rust-analyzer/crates/ra_ide/src/inlay_hints.rs
2020-06-30 21:55:21 +02:00

928 lines
23 KiB
Rust

use hir::{Adt, HirDisplay, Semantics, Type};
use ra_ide_db::RootDatabase;
use ra_prof::profile;
use ra_syntax::{
ast::{self, ArgListOwner, AstNode, TypeAscriptionOwner},
match_ast, Direction, NodeOrToken, SmolStr, SyntaxKind, TextRange, T,
};
use crate::{FileId, FunctionSignature};
use stdx::to_lower_snake_case;
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct InlayHintsConfig {
pub type_hints: bool,
pub parameter_hints: bool,
pub chaining_hints: bool,
pub max_length: Option<usize>,
}
impl Default for InlayHintsConfig {
fn default() -> Self {
Self { type_hints: true, parameter_hints: true, chaining_hints: true, max_length: None }
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum InlayKind {
TypeHint,
ParameterHint,
ChainingHint,
}
#[derive(Debug)]
pub struct InlayHint {
pub range: TextRange,
pub kind: InlayKind,
pub label: SmolStr,
}
// Feature: Inlay Hints
//
// rust-analyzer shows additional information inline with the source code.
// Editors usually render this using read-only virtual text snippets interspersed with code.
//
// rust-analyzer shows hits for
//
// * types of local variables
// * names of function arguments
// * types of chained expressions
//
// **Note:** VS Code does not have native support for inlay hints https://github.com/microsoft/vscode/issues/16221[yet] and the hints are implemented using decorations.
// This approach has limitations, the caret movement and bracket highlighting near the edges of the hint may be weird:
// https://github.com/rust-analyzer/rust-analyzer/issues/1623[1], https://github.com/rust-analyzer/rust-analyzer/issues/3453[2].
//
// |===
// | Editor | Action Name
//
// | VS Code | **Rust Analyzer: Toggle inlay hints*
// |===
pub(crate) fn inlay_hints(
db: &RootDatabase,
file_id: FileId,
config: &InlayHintsConfig,
) -> Vec<InlayHint> {
let _p = profile("inlay_hints");
let sema = Semantics::new(db);
let file = sema.parse(file_id);
let mut res = Vec::new();
for node in file.syntax().descendants() {
if let Some(expr) = ast::Expr::cast(node.clone()) {
get_chaining_hints(&mut res, &sema, config, expr);
}
match_ast! {
match node {
ast::CallExpr(it) => { get_param_name_hints(&mut res, &sema, config, ast::Expr::from(it)); },
ast::MethodCallExpr(it) => { get_param_name_hints(&mut res, &sema, config, ast::Expr::from(it)); },
ast::BindPat(it) => { get_bind_pat_hints(&mut res, &sema, config, it); },
_ => (),
}
}
}
res
}
fn get_chaining_hints(
acc: &mut Vec<InlayHint>,
sema: &Semantics<RootDatabase>,
config: &InlayHintsConfig,
expr: ast::Expr,
) -> Option<()> {
if !config.chaining_hints {
return None;
}
if matches!(expr, ast::Expr::RecordLit(_)) {
return None;
}
let mut tokens = expr
.syntax()
.siblings_with_tokens(Direction::Next)
.filter_map(NodeOrToken::into_token)
.filter(|t| match t.kind() {
SyntaxKind::WHITESPACE if !t.text().contains('\n') => false,
SyntaxKind::COMMENT => false,
_ => true,
});
// Chaining can be defined as an expression whose next sibling tokens are newline and dot
// Ignoring extra whitespace and comments
let next = tokens.next()?.kind();
let next_next = tokens.next()?.kind();
if next == SyntaxKind::WHITESPACE && next_next == T![.] {
let ty = sema.type_of_expr(&expr)?;
if ty.is_unknown() {
return None;
}
if matches!(expr, ast::Expr::PathExpr(_)) {
if let Some(Adt::Struct(st)) = ty.as_adt() {
