rust-analyzer/crates/ide_completion/src/context.rs
2021-11-10 18:26:18 +01:00

1197 lines
40 KiB
Rust

//! See `CompletionContext` structure.
use base_db::SourceDatabaseExt;
use hir::{Local, Name, ScopeDef, Semantics, SemanticsScope, Type, TypeInfo};
use ide_db::{
base_db::{FilePosition, SourceDatabase},
call_info::ActiveParameter,
RootDatabase,
};
use syntax::{
algo::find_node_at_offset,
ast::{self, HasName, NameOrNameRef},
match_ast, AstNode, NodeOrToken,
SyntaxKind::{self, *},
SyntaxNode, SyntaxToken, TextRange, TextSize, T,
};
use text_edit::Indel;
use crate::{
patterns::{
determine_location, determine_prev_sibling, for_is_prev2, inside_impl_trait_block,
is_in_loop_body, previous_token, ImmediateLocation, ImmediatePrevSibling,
},
CompletionConfig,
};
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum PatternRefutability {
Refutable,
Irrefutable,
}
#[derive(Debug)]
pub(super) enum PathKind {
Expr,
Type,
}
#[derive(Debug)]
pub(crate) struct PathCompletionContext {
/// If this is a call with () already there
call_kind: Option<CallKind>,
/// A single-indent path, like `foo`. `::foo` should not be considered a trivial path.
pub(super) is_trivial_path: bool,
/// If not a trivial path, the prefix (qualifier).
pub(super) qualifier: Option<ast::Path>,
/// Whether the qualifier comes from a use tree parent or not
pub(super) use_tree_parent: bool,
pub(super) kind: Option<PathKind>,
/// Whether the path segment has type args or not.
pub(super) has_type_args: bool,
/// `true` if we are a statement or a last expr in the block.
pub(super) can_be_stmt: bool,
pub(super) in_loop_body: bool,
}
#[derive(Debug)]
pub(super) struct PatternContext {
pub(super) refutability: PatternRefutability,
pub(super) is_param: Option<ParamKind>,
pub(super) has_type_ascription: bool,
}
#[derive(Debug)]
pub(super) enum LifetimeContext {
LifetimeParam(Option<ast::LifetimeParam>),
Lifetime,
LabelRef,
LabelDef,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum CallKind {
Pat,
Mac,
Expr,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum ParamKind {
Function,
Closure,
}
/// `CompletionContext` is created early during completion to figure out, where
/// exactly is the cursor, syntax-wise.
#[derive(Debug)]
pub(crate) struct CompletionContext<'a> {
pub(super) sema: Semantics<'a, RootDatabase>,
pub(super) scope: SemanticsScope<'a>,
pub(super) db: &'a RootDatabase,
pub(super) config: &'a CompletionConfig,
pub(super) position: FilePosition,
/// The token before the cursor, in the original file.
pub(super) original_token: SyntaxToken,
/// The token before the cursor, in the macro-expanded file.
pub(super) token: SyntaxToken,
/// The crate of the current file.
pub(super) krate: Option<hir::Crate>,
pub(super) expected_name: Option<NameOrNameRef>,
pub(super) expected_type: Option<Type>,
/// The parent function of the cursor position if it exists.
pub(super) function_def: Option<ast::Fn>,
/// The parent impl of the cursor position if it exists.
pub(super) impl_def: Option<ast::Impl>,
/// The NameLike under the cursor in the original file if it exists.
pub(super) name_syntax: Option<ast::NameLike>,
pub(super) incomplete_let: bool,
pub(super) completion_location: Option<ImmediateLocation>,
pub(super) prev_sibling: Option<ImmediatePrevSibling>,
pub(super) attribute_under_caret: Option<ast::Attr>,
pub(super) previous_token: Option<SyntaxToken>,
pub(super) lifetime_ctx: Option<LifetimeContext>,
pub(super) pattern_ctx: Option<PatternContext>,
pub(super) path_context: Option<PathCompletionContext>,
pub(super) locals: Vec<(Name, Local)>,
no_completion_required: bool,
}
impl<'a> CompletionContext<'a> {
/// Checks whether completions in that particular case don't make much sense.
/// Examples:
/// - `fn $0` -- we expect function name, it's unlikely that "hint" will be helpful.
/// Exception for this case is `impl Trait for Foo`, where we would like to hint trait method names.
