rust-analyzer/crates/ra_hir/src/ty/infer.rs
Florian Diebold dcfb4ee702 Split ty.rs into several modules
It was just getting too big. We now have:

 - ty: the `Ty` enum and helpers
 - ty::infer: actual type inference
 - ty::lower: lowering from HIR to `Ty`
 - ty::op: helpers for binary operations, currently
2019-02-23 15:36:38 +01:00

1079 lines
43 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
use std::borrow::Cow;
use std::iter::repeat;
use std::ops::Index;
use std::sync::Arc;
use std::mem;
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};
use ra_arena::map::ArenaMap;
use rustc_hash::FxHashMap;
use test_utils::tested_by;
use crate::{
Function, StructField, Path, Name,
FnSignature, AdtDef,
HirDatabase,
type_ref::{TypeRef, Mutability},
expr::{Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement, FieldPat, self},
generics::GenericParams,
path::{GenericArgs, GenericArg},
adt::VariantDef,
resolve::{Resolver, Resolution},
nameres::Namespace
};
use super::{Ty, TypableDef, Substs, primitive, op};
/// The entry point of type inference.
pub fn infer(db: &impl HirDatabase, func: Function) -> Arc<InferenceResult> {
db.check_canceled();
let body = func.body(db);
let resolver = func.resolver(db);
let mut ctx = InferenceContext::new(db, body, resolver);
let signature = func.signature(db);
ctx.collect_fn_signature(&signature);
ctx.infer_body();
Arc::new(ctx.resolve_all())
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, Function>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, StructField>,
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
self.method_resolutions.get(&expr).map(|it| *it)
}
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
self.field_resolutions.get(&expr).map(|it| *it)
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
body: Arc<Body>,
resolver: Resolver,
var_unification_table: InPlaceUnificationTable<TypeVarId>,
method_resolutions: FxHashMap<ExprId, Function>,
field_resolutions: FxHashMap<ExprId, StructField>,
type_of_expr: ArenaMap<ExprId, Ty>,
type_of_pat: ArenaMap<PatId, Ty>,
/// The return type of the function being inferred.
return_ty: Ty,
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(db: &'a D, body: Arc<Body>, resolver: Resolver) -> Self {
InferenceContext {
method_resolutions: FxHashMap::default(),
field_resolutions: FxHashMap::default(),
type_of_expr: ArenaMap::default(),
type_of_pat: ArenaMap::default(),
var_unification_table: InPlaceUnificationTable::new(),
return_ty: Ty::Unknown, // set in collect_fn_signature
db,
body,
resolver,
}
}
fn resolve_all(mut self) -> InferenceResult {
let mut tv_stack = Vec::new();
let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default());
for ty in expr_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default());
for ty in pat_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
InferenceResult {
method_resolutions: self.method_resolutions,
field_resolutions: self.field_resolutions,
type_of_expr: expr_types,
type_of_pat: pat_types,
}
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
self.method_resolutions.insert(expr, func);
}
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
self.field_resolutions.insert(expr, field);
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.type_of_pat.insert(pat, ty);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
let ty = Ty::from_hir(
self.db,
// TODO use right resolver for block
&self.resolver,
type_ref,
);
let ty = self.insert_type_vars(ty);
ty
}
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
(Ty::Unknown, ..) => true,
(.., Ty::Unknown) => true,
(Ty::Int(t1), Ty::Int(t2)) => match (t1, t2) {
(primitive::UncertainIntTy::Unknown, _)
| (_, primitive::UncertainIntTy::Unknown) => true,
_ => t1 == t2,
},
(Ty::Float(t1), Ty::Float(t2)) => match (t1, t2) {
(primitive::UncertainFloatTy::Unknown, _)
| (_, primitive::UncertainFloatTy::Unknown) => true,
_ => t1 == t2,
},
(Ty::Bool, _) | (Ty::Str, _) | (Ty::Never, _) | (Ty::Char, _) => ty1 == ty2,
(
Ty::Adt { def_id: def_id1, substs: substs1, .. },
Ty::Adt { def_id: def_id2, substs: substs2, .. },
) if def_id1 == def_id2 => self.unify_substs(substs1, substs2, depth + 1),
(Ty::Slice(t1), Ty::Slice(t2)) => self.unify_inner(t1, t2, depth + 1),
(Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => {
self.unify_inner(t1, t2, depth + 1)
}
(Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify_inner(t1, t2, depth + 1),
(Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true,
(Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => {
ts1.iter().zip(ts2.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth + 1))
}
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other)
| (other, Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other)
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
Ty::Unknown => self.new_type_var(),
Ty::Int(primitive::UncertainIntTy::Unknown) => self.new_integer_var(),
Ty::Float(primitive::UncertainFloatTy::Unknown) => self.new_float_var(),
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
tested_by!(type_var_resolves_to_int_var);
}
match &*ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
match self.var_unification_table.probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path) -> Option<Ty> {
let resolved = resolver.resolve_path_segments(self.db, &path);
let (def, remaining_index) = resolved.into_inner();
log::debug!(
"path {:?} resolved to {:?} with remaining index {:?}",
path,
def,
remaining_index
);
// if the remaining_index is None, we expect the path
// to be fully resolved, in this case we continue with
// the default by attempting to `take_values´ from the resolution.