if st.fields(sema.db).is_empty() {
return None;
}
}
}
let label = ty.display_truncated(sema.db, config.max_length).to_string();
acc.push(InlayHint {
range: expr.syntax().text_range(),
kind: InlayKind::ChainingHint,
label: label.into(),
});
}
Some(())
}
fn get_param_name_hints(
acc: &mut Vec<InlayHint>,
sema: &Semantics<RootDatabase>,
config: &InlayHintsConfig,
expr: ast::Expr,
) -> Option<()> {
if !config.parameter_hints {
return None;
}
let args = match &expr {
ast::Expr::CallExpr(expr) => expr.arg_list()?.args(),
ast::Expr::MethodCallExpr(expr) => expr.arg_list()?.args(),
_ => return None,
};
let fn_signature = get_fn_signature(sema, &expr)?;
let n_params_to_skip =
if fn_signature.has_self_param && matches!(&expr, ast::Expr::MethodCallExpr(_)) {
1
} else {
0
};
let hints = fn_signature
.parameter_names
.iter()
.skip(n_params_to_skip)
.zip(args)
.filter(|(param, arg)| should_show_param_name_hint(sema, &fn_signature, param, &arg))
.map(|(param_name, arg)| InlayHint {
range: arg.syntax().text_range(),
kind: InlayKind::ParameterHint,
label: param_name.into(),
});
acc.extend(hints);
Some(())
}
fn get_bind_pat_hints(
acc: &mut Vec<InlayHint>,
sema: &Semantics<RootDatabase>,
config: &InlayHintsConfig,
pat: ast::BindPat,
) -> Option<()> {
if !config.type_hints {
return None;
}
let ty = sema.type_of_pat(&pat.clone().into())?;
if should_not_display_type_hint(sema.db, &pat, &ty) {
return None;
}
acc.push(InlayHint {
range: pat.syntax().text_range(),
kind: InlayKind::TypeHint,
label: ty.display_truncated(sema.db, config.max_length).to_string().into(),
});
Some(())
}
fn pat_is_enum_variant(db: &RootDatabase, bind_pat: &ast::BindPat, pat_ty: &Type) -> bool {
if let Some(Adt::Enum(enum_data)) = pat_ty.as_adt() {
let pat_text = bind_pat.to_string();
enum_data
.variants(db)
.into_iter()
.map(|variant| variant.name(db).to_string())
.any(|enum_name| enum_name == pat_text)
} else {
false
}
}
fn should_not_display_type_hint(db: &RootDatabase, bind_pat: &ast::BindPat, pat_ty: &Type) -> bool {
if pat_ty.is_unknown() {
return true;
}
if let Some(Adt::Struct(s)) = pat_ty.as_adt() {
if s.fields(db).is_empty() && s.name(db).to_string() == bind_pat.to_string() {
return true;
}
}
for node in bind_pat.syntax().ancestors() {
match_ast! {
match node {
ast::LetStmt(it) => {
return it.ascribed_type().is_some()
},
ast::Param(it) => {
return it.ascribed_type().is_some()
},
ast::MatchArm(_it) => {
return pat_is_enum_variant(db, bind_pat, pat_ty);
},
ast::IfExpr(it) => {
return it.condition().and_then(|condition| condition.pat()).is_some()
&& pat_is_enum_variant(db, bind_pat, pat_ty);
},
ast::WhileExpr(it) => {
return it.condition().and_then(|condition| condition.pat()).is_some()
&& pat_is_enum_variant(db, bind_pat, pat_ty);
},
_ => (),
}
}
}
false
}
fn should_show_param_name_hint(
sema: &Semantics<RootDatabase>,
fn_signature: &FunctionSignature,
param_name: &str,
argument: &ast::Expr,
) -> bool {
let param_name = param_name.trim_start_matches('_');
if param_name.is_empty()
|| Some(param_name) == fn_signature.name.as_ref().map(|s| s.trim_start_matches('_'))
|| is_argument_similar_to_param_name(sema, argument, param_name)
|| param_name.starts_with("ra_fixture")
{
return false;
}
let parameters_len = if fn_signature.has_self_param {
fn_signature.parameters.len() - 1
} else {
fn_signature.parameters.len()
};
// avoid displaying hints for common functions like map, filter, etc.
