mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-22 09:55:06 +00:00
dcfb4ee702
It was just getting too big. We now have: - ty: the `Ty` enum and helpers - ty::infer: actual type inference - ty::lower: lowering from HIR to `Ty` - ty::op: helpers for binary operations, currently
1079 lines
43 KiB
Rust
1079 lines
43 KiB
Rust
//! Type inference, i.e. the process of walking through the code and determining
|
||
//! the type of each expression and pattern.
|
||
//!
|
||
//! For type inference, compare the implementations in rustc (the various
|
||
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
|
||
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
|
||
//! inference here is the `infer` function, which infers the types of all
|
||
//! expressions in a given function.
|
||
//!
|
||
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
|
||
//! which represent currently unknown types; as we walk through the expressions,
|
||
//! we might determine that certain variables need to be equal to each other, or
|
||
//! to certain types. To record this, we use the union-find implementation from
|
||
//! the `ena` crate, which is extracted from rustc.
|
||
|
||
use std::borrow::Cow;
|
||
use std::iter::repeat;
|
||
use std::ops::Index;
|
||
use std::sync::Arc;
|
||
use std::mem;
|
||
|
||
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};
|
||
use ra_arena::map::ArenaMap;
|
||
use rustc_hash::FxHashMap;
|
||
|
||
use test_utils::tested_by;
|
||
|
||
use crate::{
|
||
Function, StructField, Path, Name,
|
||
FnSignature, AdtDef,
|
||
HirDatabase,
|
||
type_ref::{TypeRef, Mutability},
|
||
expr::{Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement, FieldPat, self},
|
||
generics::GenericParams,
|
||
path::{GenericArgs, GenericArg},
|
||
adt::VariantDef,
|
||
resolve::{Resolver, Resolution},
|
||
nameres::Namespace
|
||
};
|
||
use super::{Ty, TypableDef, Substs, primitive, op};
|
||
|
||
/// The entry point of type inference.
|
||
pub fn infer(db: &impl HirDatabase, func: Function) -> Arc<InferenceResult> {
|
||
db.check_canceled();
|
||
let body = func.body(db);
|
||
let resolver = func.resolver(db);
|
||
let mut ctx = InferenceContext::new(db, body, resolver);
|
||
|
||
let signature = func.signature(db);
|
||
ctx.collect_fn_signature(&signature);
|
||
|
||
ctx.infer_body();
|
||
|
||
Arc::new(ctx.resolve_all())
|
||
}
|
||
|
||
/// The result of type inference: A mapping from expressions and patterns to types.
|
||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||
pub struct InferenceResult {
|
||
/// For each method call expr, records the function it resolves to.
|
||
method_resolutions: FxHashMap<ExprId, Function>,
|
||
/// For each field access expr, records the field it resolves to.
|
||
field_resolutions: FxHashMap<ExprId, StructField>,
|
||
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
|
||
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
|
||
}
|
||
|
||
impl InferenceResult {
|
||
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
|
||
self.method_resolutions.get(&expr).map(|it| *it)
|
||
}
|
||
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
|
||
self.field_resolutions.get(&expr).map(|it| *it)
|
||
}
|
||
}
|
||
|
||
impl Index<ExprId> for InferenceResult {
|
||
type Output = Ty;
|
||
|
||
fn index(&self, expr: ExprId) -> &Ty {
|
||
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
|
||
}
|
||
}
|
||
|
||
impl Index<PatId> for InferenceResult {
|
||
type Output = Ty;
|
||
|
||
fn index(&self, pat: PatId) -> &Ty {
|
||
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
|
||
}
|
||
}
|
||
|
||
/// The inference context contains all information needed during type inference.