/// - `for _ i$0` -- obviously, it'll be "in" keyword.
pub(crate) fn no_completion_required(&self) -> bool {
self.no_completion_required
}
/// The range of the identifier that is being completed.
pub(crate) fn source_range(&self) -> TextRange {
// check kind of macro-expanded token, but use range of original token
let kind = self.token.kind();
if kind == IDENT || kind == LIFETIME_IDENT || kind == UNDERSCORE || kind.is_keyword() {
self.original_token.text_range()
} else if kind == CHAR {
// assume we are completing a lifetime but the user has only typed the '
cov_mark::hit!(completes_if_lifetime_without_idents);
TextRange::at(self.original_token.text_range().start(), TextSize::from(1))
} else {
TextRange::empty(self.position.offset)
}
}
pub(crate) fn previous_token_is(&self, kind: SyntaxKind) -> bool {
self.previous_token.as_ref().map_or(false, |tok| tok.kind() == kind)
}
pub(crate) fn dot_receiver(&self) -> Option<&ast::Expr> {
match &self.completion_location {
Some(
ImmediateLocation::MethodCall { receiver, .. }
| ImmediateLocation::FieldAccess { receiver, .. },
) => receiver.as_ref(),
_ => None,
}
}
pub(crate) fn has_dot_receiver(&self) -> bool {
matches!(
&self.completion_location,
Some(ImmediateLocation::FieldAccess { receiver, .. } | ImmediateLocation::MethodCall { receiver,.. })
if receiver.is_some()
)
}
pub(crate) fn expects_assoc_item(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::Trait | ImmediateLocation::Impl))
}
pub(crate) fn expects_non_trait_assoc_item(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::Impl))
}
pub(crate) fn expects_item(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::ItemList))
}
pub(crate) fn expects_generic_arg(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::GenericArgList(_)))
}
pub(crate) fn has_block_expr_parent(&self) -> bool {
matches!(self.completion_location, Some(ImmediateLocation::StmtList))
}
pub(crate) fn expects_ident_pat_or_ref_expr(&self) -> bool {
matches!(
self.completion_location,
Some(ImmediateLocation::IdentPat | ImmediateLocation::RefExpr)
)
}
pub(crate) fn expect_field(&self) -> bool {
matches!(
self.completion_location,
Some(ImmediateLocation::RecordField | ImmediateLocation::TupleField)
)
}
pub(crate) fn in_use_tree(&self) -> bool {
matches!(
self.completion_location,
Some(ImmediateLocation::Use | ImmediateLocation::UseTree)
)
}
pub(crate) fn has_impl_or_trait_prev_sibling(&self) -> bool {
matches!(
self.prev_sibling,
Some(ImmediatePrevSibling::ImplDefType | ImmediatePrevSibling::TraitDefName)
)
}
pub(crate) fn has_impl_prev_sibling(&self) -> bool {
matches!(self.prev_sibling, Some(ImmediatePrevSibling::ImplDefType))
}
pub(crate) fn has_visibility_prev_sibling(&self) -> bool {
matches!(self.prev_sibling, Some(ImmediatePrevSibling::Visibility))
}
pub(crate) fn after_if(&self) -> bool {
matches!(self.prev_sibling, Some(ImmediatePrevSibling::IfExpr))
}
pub(crate) fn is_path_disallowed(&self) -> bool {
self.attribute_under_caret.is_some()
|| self.previous_token_is(T![unsafe])
|| matches!(
self.prev_sibling,
Some(ImmediatePrevSibling::Attribute | ImmediatePrevSibling::Visibility)
)
|| matches!(
self.completion_location,
Some(
ImmediateLocation::Attribute(_)
| ImmediateLocation::ModDeclaration(_)
| ImmediateLocation::RecordPat(_)
| ImmediateLocation::RecordExpr(_)
| ImmediateLocation::Rename
)
)
}
pub(crate) fn expects_expression(&self) -> bool {
matches!(self.path_context, Some(PathCompletionContext { kind: Some(PathKind::Expr), .. }))
}
pub(crate) fn expects_type(&self) -> bool {
matches!(self.path_context, Some(PathCompletionContext { kind: Some(PathKind::Type), .. }))
}
pub(crate) fn path_call_kind(&self) -> Option<CallKind> {
self.path_context.as_ref().and_then(|it| it.call_kind)
}
pub(crate) fn is_trivial_path(&self) -> bool {
matches!(self.path_context, Some(PathCompletionContext { is_trivial_path: true, .. }))
}
pub(crate) fn is_non_trivial_path(&self) -> bool {
matches!(self.path_context, Some(PathCompletionContext { is_trivial_path: false, .. }))
}
pub(crate) fn path_qual(&self) -> Option<&ast::Path> {
self.path_context.as_ref().and_then(|it| it.qualifier.as_ref())
}
/// Checks if an item is visible and not `doc(hidden)` at the completion site.