// or other obvious words used in std
!(parameters_len == 1 && is_obvious_param(param_name))
}
fn is_argument_similar_to_param_name(
sema: &Semantics<RootDatabase>,
argument: &ast::Expr,
param_name: &str,
) -> bool {
if is_enum_name_similar_to_param_name(sema, argument, param_name) {
return true;
}
match get_string_representation(argument) {
None => false,
Some(repr) => {
let argument_string = repr.trim_start_matches('_');
argument_string.starts_with(param_name) || argument_string.ends_with(param_name)
}
}
}
fn is_enum_name_similar_to_param_name(
sema: &Semantics<RootDatabase>,
argument: &ast::Expr,
param_name: &str,
) -> bool {
match sema.type_of_expr(argument).and_then(|t| t.as_adt()) {
Some(Adt::Enum(e)) => to_lower_snake_case(&e.name(sema.db).to_string()) == param_name,
_ => false,
}
}
fn get_string_representation(expr: &ast::Expr) -> Option<String> {
match expr {
ast::Expr::MethodCallExpr(method_call_expr) => {
Some(method_call_expr.name_ref()?.to_string())
}
ast::Expr::RefExpr(ref_expr) => get_string_representation(&ref_expr.expr()?),
_ => Some(expr.to_string()),
}
}
fn is_obvious_param(param_name: &str) -> bool {
let is_obvious_param_name =
matches!(param_name, "predicate" | "value" | "pat" | "rhs" | "other");
param_name.len() == 1 || is_obvious_param_name
}
fn get_fn_signature(sema: &Semantics<RootDatabase>, expr: &ast::Expr) -> Option<FunctionSignature> {
match expr {
ast::Expr::CallExpr(expr) => {
// FIXME: Type::as_callable is broken for closures
let callable_def = sema.type_of_expr(&expr.expr()?)?.as_callable()?;
match callable_def {
hir::CallableDef::FunctionId(it) => {
Some(FunctionSignature::from_hir(sema.db, it.into()))
}
hir::CallableDef::StructId(it) => {
FunctionSignature::from_struct(sema.db, it.into())
}
hir::CallableDef::EnumVariantId(it) => {
FunctionSignature::from_enum_variant(sema.db, it.into())
}
}
}
ast::Expr::MethodCallExpr(expr) => {
let fn_def = sema.resolve_method_call(&expr)?;
Some(FunctionSignature::from_hir(sema.db, fn_def))
}
_ => None,
}
}
#[cfg(test)]
mod tests {
use expect::{expect, Expect};
use test_utils::extract_annotations;
use crate::{inlay_hints::InlayHintsConfig, mock_analysis::single_file};
fn check(ra_fixture: &str) {
check_with_config(ra_fixture, InlayHintsConfig::default());
}
fn check_with_config(ra_fixture: &str, config: InlayHintsConfig) {
let (analysis, file_id) = single_file(ra_fixture);
let expected = extract_annotations(&*analysis.file_text(file_id).unwrap());
let inlay_hints = analysis.inlay_hints(file_id, &config).unwrap();
let actual =
inlay_hints.into_iter().map(|it| (it.range, it.label.to_string())).collect::<Vec<_>>();
assert_eq!(expected, actual);
}
fn check_expect(ra_fixture: &str, config: InlayHintsConfig, expect: Expect) {
let (analysis, file_id) = single_file(ra_fixture);
let inlay_hints = analysis.inlay_hints(file_id, &config).unwrap();