|
||
#[derive(Clone, Debug)]
|
||
struct InferenceContext<'a, D: HirDatabase> {
|
||
db: &'a D,
|
||
body: Arc<Body>,
|
||
resolver: Resolver,
|
||
var_unification_table: InPlaceUnificationTable<TypeVarId>,
|
||
method_resolutions: FxHashMap<ExprId, Function>,
|
||
field_resolutions: FxHashMap<ExprId, StructField>,
|
||
type_of_expr: ArenaMap<ExprId, Ty>,
|
||
type_of_pat: ArenaMap<PatId, Ty>,
|
||
/// The return type of the function being inferred.
|
||
return_ty: Ty,
|
||
}
|
||
|
||
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
|
||
fn new(db: &'a D, body: Arc<Body>, resolver: Resolver) -> Self {
|
||
InferenceContext {
|
||
method_resolutions: FxHashMap::default(),
|
||
field_resolutions: FxHashMap::default(),
|
||
type_of_expr: ArenaMap::default(),
|
||
type_of_pat: ArenaMap::default(),
|
||
var_unification_table: InPlaceUnificationTable::new(),
|
||
return_ty: Ty::Unknown, // set in collect_fn_signature
|
||
db,
|
||
body,
|
||
resolver,
|
||
}
|
||
}
|
||
|
||
fn resolve_all(mut self) -> InferenceResult {
|
||
let mut tv_stack = Vec::new();
|
||
let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default());
|
||
for ty in expr_types.values_mut() {
|
||
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
|
||
*ty = resolved;
|
||
}
|
||
let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default());
|
||
for ty in pat_types.values_mut() {
|
||
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
|
||
*ty = resolved;
|
||
}
|
||
InferenceResult {
|
||
method_resolutions: self.method_resolutions,
|
||
field_resolutions: self.field_resolutions,
|
||
type_of_expr: expr_types,
|
||
type_of_pat: pat_types,
|
||
}
|
||
}
|
||
|
||
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
|
||
self.type_of_expr.insert(expr, ty);
|
||
}
|
||
|
||
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
|
||
self.method_resolutions.insert(expr, func);
|
||
}
|
||
|
||
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
|
||
self.field_resolutions.insert(expr, field);
|
||
}
|
||
|
||
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
|
||
self.type_of_pat.insert(pat, ty);
|
||
}
|
||
|
||
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
|
||
let ty = Ty::from_hir(
|
||
self.db,
|
||
// TODO use right resolver for block
|
||
&self.resolver,
|
||
type_ref,
|
||
);
|
||
let ty = self.insert_type_vars(ty);
|
||
ty
|
||
}
|
||
|
||
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
|
||
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
|
||
}
|
||
|
||
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
||
self.unify_inner(ty1, ty2, 0)
|
||
}
|
||
|
||
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
|
||
if depth > 1000 {
|
||
// prevent stackoverflows
|
||
panic!("infinite recursion in unification");
|
||
}
|
||
if ty1 == ty2 {
|
||
return true;
|
||
}
|
||
// try to resolve type vars first
|
||
let ty1 = self.resolve_ty_shallow(ty1);
|
||
let ty2 = self.resolve_ty_shallow(ty2);
|
||
match (&*ty1, &*ty2) {
|
||
(Ty::Unknown, ..) => true,
|
||
(.., Ty::Unknown) => true,
|
||
(Ty::Int(t1), Ty::Int(t2)) => match (t1, t2) {
|
||
(primitive::UncertainIntTy::Unknown, _)
|
||
| (_, primitive::UncertainIntTy::Unknown) => true,
|
||
_ => t1 == t2,
|
||
},
|
||
(Ty::Float(t1), Ty::Float(t2)) => match (t1, t2) {
|
||
(primitive::UncertainFloatTy::Unknown, _)
|
||
| (_, primitive::UncertainFloatTy::Unknown) => true,
|
||
_ => t1 == t2,
|
||
},
|
||
(Ty::Bool, _) | (Ty::Str, _) | (Ty::Never, _) | (Ty::Char, _) => ty1 == ty2,
|
||
(
|
||
Ty::Adt { def_id: def_id1, substs: substs1, .. },
|
||
Ty::Adt { def_id: def_id2, substs: substs2, .. },
|
||
) if def_id1 == def_id2 => self.unify_substs(substs1, substs2, depth + 1),
|
||
(Ty::Slice(t1), Ty::Slice(t2)) => self.unify_inner(t1, t2, depth + 1),
|
||
(Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => {
|