pub(crate) fn is_visible<I>(&self, item: &I) -> bool
where
I: hir::HasVisibility + hir::HasAttrs + hir::HasCrate + Copy,
{
self.is_visible_impl(&item.visibility(self.db), &item.attrs(self.db), item.krate(self.db))
}
pub(crate) fn is_scope_def_hidden(&self, scope_def: &ScopeDef) -> bool {
if let (Some(attrs), Some(krate)) = (scope_def.attrs(self.db), scope_def.krate(self.db)) {
return self.is_doc_hidden(&attrs, krate);
}
false
}
/// Check if an item is `#[doc(hidden)]`.
pub(crate) fn is_item_hidden(&self, item: &hir::ItemInNs) -> bool {
let attrs = item.attrs(self.db);
let krate = item.krate(self.db);
match (attrs, krate) {
(Some(attrs), Some(krate)) => self.is_doc_hidden(&attrs, krate),
_ => false,
}
}
pub(crate) fn is_immediately_after_macro_bang(&self) -> bool {
self.token.kind() == BANG && self.token.parent().map_or(false, |it| it.kind() == MACRO_CALL)
}
/// A version of [`SemanticsScope::process_all_names`] that filters out `#[doc(hidden)]` items.
pub(crate) fn process_all_names(&self, f: &mut dyn FnMut(Name, ScopeDef)) {
self.scope.process_all_names(&mut |name, def| {
if self.is_scope_def_hidden(&def) {
return;
}
f(name, def);
})
}
fn is_visible_impl(
&self,
vis: &hir::Visibility,
attrs: &hir::Attrs,
defining_crate: hir::Crate,
) -> bool {
let module = match self.scope.module() {
Some(it) => it,
None => return false,
};
if !vis.is_visible_from(self.db, module.into()) {
// If the definition location is editable, also show private items
let root_file = defining_crate.root_file(self.db);
let source_root_id = self.db.file_source_root(root_file);
let is_editable = !self.db.source_root(source_root_id).is_library;
return is_editable;
}
!self.is_doc_hidden(attrs, defining_crate)
}
fn is_doc_hidden(&self, attrs: &hir::Attrs, defining_crate: hir::Crate) -> bool {
let krate = match self.krate {
Some(it) => it,
None => return true,
};
if krate != defining_crate && attrs.has_doc_hidden() {
// `doc(hidden)` items are only completed within the defining crate.
return true;
}
false
}
}
// CompletionContext construction
impl<'a> CompletionContext<'a> {
pub(super) fn new(
db: &'a RootDatabase,
position @ FilePosition { file_id, offset }: FilePosition,
config: &'a CompletionConfig,
) -> Option<CompletionContext<'a>> {
let _p = profile::span("CompletionContext::new");
let sema = Semantics::new(db);
let original_file = sema.parse(file_id);
// Insert a fake ident to get a valid parse tree. We will use this file
// to determine context, though the original_file will be used for
// actual completion.
let file_with_fake_ident = {
let parse = db.parse(file_id);
let edit = Indel::insert(offset, "intellijRulezz".to_string());
parse.reparse(&edit).tree()
};
let fake_ident_token =
file_with_fake_ident.syntax().token_at_offset(offset).right_biased().unwrap();
let original_token = original_file.syntax().token_at_offset(offset).left_biased()?;
let token = sema.descend_into_macros_single(original_token.clone());
let scope = sema.scope_at_offset(&token, offset);
let krate = scope.krate();
let mut locals = vec![];
scope.process_all_names(&mut |name, scope| {
if let ScopeDef::Local(local) = scope {
locals.push((name, local));
}
});
let mut ctx = CompletionContext {
sema,
scope,
db,
config,
position,
original_token,
token,
krate,
expected_name: None,
expected_type: None,
function_def: None,
impl_def: None,
name_syntax: None,
lifetime_ctx: None,
pattern_ctx: None,
completion_location: None,
prev_sibling: None,
attribute_under_caret: None,
previous_token: None,
path_context: None,
locals,
incomplete_let: false,
no_completion_required: false,
};
ctx.expand_and_fill(
original_file.syntax().clone(),
file_with_fake_ident.syntax().clone(),
offset,
fake_ident_token,
);
Some(ctx)
}
/// Do the attribute expansion at the current cursor position for both original file and fake file
/// as long as possible. As soon as one of the two expansions fail we stop to stay in sync.