expect.assert_debug_eq(&inlay_hints)
}
#[test]
fn param_hints_only() {
check_with_config(
r#"
fn foo(a: i32, b: i32) -> i32 { a + b }
fn main() {
let _x = foo(
4,
//^ a
4,
//^ b
);
}"#,
InlayHintsConfig {
parameter_hints: true,
type_hints: false,
chaining_hints: false,
max_length: None,
},
);
}
#[test]
fn hints_disabled() {
check_with_config(
r#"
fn foo(a: i32, b: i32) -> i32 { a + b }
fn main() {
let _x = foo(4, 4);
}"#,
InlayHintsConfig {
type_hints: false,
parameter_hints: false,
chaining_hints: false,
max_length: None,
},
);
}
#[test]
fn type_hints_only() {
check_with_config(
r#"
fn foo(a: i32, b: i32) -> i32 { a + b }
fn main() {
let _x = foo(4, 4);
//^^ i32
}"#,
InlayHintsConfig {
type_hints: true,
parameter_hints: false,
chaining_hints: false,
max_length: None,
},
);
}
#[test]
fn default_generic_types_should_not_be_displayed() {
check(
r#"
struct Test<K, T = u8> { k: K, t: T }
fn main() {
let zz = Test { t: 23u8, k: 33 };
//^^ Test<i32>
let zz_ref = &zz;
//^^^^^^ &Test<i32>
}"#,
);
}
#[test]
fn let_statement() {
check(
r#"
#[derive(PartialEq)]
enum Option<T> { None, Some(T) }
#[derive(PartialEq)]
struct Test { a: Option<u32>, b: u8 }
fn main() {
struct InnerStruct {}
let test = 54;
//^^^^ i32
let test: i32 = 33;
let mut test = 33;
//^^^^^^^^ i32
let _ = 22;
let test = "test";
//^^^^ &str
let test = InnerStruct {};
let test = unresolved();
let test = (42, 'a');
//^^^^ (i32, char)
let (a, (b, (c,)) = (2, (3, (9.2,));
//^ i32 ^ i32 ^ f64
let &x = &92;
//^ i32
}"#,
);
}
#[test]
fn closure_parameters() {
check(
r#"
fn main() {
let mut start = 0;
//^^^^^^^^^ i32
(0..2).for_each(|increment| { start += increment; });
//^^^^^^^^^ i32
let multiply =
//^^^^^^^^ |…| -> i32
| a, b| a * b
//^ i32 ^ i32
;
let _: i32 = multiply(1, 2);
let multiply_ref = &multiply;
//^^^^^^^^^^^^ &|…| -> i32
let return_42 = || 42;
//^^^^^^^^^ || -> i32
}"#,
);
}
#[test]
fn for_expression() {
check(
r#"
fn main() {
let mut start = 0;
//^^^^^^^^^ i32
for increment in 0..2 { start += increment; }
//^^^^^^^^^ i32
}"#,
);
}
#[test]
fn if_expr() {
check(
r#"
enum Option<T> { None, Some(T) }
use Option::*;
struct Test { a: Option<u32>, b: u8 }
fn main() {
let test = Some(Test { a: Some(3), b: 1 });
//^^^^ Option<Test>
if let None = &test {};
if let test = &test {};
//^^^^ &Option<Test>
if let Some(test) = &test {};
//^^^^ &Test
if let Some(Test { a, b }) = &test {};
//^ &Option<u32> ^ &u8
if let Some(Test { a: x, b: y }) = &test {};
//^ &Option<u32> ^ &u8
if let Some(Test { a: Some(x), b: y }) = &test {};
//^ &u32 ^ &u8
if let Some(Test { a: None, b: y }) = &test {};
//^ &u8
if let Some(Test { b: y, .. }) = &test {};
//^ &u8
if test == None {}
}"#,
);
}
#[test]
fn while_expr() {
check(
r#"
enum Option<T> { None, Some(T) }
use Option::*;
struct Test { a: Option<u32>, b: u8 }
fn main() {