// Otherwise the path was partially resolved, which means
// we might have resolved into a type for which
// we may find some associated item starting at the
// path.segment pointed to by `remaining_index´
let resolved =
if remaining_index.is_none() { def.take_values()? } else { def.take_types()? };
match resolved {
Resolution::Def(def) => {
let typable: Option<TypableDef> = def.into();
let typable = typable?;
if let Some(remaining_index) = remaining_index {
let ty = self.db.type_for_def(typable, Namespace::Types);
// TODO: Keep resolving the segments
// if we have more segments to process
let segment = &path.segments[remaining_index];
log::debug!("looking for path segment: {:?}", segment);
// Attempt to find an impl_item for the type which has a name matching
// the current segment
let ty = ty.iterate_impl_items(self.db, |item| match item {
crate::ImplItem::Method(func) => {
let sig = func.signature(self.db);
if segment.name == *sig.name() {
return Some(func.ty(self.db));
}
None
}
// TODO: Resolve associated const
crate::ImplItem::Const(_) => None,
// TODO: Resolve associated types
crate::ImplItem::Type(_) => None,
});
ty
} else {
let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
let ty = self.db.type_for_def(typable, Namespace::Values).apply_substs(substs);
let ty = self.insert_type_vars(ty);
Some(ty)
}
}
Resolution::LocalBinding(pat) => {
let ty = self.type_of_pat.get(pat)?;
let ty = self.resolve_ty_as_possible(&mut vec![], ty.clone());
Some(ty)
}
Resolution::GenericParam(..) => {
// generic params can't refer to values... yet
None
}
Resolution::SelfType(_) => {
log::error!("path expr {:?} resolved to Self type in values ns", path);
None
}
}
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
let path = match path {
Some(path) => path,
None => return (Ty::Unknown, None),
};
let resolver = &self.resolver;
let typable: Option<TypableDef> = match resolver.resolve_path(self.db, &path).take_types() {
Some(Resolution::Def(def)) => def.into(),
Some(Resolution::LocalBinding(..)) => {
// this cannot happen
log::error!("path resolved to local binding in type ns");
return (Ty::Unknown, None);
}
Some(Resolution::GenericParam(..)) => {
// generic params can't be used in struct literals
return (Ty::Unknown, None);
}
Some(Resolution::SelfType(..)) => {
// TODO this is allowed in an impl for a struct, handle this
return (Ty::Unknown, None);
}
None => return (Ty::Unknown, None),
};
let def = match typable {
None => return (Ty::Unknown, None),
Some(it) => it,
};
// TODO remove the duplication between here and `Ty::from_path`?
let substs = Ty::substs_from_path(self.db, resolver, path, def);
match def {
TypableDef::Struct(s) => {
let ty = s.ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(s.into()))
}
TypableDef::EnumVariant(var) => {
let ty = var.parent_enum(self.db).ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(var.into()))
}
TypableDef::Function(_) | TypableDef::Enum(_) => (Ty::Unknown, None),
}
}
fn infer_tuple_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[PatId],
expected: &Ty,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (i, &subpat) in subpats.iter().enumerate() {
let expected_ty = def
.and_then(|d| d.field(self.db, &Name::tuple_field_name(i)))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_pat(subpat, &expected_ty);
}
ty
}
fn infer_struct_pat(&mut self, path: Option<&Path>, subpats: &[FieldPat], expected: &Ty) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for subpat in subpats {
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
let expected_ty =
matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs);
self.infer_pat(subpat.pat, &expected_ty);
}
ty
}
fn infer_pat(&mut self, pat: PatId, expected: &Ty) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[pat] {
Pat::Tuple(ref args) => {
let expectations = match *expected {
Ty::Tuple(ref tuple_args) => &**tuple_args,
_ => &[],
};
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
let inner_tys = args
.iter()
.zip(expectations_iter)
.map(|(&pat, ty)| self.infer_pat(pat, ty))
.collect::<Vec<_>>()
.into();
Ty::Tuple(inner_tys)
}
Pat::Ref { pat, mutability } => {
let expectation = match *expected {
Ty::Ref(ref sub_ty, exp_mut) => {
if *mutability != exp_mut {
// TODO: emit type error?