fn expand_and_fill(
&mut self,
mut original_file: SyntaxNode,
mut speculative_file: SyntaxNode,
mut offset: TextSize,
mut fake_ident_token: SyntaxToken,
) {
loop {
// Expand attributes
if let (Some(actual_item), Some(item_with_fake_ident)) = (
find_node_at_offset::<ast::Item>(&original_file, offset),
find_node_at_offset::<ast::Item>(&speculative_file, offset),
) {
match (
self.sema.expand_attr_macro(&actual_item),
self.sema.speculative_expand_attr_macro(
&actual_item,
&item_with_fake_ident,
fake_ident_token.clone(),
),
) {
(Some(actual_expansion), Some(speculative_expansion)) => {
let new_offset = speculative_expansion.1.text_range().start();
if new_offset > actual_expansion.text_range().end() {
break;
}
original_file = actual_expansion;
speculative_file = speculative_expansion.0;
fake_ident_token = speculative_expansion.1;
offset = new_offset;
continue;
}
(None, None) => (),
_ => break,
}
}
// Expand fn-like macro calls
if let (Some(actual_macro_call), Some(macro_call_with_fake_ident)) = (
find_node_at_offset::<ast::MacroCall>(&original_file, offset),
find_node_at_offset::<ast::MacroCall>(&speculative_file, offset),
) {
let mac_call_path0 = actual_macro_call.path().as_ref().map(|s| s.syntax().text());
let mac_call_path1 =
macro_call_with_fake_ident.path().as_ref().map(|s| s.syntax().text());
if mac_call_path0 != mac_call_path1 {
break;
}
let speculative_args = match macro_call_with_fake_ident.token_tree() {
Some(tt) => tt,
None => break,
};
if let (Some(actual_expansion), Some(speculative_expansion)) = (
self.sema.expand(&actual_macro_call),
self.sema.speculative_expand(
&actual_macro_call,
&speculative_args,
fake_ident_token,
),
) {
let new_offset = speculative_expansion.1.text_range().start();
if new_offset > actual_expansion.text_range().end() {
break;
}
original_file = actual_expansion;
speculative_file = speculative_expansion.0;
fake_ident_token = speculative_expansion.1;
offset = new_offset;
} else {
break;
}
} else {
break;
}
}
self.fill(&original_file, speculative_file, offset);
}
fn expected_type_and_name(&self) -> (Option<Type>, Option<NameOrNameRef>) {
let mut node = match self.token.parent() {
Some(it) => it,
None => return (None, None),
};
loop {
break match_ast! {
match node {
ast::LetStmt(it) => {
cov_mark::hit!(expected_type_let_with_leading_char);
cov_mark::hit!(expected_type_let_without_leading_char);
let ty = it.pat()
.and_then(|pat| self.sema.type_of_pat(&pat))
.or_else(|| it.initializer().and_then(|it| self.sema.type_of_expr(&it)))
.map(TypeInfo::original);
let name = match it.pat() {
Some(ast::Pat::IdentPat(ident)) => ident.name().map(NameOrNameRef::Name),
Some(_) | None => None,
};
(ty, name)
},
ast::ArgList(_it) => {
cov_mark::hit!(expected_type_fn_param);
ActiveParameter::at_token(
&self.sema,
self.token.clone(),
).map(|ap| {
let name = ap.ident().map(NameOrNameRef::Name);
let ty = if has_ref(&self.token) {
cov_mark::hit!(expected_type_fn_param_ref);
ap.ty.remove_ref()
} else {
Some(ap.ty)
};
(ty, name)
})
.unwrap_or((None, None))
},
ast::RecordExprFieldList(it) => {
// wouldn't try {} be nice...
(|| {
if self.token.kind() == T![..]
|| self.token.prev_token().map(|t| t.kind()) == Some(T![..])
