trait, TypeAlias};
use display::{HirDisplay, HirFormatter};
pub(crate) use autoderef::autoderef;
pub(crate) use infer::{infer_query, InferTy, InferenceResult};
pub use lower::CallableDef;
pub(crate) use lower::{
callable_item_sig, generic_defaults_query, generic_predicates_query, type_for_def,
type_for_field, TypableDef,
};
pub(crate) use traits::{Environment, InEnvironment, Obligation, ProjectionPredicate};
/// A type constructor or type name: this might be something like the primitive
/// type `bool`, a struct like `Vec`, or things like function pointers or
/// tuples.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum TypeCtor {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive integer type. For example, `i32`.
Int(primitive::UncertainIntTy),
/// A primitive floating-point type. For example, `f64`.
Float(primitive::UncertainFloatTy),
/// Structures, enumerations and unions.
Adt(AdtDef),
/// The pointee of a string slice. Written as `str`.
Str,
/// The pointee of an array slice. Written as `[T]`.
Slice,
/// An array with the given length. Written as `[T; n]`.
Array,
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type, which is output (for a function
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
///
/// This includes tuple struct / enum variant constructors as well.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(CallableDef),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr { num_args: u16 },
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple { cardinality: u16 },
}
/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ApplicationTy {
pub ctor: TypeCtor,
pub parameters: Substs,
}
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ProjectionTy {
pub associated_ty: TypeAlias,
pub parameters: Substs,
}
/// A type.
///
/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
/// the same thing (but in a different way).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum Ty {
/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
Apply(ApplicationTy),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
Param {
/// The index of the parameter (starting with parameters from the
/// surrounding impl, then the current function).
idx: u32,
/// The name of the parameter, for displaying.
// FIXME get rid of this
name: Name,
},
/// A bound type variable. Only used during trait resolution to represent
/// Chalk variables.
Bound(u32),
/// A type variable used during type checking. Not to be confused with a
/// type parameter.
Infer(InferTy),
/// A placeholder for a type which could not be computed; this is propagated
/// to avoid useless error messages. Doubles as a placeholder where type
/// variables are inserted before type checking, since we want to try to
/// infer a better type here anyway -- for the IDE use case, we want to try
/// to infer as much as possible even in the presence of type errors.
Unknown,
}
/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Substs(Arc<[Ty]>);
impl Substs {
pub fn empty() -> Substs {
Substs(Arc::new([]))
}
pub fn single(ty: Ty) -> Substs {
Substs(Arc::new([ty]))
}
pub fn prefix(&self, n: usize) -> Substs {
Substs(self.0.iter().cloned().take(n).collect::<Vec<_>>().into())
}
pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = self.0.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
self.0 = v.into();
}
pub fn as_single(&self) -> &Ty {
if self.0.len() != 1 {
panic!("expected substs of len 1, got {:?}", self);
}
&self.0[0]
}
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
pub fn identity(generic_params: &GenericParams) -> Substs {
Substs(
generic_params
.params_including_parent()
.into_iter()
.map(|p| Ty::Param { idx: p.idx, name: p.name.clone() })
.collect::<Vec<_>>()
.into(),
)
}
/// Return Substs that replace each parameter by a bound variable.
pub fn bound_vars(generic_params: &GenericParams) -> Substs {
Substs(
generic_params
.params_including_parent()
.into_iter()
.map(|p| Ty::Bound(p.idx))
.collect::<Vec<_>>()
.into(),
)
}
}
impl From<Vec<Ty>> for Substs {
fn from(v: Vec<Ty>) -> Self {
Substs(v.into())
}
}
impl Deref for Substs {
type Target = [Ty];
fn deref(&self) -> &[Ty] {
&self.0
}
}
/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
/// Name to be bikeshedded: TraitBound? TraitImplements?
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TraitRef {
/// FIXME name?
pub trait_: Trait,
pub substs: Substs,
}
impl TraitRef {
pub fn self_ty(&self) -> &Ty {
&self.substs[0]
}
pub fn subst(mut self, substs: &Substs) -> TraitRef {
self.substs.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = ty.subst(substs);
});
self
}
}
/// Like `generics::WherePredicate`, but with resolved types: A condition on the
/// parameters of a generic item.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum GenericPredicate {
/// The given trait needs to be implemented for its type parameters.