let test = Some(Test { a: Some(3), b: 1 });
//^^^^ Option<Test>
while let Some(Test { a: Some(x), b: y }) = &test {};
//^ &u32 ^ &u8
}"#,
);
}
#[test]
fn match_arm_list() {
check(
r#"
enum Option<T> { None, Some(T) }
use Option::*;
struct Test { a: Option<u32>, b: u8 }
fn main() {
match Some(Test { a: Some(3), b: 1 }) {
None => (),
test => (),
//^^^^ Option<Test>
Some(Test { a: Some(x), b: y }) => (),
//^ u32 ^ u8
_ => {}
}
}"#,
);
}
#[test]
fn hint_truncation() {
check_with_config(
r#"
struct Smol<T>(T);
struct VeryLongOuterName<T>(T);
fn main() {
let a = Smol(0u32);
//^ Smol<u32>
let b = VeryLongOuterName(0usize);
//^ VeryLongOuterName<…>
let c = Smol(Smol(0u32))
//^ Smol<Smol<…>>
}"#,
InlayHintsConfig { max_length: Some(8), ..Default::default() },
);
}
#[test]
fn function_call_parameter_hint() {
check(
r#"
enum Option<T> { None, Some(T) }
use Option::*;
struct FileId {}
struct SmolStr {}
struct TextRange {}
struct SyntaxKind {}
struct NavigationTarget {}
struct Test {}
impl Test {
fn method(&self, mut param: i32) -> i32 { param * 2 }
fn from_syntax(
file_id: FileId,
name: SmolStr,
focus_range: Option<TextRange>,
full_range: TextRange,
kind: SyntaxKind,
docs: Option<String>,
) -> NavigationTarget {
NavigationTarget {}
}
}
fn test_func(mut foo: i32, bar: i32, msg: &str, _: i32, last: i32) -> i32 {
foo + bar
}
fn main() {
let not_literal = 1;
//^^^^^^^^^^^ i32
let _: i32 = test_func(1, 2, "hello", 3, not_literal);
//^ foo ^ bar ^^^^^^^ msg ^^^^^^^^^^^ last
let t: Test = Test {};
t.method(123);
//^^^ param
Test::method(&t, 3456);
//^^ &self ^^^^ param
Test::from_syntax(
FileId {},
//^^^^^^^^^ file_id
"impl".into(),
//^^^^^^^^^^^^^ name
None,
//^^^^ focus_range
TextRange {},
//^^^^^^^^^^^^ full_range
SyntaxKind {},
//^^^^^^^^^^^^^ kind
None,
//^^^^ docs
);
}"#,
);
}
#[test]
fn omitted_parameters_hints_heuristics() {
check_with_config(
r#"
fn map(f: i32) {}
fn filter(predicate: i32) {}
struct TestVarContainer {
test_var: i32,
}
impl TestVarContainer {
fn test_var(&self) -> i32 {
self.test_var
}
}
struct Test {}
impl Test {
fn map(self, f: i32) -> Self {
self
}
fn filter(self, predicate: i32) -> Self {
self
}
fn field(self, value: i32) -> Self {
self
}
fn no_hints_expected(&self, _: i32, test_var: i32) {}
fn frob(&self, frob: bool) {}
}
struct Param {}
fn different_order(param: &Param) {}
fn different_order_mut(param: &mut Param) {}
fn has_underscore(_param: bool) {}
fn enum_matches_param_name(completion_kind: CompletionKind) {}
fn twiddle(twiddle: bool) {}
fn doo(_doo: bool) {}
enum CompletionKind {
Keyword,
}
fn main() {
let container: TestVarContainer = TestVarContainer { test_var: 42 };
let test: Test = Test {};
map(22);
filter(33);
let test_processed: Test = test.map(1).filter(2).field(3);
let test_var: i32 = 55;
test_processed.no_hints_expected(22, test_var);