{
cov_mark::hit!(expected_type_struct_func_update);
let record_expr = it.syntax().parent().and_then(ast::RecordExpr::cast)?;
let ty = self.sema.type_of_expr(&record_expr.into())?;
Some((
Some(ty.original),
None
))
} else {
cov_mark::hit!(expected_type_struct_field_without_leading_char);
let expr_field = self.token.prev_sibling_or_token()?
.into_node()
.and_then(ast::RecordExprField::cast)?;
let (_, _, ty) = self.sema.resolve_record_field(&expr_field)?;
Some((
Some(ty),
expr_field.field_name().map(NameOrNameRef::NameRef),
))
}
})().unwrap_or((None, None))
},
ast::RecordExprField(it) => {
cov_mark::hit!(expected_type_struct_field_with_leading_char);
(
it.expr().as_ref().and_then(|e| self.sema.type_of_expr(e)).map(TypeInfo::original),
it.field_name().map(NameOrNameRef::NameRef),
)
},
ast::MatchExpr(it) => {
cov_mark::hit!(expected_type_match_arm_without_leading_char);
let ty = it.expr().and_then(|e| self.sema.type_of_expr(&e)).map(TypeInfo::original);
(ty, None)
},
ast::IfExpr(it) => {
cov_mark::hit!(expected_type_if_let_without_leading_char);
let ty = it.condition()
.and_then(|cond| cond.expr())
.and_then(|e| self.sema.type_of_expr(&e))
.map(TypeInfo::original);
(ty, None)
},
ast::IdentPat(it) => {
cov_mark::hit!(expected_type_if_let_with_leading_char);
cov_mark::hit!(expected_type_match_arm_with_leading_char);
let ty = self.sema.type_of_pat(&ast::Pat::from(it)).map(TypeInfo::original);
(ty, None)
},
ast::Fn(it) => {
cov_mark::hit!(expected_type_fn_ret_with_leading_char);
cov_mark::hit!(expected_type_fn_ret_without_leading_char);
let def = self.sema.to_def(&it);
(def.map(|def| def.ret_type(self.db)), None)
},
ast::ClosureExpr(it) => {
let ty = self.sema.type_of_expr(&it.into());
ty.and_then(|ty| ty.original.as_callable(self.db))
.map(|c| (Some(c.return_type()), None))
.unwrap_or((None, None))
},
ast::ParamList(__) => (None, None),
ast::Stmt(__) => (None, None),
ast::Item(__) => (None, None),
_ => {
match node.parent() {
Some(n) => {
node = n;
continue;
},
None => (None, None),
}
},
}
};
}
}
fn fill(
&mut self,
original_file: &SyntaxNode,
file_with_fake_ident: SyntaxNode,
offset: TextSize,
) {
let fake_ident_token = file_with_fake_ident.token_at_offset(offset).right_biased().unwrap();
let syntax_element = NodeOrToken::Token(fake_ident_token);
self.previous_token = previous_token(syntax_element.clone());
self.attribute_under_caret = syntax_element.ancestors().find_map(ast::Attr::cast);
self.no_completion_required = {
let inside_impl_trait_block = inside_impl_trait_block(syntax_element.clone());
let fn_is_prev = self.previous_token_is(T![fn]);
let for_is_prev2 = for_is_prev2(syntax_element.clone());
(fn_is_prev && !inside_impl_trait_block) || for_is_prev2
};
self.incomplete_let =
syntax_element.ancestors().take(6).find_map(ast::LetStmt::cast).map_or(false, |it| {
it.syntax().text_range().end() == syntax_element.text_range().end()
});
let (expected_type, expected_name) = self.expected_type_and_name();
self.expected_type = expected_type;
self.expected_name = expected_name;
let name_like = match find_node_at_offset(&file_with_fake_ident, offset) {
Some(it) => it,
None => return,
};
self.completion_location =
determine_location(&self.sema, original_file, offset, &name_like);
self.prev_sibling = determine_prev_sibling(&name_like);
self.name_syntax =
find_node_at_offset(original_file, name_like.syntax().text_range().start());
self.impl_def = self
.sema
.token_ancestors_with_macros(self.token.clone())
.take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE)
.find_map(ast::Impl::cast);
self.function_def = self
.sema
.token_ancestors_with_macros(self.token.clone())
.take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE)
.find_map(ast::Fn::cast);
match name_like {
ast::NameLike::Lifetime(lifetime) => {
self.lifetime_ctx =
Self::classify_lifetime(&self.sema, original_file, lifetime, offset);