||
self.unify_inner(t1, t2, depth + 1)
|
||
}
|
||
(Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify_inner(t1, t2, depth + 1),
|
||
(Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true,
|
||
(Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => {
|
||
ts1.iter().zip(ts2.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth + 1))
|
||
}
|
||
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
|
||
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
|
||
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
|
||
// both type vars are unknown since we tried to resolve them
|
||
self.var_unification_table.union(*tv1, *tv2);
|
||
true
|
||
}
|
||
(Ty::Infer(InferTy::TypeVar(tv)), other)
|
||
| (other, Ty::Infer(InferTy::TypeVar(tv)))
|
||
| (Ty::Infer(InferTy::IntVar(tv)), other)
|
||
| (other, Ty::Infer(InferTy::IntVar(tv)))
|
||
| (Ty::Infer(InferTy::FloatVar(tv)), other)
|
||
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
|
||
// the type var is unknown since we tried to resolve it
|
||
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
|
||
true
|
||
}
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
fn new_type_var(&mut self) -> Ty {
|
||
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
||
}
|
||
|
||
fn new_integer_var(&mut self) -> Ty {
|
||
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
||
}
|
||
|
||
fn new_float_var(&mut self) -> Ty {
|
||
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
||
}
|
||
|
||
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
|
||
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
|
||
match ty {
|
||
Ty::Unknown => self.new_type_var(),
|
||
Ty::Int(primitive::UncertainIntTy::Unknown) => self.new_integer_var(),
|
||
Ty::Float(primitive::UncertainFloatTy::Unknown) => self.new_float_var(),
|
||
_ => ty,
|
||
}
|
||
}
|
||
|
||
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
|
||
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
|
||
}
|
||
|
||
/// Resolves the type as far as currently possible, replacing type variables
|
||
/// by their known types. All types returned by the infer_* functions should
|
||
/// be resolved as far as possible, i.e. contain no type variables with
|
||
/// known type.
|
||
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
|
||
ty.fold(&mut |ty| match ty {
|
||
Ty::Infer(tv) => {
|
||
let inner = tv.to_inner();
|
||
if tv_stack.contains(&inner) {
|
||
tested_by!(type_var_cycles_resolve_as_possible);
|
||
// recursive type
|
||
return tv.fallback_value();
|
||
}
|
||
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
|
||
// known_ty may contain other variables that are known by now
|
||
tv_stack.push(inner);
|
||
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
|
||
tv_stack.pop();
|
||
result
|
||
} else {
|
||
ty
|
||
}
|
||
}
|
||
_ => ty,
|
||
})
|
||
}
|
||
|
||
/// If `ty` is a type variable with known type, returns that type;
|
||
/// otherwise, return ty.
|
||
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
|
||
let mut ty = Cow::Borrowed(ty);
|
||
// The type variable could resolve to a int/float variable. Hence try
|
||
// resolving up to three times; each type of variable shouldn't occur
|
||
// more than once
|
||
for i in 0..3 {
|
||
if i > 0 {
|
||
tested_by!(type_var_resolves_to_int_var);
|
||
}
|
||
match &*ty {
|
||
Ty::Infer(tv) => {
|
||
let inner = tv.to_inner();
|
||
match self.var_unification_table.probe_value(inner).known() {
|
||
Some(known_ty) => {
|
||
// The known_ty can't be a type var itself
|
||
ty = Cow::Owned(known_ty.clone());
|
||
}
|
||
_ => return ty,
|
||
}
|
||
}
|
||
_ => return ty,
|
||
}
|
||
}
|
||
log::error!("Inference variable still not resolved: {:?}", ty);
|
||
ty
|
||
}
|
||
|
||
/// Resolves the type completely; type variables without known type are
|
||
/// replaced by Ty::Unknown.
