e69f30a5c7
Stabilize `impl_trait_projections` Closes #115659 ## TL;DR: This allows us to mention `Self` and `T::Assoc` in async fn and return-position `impl Trait`, as you would expect you'd be able to. Some examples: ```rust #![feature(return_position_impl_trait_in_trait, async_fn_in_trait)] // (just needed for final tests below) // ---------------------------------------- // struct Wrapper<'a, T>(&'a T); impl Wrapper<'_, ()> { async fn async_fn() -> Self { //^ Previously rejected because it returns `-> Self`, not `-> Wrapper<'_, ()>`. Wrapper(&()) } fn impl_trait() -> impl Iterator<Item = Self> { //^ Previously rejected because it mentions `Self`, not `Wrapper<'_, ()>`. std::iter::once(Wrapper(&())) } } // ---------------------------------------- // trait Trait<'a> { type Assoc; fn new() -> Self::Assoc; } impl Trait<'_> for () { type Assoc = (); fn new() {} } impl<'a, T: Trait<'a>> Wrapper<'a, T> { async fn mk_assoc() -> T::Assoc { //^ Previously rejected because `T::Assoc` doesn't mention `'a` in the HIR, // but ends up resolving to `<T as Trait<'a>>::Assoc`, which does rely on `'a`. // That's the important part -- the elided trait. T::new() } fn a_few_assocs() -> impl Iterator<Item = T::Assoc> { //^ Previously rejected for the same reason [T::new(), T::new(), T::new()].into_iter() } } // ---------------------------------------- // trait InTrait { async fn async_fn() -> Self; fn impl_trait() -> impl Iterator<Item = Self>; } impl InTrait for &() { async fn async_fn() -> Self { &() } //^ Previously rejected just like inherent impls fn impl_trait() -> impl Iterator<Item = Self> { //^ Previously rejected just like inherent impls [&()].into_iter() } } ``` ## Technical: Lifetimes in return-position `impl Trait` (and `async fn`) are duplicated as early-bound generics local to the opaque in order to make sure we are able to substitute any late-bound lifetimes from the function in the opaque's hidden type. (The [dev guide](https://rustc-dev-guide.rust-lang.org/return-position-impl-trait-in-trait.html#aside-opaque-lifetime-duplication) has a small section about why this is necessary -- this was written for RPITITs, but it applies to all RPITs) Prior to #103491, all of the early-bound lifetimes not local to the opaque were replaced with `'static` to avoid issues where relating opaques caused their *non-captured* lifetimes to be related. This `'static` replacement led to strange and possibly unsound behaviors (https://github.com/rust-lang/rust/issues/61949#issuecomment-508836314) (https://github.com/rust-lang/rust/issues/53613) when referencing the `Self` type alias in an impl or indirectly referencing a lifetime parameter via a projection type (via a `T::Assoc` projection without an explicit trait), since lifetime resolution is performed on the HIR, when neither `T::Assoc`-style projections or `Self` in impls are expanded. Therefore an error was implemented in #62849 to deny this subtle behavior as a known limitation of the compiler. It was attempted by `@cjgillot` to fix this in #91403, which was subsequently unlanded. Then it was re-attempted to much success (🎉) in #103491, which is where we currently are in the compiler. The PR above (#103491) fixed this issue technically by *not* replacing the opaque's parent lifetimes with `'static`, but instead using variance to properly track which lifetimes are captured and are not. The PR gated any of the "side-effects" of the PR behind a feature gate (`impl_trait_projections`) presumably to avoid having to involve T-lang or T-types in the PR as well. `@cjgillot` can clarify this if I'm misunderstanding what their intention was with the feature gate. Since we're not replacing (possibly *invariant*!) lifetimes with `'static` anymore, there are no more soundness concerns here. Therefore, this PR removes the feature gate. Tests: * `tests/ui/async-await/feature-self-return-type.rs` * `tests/ui/impl-trait/feature-self-return-type.rs` * `tests/ui/async-await/issues/issue-78600.rs` * `tests/ui/impl-trait/capture-lifetime-not-in-hir.rs` --- r? cjgillot on the impl (not much, just removing the feature gate) I'm gonna mark this as FCP for T-lang and T-types. |
||
---|---|---|
.cargo | ||
.github | ||
.vscode | ||
assets | ||
bench_data | ||
crates | ||
docs | ||
editors/code | ||
lib | ||
xtask | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
PRIVACY.md | ||
README.md | ||
rustfmt.toml | ||
triagebot.toml |
rust-analyzer is a modular compiler frontend for the Rust language. It is a part of a larger rls-2.0 effort to create excellent IDE support for Rust.
Quick Start
https://rust-analyzer.github.io/manual.html#installation
Documentation
If you want to contribute to rust-analyzer or are just curious about how things work under the hood, check the ./docs/dev folder.
If you want to use rust-analyzer's language server with your editor of choice, check the manual folder. It also contains some tips & tricks to help you be more productive when using rust-analyzer.
Security and Privacy
See the corresponding sections of the manual.
Communication
For usage and troubleshooting requests, please use "IDEs and Editors" category of the Rust forum:
https://users.rust-lang.org/c/ide/14
For questions about development and implementation, join rust-analyzer working group on Zulip:
https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer
Quick Links
- Website: https://rust-analyzer.github.io/
- Metrics: https://rust-analyzer.github.io/metrics/
- API docs: https://rust-lang.github.io/rust-analyzer/ide/
- Changelog: https://rust-analyzer.github.io/thisweek
License
rust-analyzer is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0).
See LICENSE-APACHE and LICENSE-MIT for details.