}
ast::NameLike::NameRef(name_ref) => {
self.path_context = Self::classify_name_ref(&self.sema, original_file, name_ref);
}
ast::NameLike::Name(name) => {
self.pattern_ctx = Self::classify_name(&self.sema, name);
}
}
}
fn classify_lifetime(
sema: &Semantics<RootDatabase>,
original_file: &SyntaxNode,
lifetime: ast::Lifetime,
offset: TextSize,
) -> Option<LifetimeContext> {
let parent = lifetime.syntax().parent()?;
if parent.kind() == ERROR {
return None;
}
Some(match_ast! {
match parent {
ast::LifetimeParam(_it) => LifetimeContext::LifetimeParam(sema.find_node_at_offset_with_macros(original_file, offset)),
ast::BreakExpr(_it) => LifetimeContext::LabelRef,
ast::ContinueExpr(_it) => LifetimeContext::LabelRef,
ast::Label(_it) => LifetimeContext::LabelDef,
_ => LifetimeContext::Lifetime,
}
})
}
fn classify_name(_sema: &Semantics<RootDatabase>, name: ast::Name) -> Option<PatternContext> {
let bind_pat = name.syntax().parent().and_then(ast::IdentPat::cast)?;
let is_name_in_field_pat = bind_pat
.syntax()
.parent()
.and_then(ast::RecordPatField::cast)
.map_or(false, |pat_field| pat_field.name_ref().is_none());
if is_name_in_field_pat {
return None;
}
if !bind_pat.is_simple_ident() {
return None;
}
let mut is_param = None;
let (refutability, has_type_ascription) = bind_pat
.syntax()
.ancestors()
.skip_while(|it| ast::Pat::can_cast(it.kind()))
.next()
.map_or((PatternRefutability::Irrefutable, false), |node| {
let refutability = match_ast! {
match node {
ast::LetStmt(let_) => return (PatternRefutability::Irrefutable, let_.ty().is_some()),
ast::Param(param) => {
let is_closure_param = param
.syntax()
.ancestors()
.nth(2)
.and_then(ast::ClosureExpr::cast)
.is_some();
is_param = Some(if is_closure_param {
ParamKind::Closure
} else {
ParamKind::Function
});
return (PatternRefutability::Irrefutable, param.ty().is_some())
},
ast::MatchArm(__) => PatternRefutability::Refutable,
ast::Condition(__) => PatternRefutability::Refutable,
ast::ForExpr(__) => PatternRefutability::Irrefutable,
_ => PatternRefutability::Irrefutable,
}
};
(refutability, false)
});
Some(PatternContext { refutability, is_param, has_type_ascription })
}
fn classify_name_ref(
_sema: &Semantics<RootDatabase>,
original_file: &SyntaxNode,
name_ref: ast::NameRef,
) -> Option<PathCompletionContext> {
let parent = name_ref.syntax().parent()?;
let segment = ast::PathSegment::cast(parent)?;
let mut path_ctx = PathCompletionContext {
call_kind: None,
is_trivial_path: false,
qualifier: None,
has_type_args: false,
can_be_stmt: false,
in_loop_body: false,
use_tree_parent: false,
kind: None,
};
path_ctx.in_loop_body = is_in_loop_body(name_ref.syntax());
let path = segment.parent_path();
if let Some(p) = path.syntax().parent() {
path_ctx.call_kind = match_ast! {
match p {
ast::PathExpr(it) => it.syntax().parent().and_then(ast::CallExpr::cast).map(|_| CallKind::Expr),
ast::MacroCall(it) => it.excl_token().and(Some(CallKind::Mac)),
ast::TupleStructPat(_it) => Some(CallKind::Pat),
_ => None
}
};
}
if let Some(parent) = path.syntax().parent() {
path_ctx.kind = match_ast! {
match parent {
ast::PathType(_it) => Some(PathKind::Type),
ast::PathExpr(_it) => Some(PathKind::Expr),
_ => None,
}
};
}
path_ctx.has_type_args = segment.generic_arg_list().is_some();
if let Some((path, use_tree_parent)) = path_or_use_tree_qualifier(&path) {
path_ctx.use_tree_parent = use_tree_parent;
path_ctx.qualifier = path
.segment()
.and_then(|it| {
find_node_with_range::<ast::PathSegment>(
original_file,
it.syntax().text_range(),
)
})
.map(|it| it.parent_path());
return Some(path_ctx);
}
if let Some(segment) = path.segment() {
if segment.coloncolon_token().is_some() {
return Some(path_ctx);
}
}
path_ctx.is_trivial_path = true;
// Find either enclosing expr statement (thing with `;`) or a
// block. If block, check that we are the last expr.