|
||
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
|
||
ty.fold(&mut |ty| match ty {
|
||
Ty::Infer(tv) => {
|
||
let inner = tv.to_inner();
|
||
if tv_stack.contains(&inner) {
|
||
tested_by!(type_var_cycles_resolve_completely);
|
||
// recursive type
|
||
return tv.fallback_value();
|
||
}
|
||
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
|
||
// known_ty may contain other variables that are known by now
|
||
tv_stack.push(inner);
|
||
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
|
||
tv_stack.pop();
|
||
result
|
||
} else {
|
||
tv.fallback_value()
|
||
}
|
||
}
|
||
_ => ty,
|
||
})
|
||
}
|
||
|
||
fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path) -> Option<Ty> {
|
||
let resolved = resolver.resolve_path_segments(self.db, &path);
|
||
|
||
let (def, remaining_index) = resolved.into_inner();
|
||
|
||
log::debug!(
|
||
"path {:?} resolved to {:?} with remaining index {:?}",
|
||
path,
|
||
def,
|
||
remaining_index
|
||
);
|
||
|
||
// if the remaining_index is None, we expect the path
|
||
// to be fully resolved, in this case we continue with
|
||
// the default by attempting to `take_values´ from the resolution.
|
||
// Otherwise the path was partially resolved, which means
|
||
// we might have resolved into a type for which
|
||
// we may find some associated item starting at the
|
||
// path.segment pointed to by `remaining_index´
|
||
let resolved =
|
||
if remaining_index.is_none() { def.take_values()? } else { def.take_types()? };
|
||
|
||
match resolved {
|
||
Resolution::Def(def) => {
|
||
let typable: Option<TypableDef> = def.into();
|
||
let typable = typable?;
|
||
|
||
if let Some(remaining_index) = remaining_index {
|
||
let ty = self.db.type_for_def(typable, Namespace::Types);
|
||
// TODO: Keep resolving the segments
|
||
// if we have more segments to process
|
||
let segment = &path.segments[remaining_index];
|
||
|
||
log::debug!("looking for path segment: {:?}", segment);
|
||
|
||
// Attempt to find an impl_item for the type which has a name matching
|
||
// the current segment
|
||
let ty = ty.iterate_impl_items(self.db, |item| match item {
|
||
crate::ImplItem::Method(func) => {
|
||
let sig = func.signature(self.db);
|
||
if segment.name == *sig.name() {
|
||
return Some(func.ty(self.db));
|
||
}
|
||
None
|
||
}
|
||
|
||
// TODO: Resolve associated const
|
||
crate::ImplItem::Const(_) => None,
|
||
|
||
// TODO: Resolve associated types
|
||
crate::ImplItem::Type(_) => None,
|
||
});
|
||
ty
|
||
} else {
|
||
let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
|
||
let ty = self.db.type_for_def(typable, Namespace::Values).apply_substs(substs);
|
||
let ty = self.insert_type_vars(ty);
|
||
Some(ty)
|
||
}
|
||
}
|
||
Resolution::LocalBinding(pat) => {
|
||
let ty = self.type_of_pat.get(pat)?;
|
||
let ty = self.resolve_ty_as_possible(&mut vec![], ty.clone());
|
||
Some(ty)
|
||
}
|
||
Resolution::GenericParam(..) => {
|
||
// generic params can't refer to values... yet
|
||
None
|
||
}
|
||
Resolution::SelfType(_) => {
|
||
log::error!("path expr {:?} resolved to Self type in values ns", path);
|
||
None
|
||
}
|
||
}
|
||
}
|
||
|
||
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
|
||
let path = match path {
|
||
Some(path) => path,
|
||
None => return (Ty::Unknown, None),
|
||
};
|
||
let resolver = &self.resolver;
|
||
let typable: Option<TypableDef> = match resolver.resolve_path(self.db, &path).take_types() {
|
||
Some(Resolution::Def(def)) => def.into(),
|
||
Some(Resolution::LocalBinding(..)) => {
|
||
// this cannot happen
|
||
log::error!("path resolved to local binding in type ns");
|
||
return (Ty::Unknown, None);
|
||
}
|
||
Some(Resolution::GenericParam(..)) => {
|
||
// generic params can't be used in struct literals
|
||
return (Ty::Unknown, None);
|
||
}
|
||
Some(Resolution::SelfType(..)) => {
|
||
// TODO this is allowed in an impl for a struct, handle this
|
||
return (Ty::Unknown, None);
|
||
}
|
||
None => return (Ty::Unknown, None),
|
||
};
|
||
let def = match typable {
|
||
None => return (Ty::Unknown, None),
|
||
Some(it) => it,
|
||
};
|
||
// TODO remove the duplication between here and `Ty::from_path`?