Implemented(TraitRef),
/// We couldn't resolve the trait reference. (If some type parameters can't
/// be resolved, they will just be Unknown).
Error,
}
impl GenericPredicate {
pub fn is_error(&self) -> bool {
match self {
GenericPredicate::Error => true,
_ => false,
}
}
pub fn subst(self, substs: &Substs) -> GenericPredicate {
match self {
GenericPredicate::Implemented(trait_ref) => {
GenericPredicate::Implemented(trait_ref.subst(substs))
}
GenericPredicate::Error => self,
}
}
}
/// Basically a claim (currently not validated / checked) that the contained
/// type / trait ref contains no inference variables; any inference variables it
/// contained have been replaced by bound variables, and `num_vars` tells us how
/// many there are. This is used to erase irrelevant differences between types
/// before using them in queries.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Canonical<T> {
pub value: T,
pub num_vars: usize,
}
/// A function signature as seen by type inference: Several parameter types and
/// one return type.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
params_and_return: Arc<[Ty]>,
}
impl FnSig {
pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
params.push(ret);
FnSig { params_and_return: params.into() }
}
pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
FnSig { params_and_return: Arc::clone(&substs.0) }
}
pub fn params(&self) -> &[Ty] {
&self.params_and_return[0..self.params_and_return.len() - 1]
}
pub fn ret(&self) -> &Ty {
&self.params_and_return[self.params_and_return.len() - 1]
}
/// Applies the given substitutions to all types in this signature and
/// returns the result.
pub fn subst(&self, substs: &Substs) -> FnSig {
let result: Vec<_> =
self.params_and_return.iter().map(|ty| ty.clone().subst(substs)).collect();
FnSig { params_and_return: result.into() }
}
pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = self.params_and_return.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
self.params_and_return = v.into();
}
}
impl Ty {
pub fn simple(ctor: TypeCtor) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
}
pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
}
pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters })
}
pub fn unit() -> Self {
Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
}
pub fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
Ty::Apply(a_ty) => {
for t in a_ty.parameters.iter() {
t.walk(f);
}
}
Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
}
f(self);
}
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
match self {
Ty::Apply(a_ty) => {
a_ty.parameters.walk_mut(f);
}
Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
}
f(self);
}
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty {
self.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty);
});
self
}
pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
Some((parameters.as_single(), *mutability))
}
_ => None,
}
}
pub fn as_adt(&self) -> Option<(AdtDef, &Substs)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
Some((*adt_def, parameters))
}
_ => None,
}
}
pub fn as_tuple(&self) -> Option<&Substs> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
Some(parameters)
}
_ => None,
}
}
pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
Some((*callable_def, parameters))
}
_ => None,
}
}
fn builtin_deref(&self) -> Option<Ty> {
match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
_ => None,
},
_ => None,
}
}
fn callable_sig(&self, db: &impl HirDatabase) -> Option<FnSig> {
match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
TypeCtor::FnDef(def) => {
let sig = db.callable_item_signature(def);
Some(sig.subst(&a_ty.parameters))
}
_ => None,
},
_ => None,
}
}
/// If this is a type with type parameters (an ADT or function), replaces
/// the `Substs` for these type parameters with the given ones. (So e.g. if
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
/// `Option<u32>` afterwards.)
pub fn apply_substs(self, substs: Substs) -> Ty {
match self {
Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
assert_eq!(previous_substs.len(), substs.len());
Ty::Apply(ApplicationTy { ctor, parameters: substs })
}
_ => self,
}
}
/// Replaces type parameters in this type using the given `Substs`. (So e.g.