test_processed.no_hints_expected(33, container.test_var);
test_processed.no_hints_expected(44, container.test_var());
test_processed.frob(false);
twiddle(true);
doo(true);
let mut param_begin: Param = Param {};
different_order(&param_begin);
different_order(&mut param_begin);
let param: bool = true;
has_underscore(param);
enum_matches_param_name(CompletionKind::Keyword);
let a: f64 = 7.0;
let b: f64 = 4.0;
let _: f64 = a.div_euclid(b);
let _: f64 = a.abs_sub(b);
}"#,
InlayHintsConfig { max_length: Some(8), ..Default::default() },
);
}
#[test]
fn unit_structs_have_no_type_hints() {
check_with_config(
r#"
enum Result<T, E> { Ok(T), Err(E) }
use Result::*;
struct SyntheticSyntax;
fn main() {
match Ok(()) {
Ok(_) => (),
Err(SyntheticSyntax) => (),
}
}"#,
InlayHintsConfig { max_length: Some(8), ..Default::default() },
);
}
#[test]
fn chaining_hints_ignore_comments() {
check_expect(
r#"
struct A(B);
impl A { fn into_b(self) -> B { self.0 } }
struct B(C);
impl B { fn into_c(self) -> C { self.0 } }
struct C;
fn main() {
let c = A(B(C))
.into_b() // This is a comment
.into_c();
}
"#,
InlayHintsConfig {
parameter_hints: false,
type_hints: false,
chaining_hints: true,
max_length: None,
},
expect![[r#"
[
InlayHint {
range: 147..172,
kind: ChainingHint,
label: "B",
},
InlayHint {
range: 147..154,
kind: ChainingHint,
label: "A",
},
]
"#]],
);
}
#[test]
fn chaining_hints_without_newlines() {
check_with_config(
r#"
struct A(B);
impl A { fn into_b(self) -> B { self.0 } }
struct B(C);
impl B { fn into_c(self) -> C { self.0 } }
struct C;
fn main() {
let c = A(B(C)).into_b().into_c();
}"#,
InlayHintsConfig {
parameter_hints: false,
type_hints: false,
chaining_hints: true,
max_length: None,
},
);
}
#[test]
fn struct_access_chaining_hints() {
check_expect(
r#"
struct A { pub b: B }
struct B { pub c: C }
struct C(pub bool);
struct D;
impl D {
fn foo(&self) -> i32 { 42 }
}
fn main() {
let x = A { b: B { c: C(true) } }
.b
.c
.0;
let x = D
.foo();
}"#,
InlayHintsConfig {
parameter_hints: false,
type_hints: false,
chaining_hints: true,
max_length: None,
},
expect![[r#"
[
InlayHint {
range: 143..190,
kind: ChainingHint,
label: "C",
},
InlayHint {
range: 143..179,
kind: ChainingHint,
label: "B",
},
]
"#]],
);
}
#[test]
fn generic_chaining_hints() {
check_expect(
r#"
struct A<T>(T);
struct B<T>(T);
struct C<T>(T);
struct X<T,R>(T, R);
impl<T> A<T> {
fn new(t: T) -> Self { A(t) }
fn into_b(self) -> B<T> { B(self.0) }
}
impl<T> B<T> {
fn into_c(self) -> C<T> { C(self.0) }
}
fn main() {
let c = A::new(X(42, true))
.into_b()
.into_c();
}
"#,
InlayHintsConfig {
parameter_hints: false,
type_hints: false,
chaining_hints: true,
max_length: None,
},
expect![[r#"
[
InlayHint {
range: 246..283,
kind: ChainingHint,
label: "B<X<i32, bool>>",
},
InlayHint {
range: 246..265,
kind: ChainingHint,
label: "A<X<i32, bool>>",
},
]
"#]],
);
}
}