|
||
let substs = Ty::substs_from_path(self.db, resolver, path, def);
|
||
match def {
|
||
TypableDef::Struct(s) => {
|
||
let ty = s.ty(self.db);
|
||
let ty = self.insert_type_vars(ty.apply_substs(substs));
|
||
(ty, Some(s.into()))
|
||
}
|
||
TypableDef::EnumVariant(var) => {
|
||
let ty = var.parent_enum(self.db).ty(self.db);
|
||
let ty = self.insert_type_vars(ty.apply_substs(substs));
|
||
(ty, Some(var.into()))
|
||
}
|
||
TypableDef::Function(_) | TypableDef::Enum(_) => (Ty::Unknown, None),
|
||
}
|
||
}
|
||
|
||
fn infer_tuple_struct_pat(
|
||
&mut self,
|
||
path: Option<&Path>,
|
||
subpats: &[PatId],
|
||
expected: &Ty,
|
||
) -> Ty {
|
||
let (ty, def) = self.resolve_variant(path);
|
||
|
||
self.unify(&ty, expected);
|
||
|
||
let substs = ty.substs().unwrap_or_else(Substs::empty);
|
||
|
||
for (i, &subpat) in subpats.iter().enumerate() {
|
||
let expected_ty = def
|
||
.and_then(|d| d.field(self.db, &Name::tuple_field_name(i)))
|
||
.map_or(Ty::Unknown, |field| field.ty(self.db))
|
||
.subst(&substs);
|
||
self.infer_pat(subpat, &expected_ty);
|
||
}
|
||
|
||
ty
|
||
}
|
||
|
||
fn infer_struct_pat(&mut self, path: Option<&Path>, subpats: &[FieldPat], expected: &Ty) -> Ty {
|
||
let (ty, def) = self.resolve_variant(path);
|
||
|
||
self.unify(&ty, expected);
|
||
|
||
let substs = ty.substs().unwrap_or_else(Substs::empty);
|
||
|
||
for subpat in subpats {
|
||
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
|
||
let expected_ty =
|
||
matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs);
|
||
self.infer_pat(subpat.pat, &expected_ty);
|
||
}
|
||
|
||
ty
|
||
}
|
||
|
||
fn infer_pat(&mut self, pat: PatId, expected: &Ty) -> Ty {
|
||
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
||
|
||
let ty = match &body[pat] {
|
||
Pat::Tuple(ref args) => {
|
||
let expectations = match *expected {
|
||
Ty::Tuple(ref tuple_args) => &**tuple_args,
|
||
_ => &[],
|
||
};
|
||
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
|
||
|
||
let inner_tys = args
|
||
.iter()
|
||
.zip(expectations_iter)
|
||
.map(|(&pat, ty)| self.infer_pat(pat, ty))
|
||
.collect::<Vec<_>>()
|
||
.into();
|
||
|
||
Ty::Tuple(inner_tys)
|
||
}
|
||
Pat::Ref { pat, mutability } => {
|
||
let expectation = match *expected {
|
||
Ty::Ref(ref sub_ty, exp_mut) => {
|
||
if *mutability != exp_mut {
|
||
// TODO: emit type error?