}
&**sub_ty
}
_ => &Ty::Unknown,
};
let subty = self.infer_pat(*pat, expectation);
Ty::Ref(subty.into(), *mutability)
}
Pat::TupleStruct { path: ref p, args: ref subpats } => {
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected)
}
Pat::Struct { path: ref p, args: ref fields } => {
self.infer_struct_pat(p.as_ref(), fields, expected)
}
Pat::Path(path) => {
// TODO use correct resolver for the surrounding expression
let resolver = self.resolver.clone();
self.infer_path_expr(&resolver, &path).unwrap_or(Ty::Unknown)
}
Pat::Bind { mode, name: _name, subpat } => {
let inner_ty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected)
} else {
expected.clone()
};
let inner_ty = self.insert_type_vars_shallow(inner_ty);
let bound_ty = match mode {
BindingAnnotation::Ref => Ty::Ref(inner_ty.clone().into(), Mutability::Shared),
BindingAnnotation::RefMut => Ty::Ref(inner_ty.clone().into(), Mutability::Mut),
BindingAnnotation::Mutable | BindingAnnotation::Unannotated => inner_ty.clone(),
};
let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
self.write_pat_ty(pat, bound_ty);
return inner_ty;
}
_ => Ty::Unknown,
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, expected);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_pat_ty(pat, ty.clone());
ty
}
fn substs_for_method_call(
&mut self,
def_generics: Option<Arc<GenericParams>>,
generic_args: &Option<GenericArgs>,
) -> Substs {
let (parent_param_count, param_count) =
def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
let mut substs = Vec::with_capacity(parent_param_count + param_count);
for _ in 0..parent_param_count {
substs.push(Ty::Unknown);
}
// handle provided type arguments
if let Some(generic_args) = generic_args {
// if args are provided, it should be all of them, but we can't rely on that
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = self.make_ty(type_ref);
substs.push(ty);
}
}
}
};
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
Substs(substs.into())
}
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => Ty::Unknown,
Expr::If { condition, then_branch, else_branch } => {
// if let is desugared to match, so this is always simple if
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
let then_ty = self.infer_expr(*then_branch, expected);
match else_branch {
Some(else_branch) => {
self.infer_expr(*else_branch, expected);
}
None => {
// no else branch -> unit
self.unify(&then_ty, &Ty::unit()); // actually coerce
}
};
then_ty
}
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
Expr::Loop { body } => {
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
// TODO handle break with value
Ty::Never
}
Expr::While { condition, body } => {
// while let is desugared to a match loop, so this is always simple while
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::For { iterable, body, pat } => {
let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
self.infer_pat(*pat, &Ty::Unknown);
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::Lambda { body, args, arg_types } => {
assert_eq!(args.len(), arg_types.len());
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
let expected = if let Some(type_ref) = arg_type {
let ty = self.make_ty(type_ref);
ty
} else {
Ty::Unknown
};
self.infer_pat(*arg_pat, &expected);
}
// TODO: infer lambda type etc.
let _body_ty = self.infer_expr(*body, &Expectation::none());
Ty::Unknown
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let (param_tys, ret_ty) = match &callee_ty {
Ty::FnPtr(sig) => (sig.input.clone(), sig.output.clone()),
Ty::FnDef { substs, sig, .. } => {
let ret_ty = sig.output.clone().subst(&substs);
let param_tys =
sig.input.iter().map(|ty| ty.clone().subst(&substs)).collect();
(param_tys, ret_ty)
}
_ => {
// not callable
// TODO report an error?