path_ctx.can_be_stmt = name_ref
.syntax()
.ancestors()
.find_map(|node| {
if let Some(stmt) = ast::ExprStmt::cast(node.clone()) {
return Some(stmt.syntax().text_range() == name_ref.syntax().text_range());
}
if let Some(stmt_list) = ast::StmtList::cast(node) {
return Some(
stmt_list.tail_expr().map(|e| e.syntax().text_range())
== Some(name_ref.syntax().text_range()),
);
}
None
})
.unwrap_or(false);
Some(path_ctx)
}
}
fn find_node_with_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> {
syntax.covering_element(range).ancestors().find_map(N::cast)
}
fn path_or_use_tree_qualifier(path: &ast::Path) -> Option<(ast::Path, bool)> {
if let Some(qual) = path.qualifier() {
return Some((qual, false));
}
let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?;
let use_tree = use_tree_list.syntax().parent().and_then(ast::UseTree::cast)?;
use_tree.path().zip(Some(true))
}
fn has_ref(token: &SyntaxToken) -> bool {
let mut token = token.clone();
for skip in [WHITESPACE, IDENT, T![mut]] {
if token.kind() == skip {
token = match token.prev_token() {
Some(it) => it,
None => return false,
}
}
}
token.kind() == T![&]
}
#[cfg(test)]
mod tests {
use expect_test::{expect, Expect};
use hir::HirDisplay;
use crate::tests::{position, TEST_CONFIG};
use super::CompletionContext;
fn check_expected_type_and_name(ra_fixture: &str, expect: Expect) {
let (db, pos) = position(ra_fixture);
let config = TEST_CONFIG;
let completion_context = CompletionContext::new(&db, pos, &config).unwrap();
let ty = completion_context
.expected_type
.map(|t| t.display_test(&db).to_string())
.unwrap_or("?".to_owned());
let name = completion_context
.expected_name
.map_or_else(|| "?".to_owned(), |name| name.to_string());
expect.assert_eq(&format!("ty: {}, name: {}", ty, name));
}
#[test]
fn expected_type_let_without_leading_char() {
cov_mark::check!(expected_type_let_without_leading_char);
check_expected_type_and_name(
r#"
fn foo() {
let x: u32 = $0;
}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_let_with_leading_char() {
cov_mark::check!(expected_type_let_with_leading_char);
check_expected_type_and_name(
r#"
fn foo() {
let x: u32 = c$0;
}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_let_pat() {
check_expected_type_and_name(
r#"
fn foo() {
let x$0 = 0u32;
}
"#,
expect![[r#"ty: u32, name: ?"#]],
);
check_expected_type_and_name(
r#"
fn foo() {
let $0 = 0u32;
}
"#,
expect![[r#"ty: u32, name: ?"#]],
);
}
#[test]
fn expected_type_fn_param() {
cov_mark::check!(expected_type_fn_param);
check_expected_type_and_name(
r#"
fn foo() { bar($0); }
fn bar(x: u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
check_expected_type_and_name(
r#"
fn foo() { bar(c$0); }
fn bar(x: u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_fn_param_ref() {
cov_mark::check!(expected_type_fn_param_ref);
check_expected_type_and_name(
r#"
fn foo() { bar(&$0); }
fn bar(x: &u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
check_expected_type_and_name(
r#"
fn foo() { bar(&mut $0); }
fn bar(x: &mut u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
check_expected_type_and_name(
r#"
fn foo() { bar(&c$0); }
fn bar(x: &u32) {}
"#,
expect![[r#"ty: u32, name: x"#]],
);
}
#[test]
fn expected_type_struct_field_without_leading_char() {
cov_mark::check!(expected_type_struct_field_without_leading_char);
check_expected_type_and_name(
r#"