|
||
}
|
||
&**sub_ty
|
||
}
|
||
_ => &Ty::Unknown,
|
||
};
|
||
let subty = self.infer_pat(*pat, expectation);
|
||
Ty::Ref(subty.into(), *mutability)
|
||
}
|
||
Pat::TupleStruct { path: ref p, args: ref subpats } => {
|
||
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected)
|
||
}
|
||
Pat::Struct { path: ref p, args: ref fields } => {
|
||
self.infer_struct_pat(p.as_ref(), fields, expected)
|
||
}
|
||
Pat::Path(path) => {
|
||
// TODO use correct resolver for the surrounding expression
|
||
let resolver = self.resolver.clone();
|
||
self.infer_path_expr(&resolver, &path).unwrap_or(Ty::Unknown)
|
||
}
|
||
Pat::Bind { mode, name: _name, subpat } => {
|
||
let inner_ty = if let Some(subpat) = subpat {
|
||
self.infer_pat(*subpat, expected)
|
||
} else {
|
||
expected.clone()
|
||
};
|
||
let inner_ty = self.insert_type_vars_shallow(inner_ty);
|
||
|
||
let bound_ty = match mode {
|
||
BindingAnnotation::Ref => Ty::Ref(inner_ty.clone().into(), Mutability::Shared),
|
||
BindingAnnotation::RefMut => Ty::Ref(inner_ty.clone().into(), Mutability::Mut),
|
||
BindingAnnotation::Mutable | BindingAnnotation::Unannotated => inner_ty.clone(),
|
||
};
|
||
let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
|
||
self.write_pat_ty(pat, bound_ty);
|
||
return inner_ty;
|
||
}
|
||
_ => Ty::Unknown,
|
||
};
|
||
// use a new type variable if we got Ty::Unknown here
|
||
let ty = self.insert_type_vars_shallow(ty);
|
||
self.unify(&ty, expected);
|
||
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
|
||
self.write_pat_ty(pat, ty.clone());
|
||
ty
|
||
}
|
||
|
||
fn substs_for_method_call(
|
||
&mut self,
|
||
def_generics: Option<Arc<GenericParams>>,
|
||
generic_args: &Option<GenericArgs>,
|
||
) -> Substs {
|
||
let (parent_param_count, param_count) =
|
||
def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
|
||
let mut substs = Vec::with_capacity(parent_param_count + param_count);
|
||
for _ in 0..parent_param_count {
|
||
substs.push(Ty::Unknown);
|
||
}
|
||
// handle provided type arguments
|
||
if let Some(generic_args) = generic_args {
|
||
// if args are provided, it should be all of them, but we can't rely on that
|
||
for arg in generic_args.args.iter().take(param_count) {
|
||
match arg {
|
||
GenericArg::Type(type_ref) => {
|
||
let ty = self.make_ty(type_ref);
|
||
substs.push(ty);
|
||
}
|
||
}
|
||
}
|
||
};
|
||
let supplied_params = substs.len();
|
||
for _ in supplied_params..parent_param_count + param_count {
|
||
substs.push(Ty::Unknown);
|
||
}
|
||
assert_eq!(substs.len(), parent_param_count + param_count);
|
||
Substs(substs.into())
|
||
}
|
||
|
||
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
|
||
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
||
let ty = match &body[tgt_expr] {
|
||
Expr::Missing => Ty::Unknown,
|
||
Expr::If { condition, then_branch, else_branch } => {
|
||
// if let is desugared to match, so this is always simple if
|
||
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
|
||
let then_ty = self.infer_expr(*then_branch, expected);
|
||
match else_branch {
|
||
Some(else_branch) => {
|
||
self.infer_expr(*else_branch, expected);
|
||
}
|
||
None => {
|
||
// no else branch -> unit
|
||
self.unify(&then_ty, &Ty::unit()); // actually coerce
|
||
}
|
||
};
|
||
then_ty
|
||
}
|
||
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
|
||
Expr::Loop { body } => {
|
||
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
|
||
// TODO handle break with value
|
||
Ty::Never
|
||
}
|
||
Expr::While { condition, body } => {
|
||
// while let is desugared to a match loop, so this is always simple while
|
||
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
|
||
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
|
||
Ty::unit()
|
||
}
|
||
Expr::For { iterable, body, pat } => {
|
||
let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
|
||
self.infer_pat(*pat, &Ty::Unknown);
|
||
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
|
||
Ty::unit()
|
||
}
|
||
Expr::Lambda { body, args, arg_types } => {
|
||
assert_eq!(args.len(), arg_types.len());
|
||
|
||
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
|
||
let expected = if let Some(type_ref) = arg_type {
|
||
let ty = self.make_ty(type_ref);
|
||
ty
|
||
} else {
|
||
Ty::Unknown
|
||
};
|
||
self.infer_pat(*arg_pat, &expected);
|
||
}
|
||
|
||
// TODO: infer lambda type etc.