(Vec::new(), Ty::Unknown)
}
};
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
for (arg, param) in args.iter().zip(param_iter) {
self.infer_expr(*arg, &Expectation::has_type(param));
}
ret_ty
}
Expr::MethodCall { receiver, args, method_name, generic_args } => {
let receiver_ty = self.infer_expr(*receiver, &Expectation::none());
let resolved = receiver_ty.clone().lookup_method(self.db, method_name);
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
Some((ty, func)) => {
self.write_method_resolution(tgt_expr, func);
(
ty,
self.db.type_for_def(func.into(), Namespace::Values),
Some(func.generic_params(self.db)),
)
}
None => (Ty::Unknown, receiver_ty, None),
};
let substs = self.substs_for_method_call(def_generics, generic_args);
let method_ty = method_ty.apply_substs(substs);
let method_ty = self.insert_type_vars(method_ty);
let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty {
Ty::FnPtr(sig) => {
if !sig.input.is_empty() {
(sig.input[0].clone(), sig.input[1..].to_vec(), sig.output.clone())
} else {
(Ty::Unknown, Vec::new(), sig.output.clone())
}
}
Ty::FnDef { substs, sig, .. } => {
let ret_ty = sig.output.clone().subst(&substs);
if !sig.input.is_empty() {
let mut arg_iter = sig.input.iter().map(|ty| ty.clone().subst(&substs));
let receiver_ty = arg_iter.next().unwrap();
(receiver_ty, arg_iter.collect(), ret_ty)
} else {
(Ty::Unknown, Vec::new(), ret_ty)
}
}
_ => (Ty::Unknown, Vec::new(), Ty::Unknown),
};
// Apply autoref so the below unification works correctly
let actual_receiver_ty = match expected_receiver_ty {
Ty::Ref(_, mutability) => Ty::Ref(Arc::new(derefed_receiver_ty), mutability),
_ => derefed_receiver_ty,
};
self.unify(&expected_receiver_ty, &actual_receiver_ty);
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
for (arg, param) in args.iter().zip(param_iter) {
self.infer_expr(*arg, &Expectation::has_type(param));
}
ret_ty
}
Expr::Match { expr, arms } => {
let expected = if expected.ty == Ty::Unknown {
Expectation::has_type(self.new_type_var())
} else {
expected.clone()
};
let input_ty = self.infer_expr(*expr, &Expectation::none());
for arm in arms {
for &pat in &arm.pats {
let _pat_ty = self.infer_pat(pat, &input_ty);
}
if let Some(guard_expr) = arm.guard {
self.infer_expr(guard_expr, &Expectation::has_type(Ty::Bool));
}
self.infer_expr(arm.expr, &expected);
}
expected.ty
}
Expr::Path(p) => {
// TODO this could be more efficient...
let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
self.infer_path_expr(&resolver, p).unwrap_or(Ty::Unknown)
}
Expr::Continue => Ty::Never,
Expr::Break { expr } => {
if let Some(expr) = expr {
// TODO handle break with value
self.infer_expr(*expr, &Expectation::none());
}
Ty::Never
}
Expr::Return { expr } => {
if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
}
Ty::Never
}
Expr::StructLit { path, fields, spread } => {
let (ty, def_id) = self.resolve_variant(path.as_ref());
let substs = ty.substs().unwrap_or_else(Substs::empty);
for field in fields {
let field_ty = def_id
.and_then(|it| it.field(self.db, &field.name))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
}
ty
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
let ty = receiver_ty
.autoderef(self.db)
.find_map(|derefed_ty| match derefed_ty {
Ty::Tuple(fields) => {
let i = name.to_string().parse::<usize>().ok();
i.and_then(|i| fields.get(i).cloned())
}
Ty::Adt { def_id: AdtDef::Struct(s), ref substs, .. } => {
s.field(self.db, name).map(|field| {
self.write_field_resolution(tgt_expr, field);
field.ty(self.db).subst(substs)
})
}
_ => None,
})
.unwrap_or(Ty::Unknown);
self.insert_type_vars(ty)
}
Expr::Try { expr } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
Ty::Unknown
}
Expr::Cast { expr, type_ref } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
let cast_ty = self.make_ty(type_ref);
// TODO check the cast...
cast_ty
}
Expr::Ref { expr, mutability } => {
let expectation = if let Ty::Ref(ref subty, expected_mutability) = expected.ty {
if expected_mutability == Mutability::Mut && *mutability == Mutability::Shared {
// TODO: throw type error - expected mut reference but found shared ref,
// which cannot be coerced
}
Expectation::has_type((**subty).clone())
} else {
Expectation::none()
};
// TODO reference coercions etc.