/// if `self` is `&[T]`, where type parameter T has index 0, and the
/// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
pub fn subst(self, substs: &Substs) -> Ty {
self.fold(&mut |ty| match ty {
Ty::Param { idx, name } => {
substs.get(idx as usize).cloned().unwrap_or(Ty::Param { idx, name })
}
ty => ty,
})
}
/// Substitutes `Ty::Bound` vars (as opposed to type parameters).
pub fn subst_bound_vars(self, substs: &Substs) -> Ty {
self.fold(&mut |ty| match ty {
Ty::Bound(idx) => substs.get(idx as usize).cloned().unwrap_or_else(|| Ty::Bound(idx)),
ty => ty,
})
}
/// Returns the type parameters of this type if it has some (i.e. is an ADT
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
fn substs(&self) -> Option<Substs> {
match self {
Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
_ => None,
}
}
/// Shifts up `Ty::Bound` vars by `n`.
pub fn shift_bound_vars(self, n: i32) -> Ty {
self.fold(&mut |ty| match ty {
Ty::Bound(idx) => {
assert!(idx as i32 >= -n);
Ty::Bound((idx as i32 + n) as u32)
}
ty => ty,
})
}
}
impl HirDisplay for &Ty {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for ApplicationTy {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
match self.ctor {
TypeCtor::Bool => write!(f, "bool")?,
TypeCtor::Char => write!(f, "char")?,
TypeCtor::Int(t) => write!(f, "{}", t)?,
TypeCtor::Float(t) => write!(f, "{}", t)?,
TypeCtor::Str => write!(f, "str")?,
TypeCtor::Slice => {
let t = self.parameters.as_single();
write!(f, "[{}]", t.display(f.db))?;
}
TypeCtor::Array => {
let t = self.parameters.as_single();
write!(f, "[{};_]", t.display(f.db))?;
}
TypeCtor::RawPtr(m) => {
let t = self.parameters.as_single();
write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
}
TypeCtor::Ref(m) => {
let t = self.parameters.as_single();
write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?;
}
TypeCtor::Never => write!(f, "!")?,
TypeCtor::Tuple { .. } => {
let ts = &self.parameters;
if ts.len() == 1 {
write!(f, "({},)", ts[0].display(f.db))?;
} else {
write!(f, "(")?;
f.write_joined(&*ts.0, ", ")?;
write!(f, ")")?;
}
}
TypeCtor::FnPtr { .. } => {
let sig = FnSig::from_fn_ptr_substs(&self.parameters);
write!(f, "fn(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ") -> {}", sig.ret().display(f.db))?;
}
TypeCtor::FnDef(def) => {
let sig = f.db.callable_item_signature(def);
let name = match def {
CallableDef::Function(ff) => ff.name(f.db),
CallableDef::Struct(s) => s.name(f.db).unwrap_or_else(Name::missing),
CallableDef::EnumVariant(e) => e.name(f.db).unwrap_or_else(Name::missing),
};
match def {
CallableDef::Function(_) => write!(f, "fn {}", name)?,
CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?,
}
if self.parameters.len() > 0 {
write!(f, "<")?;
f.write_joined(&*self.parameters.0, ", ")?;
write!(f, ">")?;
}
write!(f, "(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ") -> {}", sig.ret().display(f.db))?;
}
TypeCtor::Adt(def_id) => {
let name = match def_id {
AdtDef::Struct(s) => s.name(f.db),
AdtDef::Union(u) => u.name(f.db),
AdtDef::Enum(e) => e.name(f.db),
}
.unwrap_or_else(Name::missing);
write!(f, "{}", name)?;
if self.parameters.len() > 0 {
write!(f, "<")?;
f.write_joined(&*self.parameters.0, ", ")?;
write!(f, ">")?;
}
}
}
Ok(())
}
}
impl HirDisplay for Ty {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
match self {
Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
Ty::Param { name, .. } => write!(f, "{}", name)?,
Ty::Bound(idx) => write!(f, "?{}", idx)?,
Ty::Unknown => write!(f, "{{unknown}}")?,
Ty::Infer(..) => write!(f, "_")?,
}
Ok(())
}
}
impl HirDisplay for TraitRef {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
write!(
f,
"{}: {}",
self.substs[0].display(f.db),
self.trait_.name(f.db).unwrap_or_else(Name::missing)
)?;
if self.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.substs[1..], ", ")?;
write!(f, ">")?;
}
Ok(())
}
}