|
||
let _body_ty = self.infer_expr(*body, &Expectation::none());
|
||
Ty::Unknown
|
||
}
|
||
Expr::Call { callee, args } => {
|
||
let callee_ty = self.infer_expr(*callee, &Expectation::none());
|
||
let (param_tys, ret_ty) = match &callee_ty {
|
||
Ty::FnPtr(sig) => (sig.input.clone(), sig.output.clone()),
|
||
Ty::FnDef { substs, sig, .. } => {
|
||
let ret_ty = sig.output.clone().subst(&substs);
|
||
let param_tys =
|
||
sig.input.iter().map(|ty| ty.clone().subst(&substs)).collect();
|
||
(param_tys, ret_ty)
|
||
}
|
||
_ => {
|
||
// not callable
|
||
// TODO report an error?
|
||
(Vec::new(), Ty::Unknown)
|
||
}
|
||
};
|
||
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
|
||
for (arg, param) in args.iter().zip(param_iter) {
|
||
self.infer_expr(*arg, &Expectation::has_type(param));
|
||
}
|
||
ret_ty
|
||
}
|
||
Expr::MethodCall { receiver, args, method_name, generic_args } => {
|
||
let receiver_ty = self.infer_expr(*receiver, &Expectation::none());
|
||
let resolved = receiver_ty.clone().lookup_method(self.db, method_name);
|
||
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
|
||
Some((ty, func)) => {
|
||
self.write_method_resolution(tgt_expr, func);
|
||
(
|
||
ty,
|
||
self.db.type_for_def(func.into(), Namespace::Values),
|
||
Some(func.generic_params(self.db)),
|
||
)
|
||
}
|
||
None => (Ty::Unknown, receiver_ty, None),
|
||
};
|
||
let substs = self.substs_for_method_call(def_generics, generic_args);
|
||
let method_ty = method_ty.apply_substs(substs);
|
||
let method_ty = self.insert_type_vars(method_ty);
|
||
let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty {
|
||
Ty::FnPtr(sig) => {
|
||
if !sig.input.is_empty() {
|
||
(sig.input[0].clone(), sig.input[1..].to_vec(), sig.output.clone())
|
||
} else {
|
||
(Ty::Unknown, Vec::new(), sig.output.clone())
|
||
}
|
||
}
|
||
Ty::FnDef { substs, sig, .. } => {
|
||
let ret_ty = sig.output.clone().subst(&substs);
|
||
|
||
if !sig.input.is_empty() {
|
||
let mut arg_iter = sig.input.iter().map(|ty| ty.clone().subst(&substs));
|
||
let receiver_ty = arg_iter.next().unwrap();
|
||
(receiver_ty, arg_iter.collect(), ret_ty)
|
||
} else {
|
||
(Ty::Unknown, Vec::new(), ret_ty)
|
||
}
|
||
}
|
||
_ => (Ty::Unknown, Vec::new(), Ty::Unknown),
|
||
};
|
||
// Apply autoref so the below unification works correctly
|
||
let actual_receiver_ty = match expected_receiver_ty {
|
||
Ty::Ref(_, mutability) => Ty::Ref(Arc::new(derefed_receiver_ty), mutability),
|
||
_ => derefed_receiver_ty,
|
||
};
|
||
self.unify(&expected_receiver_ty, &actual_receiver_ty);
|
||
|
||
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
|
||
for (arg, param) in args.iter().zip(param_iter) {
|
||
self.infer_expr(*arg, &Expectation::has_type(param));
|