let inner_ty = self.infer_expr(*expr, &expectation);
Ty::Ref(Arc::new(inner_ty), *mutability)
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
match op {
UnaryOp::Deref => {
if let Some(derefed_ty) = inner_ty.builtin_deref() {
derefed_ty
} else {
// TODO Deref::deref
Ty::Unknown
}
}
UnaryOp::Neg => {
match inner_ty {
Ty::Int(primitive::UncertainIntTy::Unknown)
| Ty::Int(primitive::UncertainIntTy::Signed(..))
| Ty::Infer(InferTy::IntVar(..))
| Ty::Infer(InferTy::FloatVar(..))
| Ty::Float(..) => inner_ty,
// TODO: resolve ops::Neg trait
_ => Ty::Unknown,
}
}
UnaryOp::Not => {
match inner_ty {
Ty::Bool | Ty::Int(_) | Ty::Infer(InferTy::IntVar(..)) => inner_ty,
// TODO: resolve ops::Not trait for inner_ty
_ => Ty::Unknown,
}
}
}
}
Expr::BinaryOp { lhs, rhs, op } => match op {
Some(op) => {
let lhs_expectation = match op {
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
Expectation::has_type(Ty::Bool)
}
_ => Expectation::none(),
};
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
// TODO: find implementation of trait corresponding to operation
// symbol and resolve associated `Output` type
let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
// TODO: similar as above, return ty is often associated trait type
op::binary_op_return_ty(*op, rhs_ty)
}
_ => Ty::Unknown,
},
Expr::Tuple { exprs } => {
let mut ty_vec = Vec::with_capacity(exprs.len());
for arg in exprs.iter() {
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
}
Ty::Tuple(Arc::from(ty_vec))
}
Expr::Array { exprs } => {
let elem_ty = match &expected.ty {
Ty::Slice(inner) | Ty::Array(inner) => Ty::clone(&inner),
_ => self.new_type_var(),
};
for expr in exprs.iter() {
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
}
Ty::Array(Arc::new(elem_ty))
}
Expr::Literal(lit) => match lit {
Literal::Bool(..) => Ty::Bool,
Literal::String(..) => Ty::Ref(Arc::new(Ty::Str), Mutability::Shared),
Literal::ByteString(..) => {
let byte_type = Arc::new(Ty::Int(primitive::UncertainIntTy::Unsigned(
primitive::UintTy::U8,
)));
let slice_type = Arc::new(Ty::Slice(byte_type));
Ty::Ref(slice_type, Mutability::Shared)
}
Literal::Char(..) => Ty::Char,
Literal::Int(_v, ty) => Ty::Int(*ty),
Literal::Float(_v, ty) => Ty::Float(*ty),
},
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, &expected.ty);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
fn infer_block(
&mut self,
statements: &[Statement],
tail: Option<ExprId>,
expected: &Expectation,
) -> Ty {
for stmt in statements {
match stmt {
Statement::Let { pat, type_ref, initializer } => {
let decl_ty =
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
let decl_ty = self.insert_type_vars(decl_ty);
let ty = if let Some(expr) = initializer {
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
expr_ty
} else {
decl_ty
};
self.infer_pat(*pat, &ty);
}
Statement::Expr(expr) => {
self.infer_expr(*expr, &Expectation::none());
}
}
}
let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() };
ty
}
fn collect_fn_signature(&mut self, signature: &FnSignature) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
for (type_ref, pat) in signature.params().iter().zip(body.params()) {
let ty = self.make_ty(type_ref);
self.infer_pat(*pat, &ty);
}
self.return_ty = self.make_ty(signature.ret_type());
}
fn infer_body(&mut self) {
self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()));
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}
/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
}
}
fn fallback_value(self) -> Ty {
match self {
InferTy::TypeVar(..) => Ty::Unknown,
InferTy::IntVar(..) => {
Ty::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32))
}
InferTy::FloatVar(..) => {
Ty::Float(primitive::UncertainFloatTy::Known(primitive::FloatTy::F64))
}
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
ty: Ty,
// TODO: In some cases, we need to be aware whether the expectation is that
// the type match exactly what we passed, or whether it just needs to be
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
Expectation { ty }
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation { ty: Ty::Unknown }
}
}