struct Foo { a: u32 }
fn foo() {
Foo { a: $0 };
}
"#,
expect![[r#"ty: u32, name: a"#]],
)
}
#[test]
fn expected_type_generic_struct_field() {
check_expected_type_and_name(
r#"
struct Foo<T> { a: T }
fn foo() -> Foo<u32> {
Foo { a: $0 }
}
"#,
expect![[r#"ty: u32, name: a"#]],
)
}
#[test]
fn expected_type_struct_field_with_leading_char() {
cov_mark::check!(expected_type_struct_field_with_leading_char);
check_expected_type_and_name(
r#"
struct Foo { a: u32 }
fn foo() {
Foo { a: c$0 };
}
"#,
expect![[r#"ty: u32, name: a"#]],
);
}
#[test]
fn expected_type_match_arm_without_leading_char() {
cov_mark::check!(expected_type_match_arm_without_leading_char);
check_expected_type_and_name(
r#"
enum E { X }
fn foo() {
match E::X { $0 }
}
"#,
expect![[r#"ty: E, name: ?"#]],
);
}
#[test]
fn expected_type_match_arm_with_leading_char() {
cov_mark::check!(expected_type_match_arm_with_leading_char);
check_expected_type_and_name(
r#"
enum E { X }
fn foo() {
match E::X { c$0 }
}
"#,
expect![[r#"ty: E, name: ?"#]],
);
}
#[test]
fn expected_type_if_let_without_leading_char() {
cov_mark::check!(expected_type_if_let_without_leading_char);
check_expected_type_and_name(
r#"
enum Foo { Bar, Baz, Quux }
fn foo() {
let f = Foo::Quux;
if let $0 = f { }
}
"#,
expect![[r#"ty: Foo, name: ?"#]],
)
}
#[test]
fn expected_type_if_let_with_leading_char() {
cov_mark::check!(expected_type_if_let_with_leading_char);
check_expected_type_and_name(
r#"
enum Foo { Bar, Baz, Quux }
fn foo() {
let f = Foo::Quux;
if let c$0 = f { }
}
"#,
expect![[r#"ty: Foo, name: ?"#]],
)
}
#[test]
fn expected_type_fn_ret_without_leading_char() {
cov_mark::check!(expected_type_fn_ret_without_leading_char);
check_expected_type_and_name(
r#"
fn foo() -> u32 {
$0
}
"#,
expect![[r#"ty: u32, name: ?"#]],
)
}
#[test]
fn expected_type_fn_ret_with_leading_char() {
cov_mark::check!(expected_type_fn_ret_with_leading_char);
check_expected_type_and_name(
r#"
fn foo() -> u32 {
c$0
}
"#,
expect![[r#"ty: u32, name: ?"#]],
)
}
#[test]
fn expected_type_fn_ret_fn_ref_fully_typed() {
check_expected_type_and_name(
r#"
fn foo() -> u32 {
foo$0
}
"#,
expect![[r#"ty: u32, name: ?"#]],
)
}
#[test]
fn expected_type_closure_param_return() {
// FIXME: make this work with `|| $0`
check_expected_type_and_name(
r#"
//- minicore: fn
fn foo() {
bar(|| a$0);
}
fn bar(f: impl FnOnce() -> u32) {}
"#,
expect![[r#"ty: u32, name: ?"#]],
);
}
#[test]
fn expected_type_generic_function() {
check_expected_type_and_name(
r#"
fn foo() {
bar::<u32>($0);
}
fn bar<T>(t: T) {}
"#,
expect![[r#"ty: u32, name: t"#]],
);
}
#[test]
fn expected_type_generic_method() {
check_expected_type_and_name(
r#"
fn foo() {
S(1u32).bar($0);
}
struct S<T>(T);
impl<T> S<T> {
fn bar(self, t: T) {}
}
"#,
expect![[r#"ty: u32, name: t"#]],
);
}
#[test]
fn expected_type_functional_update() {
cov_mark::check!(expected_type_struct_func_update);
check_expected_type_and_name(
r#"
struct Foo { field: u32 }
fn foo() {
Foo {
..$0
}
}
"#,
expect![[r#"ty: Foo, name: ?"#]],
);
}
#[test]
fn expected_type_param_pat() {
check_expected_type_and_name(
r#"
struct Foo { field: u32 }
fn foo(a$0: Foo) {}
"#,
expect![[r#"ty: Foo, name: ?"#]],
);
check_expected_type_and_name(
r#"
struct Foo { field: u32 }
fn foo($0: Foo) {}
"#,
// FIXME make this work, currently fails due to pattern recovery eating the `:`
expect![[r#"ty: ?, name: ?"#]],
);
}
}