||
}
|
||
ret_ty
|
||
}
|
||
Expr::Match { expr, arms } => {
|
||
let expected = if expected.ty == Ty::Unknown {
|
||
Expectation::has_type(self.new_type_var())
|
||
} else {
|
||
expected.clone()
|
||
};
|
||
let input_ty = self.infer_expr(*expr, &Expectation::none());
|
||
|
||
for arm in arms {
|
||
for &pat in &arm.pats {
|
||
let _pat_ty = self.infer_pat(pat, &input_ty);
|
||
}
|
||
if let Some(guard_expr) = arm.guard {
|
||
self.infer_expr(guard_expr, &Expectation::has_type(Ty::Bool));
|
||
}
|
||
self.infer_expr(arm.expr, &expected);
|
||
}
|
||
|
||
expected.ty
|
||
}
|
||
Expr::Path(p) => {
|
||
// TODO this could be more efficient...
|
||
let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
|
||
self.infer_path_expr(&resolver, p).unwrap_or(Ty::Unknown)
|
||
}
|
||
Expr::Continue => Ty::Never,
|
||
Expr::Break { expr } => {
|
||
if let Some(expr) = expr {
|
||
// TODO handle break with value
|
||
self.infer_expr(*expr, &Expectation::none());
|
||
}
|
||
Ty::Never
|
||
}
|
||
Expr::Return { expr } => {
|
||
if let Some(expr) = expr {
|
||
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
|
||
}
|
||
Ty::Never
|
||
}
|
||
Expr::StructLit { path, fields, spread } => {
|
||
let (ty, def_id) = self.resolve_variant(path.as_ref());
|
||
let substs = ty.substs().unwrap_or_else(Substs::empty);
|
||
for field in fields {
|
||
let field_ty = def_id
|
||
.and_then(|it| it.field(self.db, &field.name))
|
||
.map_or(Ty::Unknown, |field| field.ty(self.db))
|
||
.subst(&substs);
|
||
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
|
||
}
|
||
if let Some(expr) = spread {
|
||
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
|
||
}
|
||
ty
|
||
}
|
||
Expr::Field { expr, name } => {
|
||
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
|
||
let ty = receiver_ty
|
||
.autoderef(self.db)
|
||
.find_map(|derefed_ty| match derefed_ty {
|
||
Ty::Tuple(fields) => {
|
||
let i = name.to_string().parse::<usize>().ok();
|
||
i.and_then(|i| fields.get(i).cloned())
|
||
}
|
||
Ty::Adt { def_id: AdtDef::Struct(s), ref substs, .. } => {
|
||
s.field(self.db, name).map(|field| {
|
||
self.write_field_resolution(tgt_expr, field);
|
||
field.ty(self.db).subst(substs)
|
||
})
|
||
}
|
||
_ => None,
|
||
})
|
||
.unwrap_or(Ty::Unknown);
|
||
self.insert_type_vars(ty)
|
||
}
|
||
Expr::Try { expr } => {
|
||
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
|
||
Ty::Unknown
|
||
}
|
||
Expr::Cast { expr, type_ref } => {
|
||
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
|
||
let cast_ty = self.make_ty(type_ref);
|
||
// TODO check the cast...
|
||
cast_ty
|
||
}
|
||
Expr::Ref { expr, mutability } => {
|
||
let expectation = if let Ty::Ref(ref subty, expected_mutability) = expected.ty {
|
||
if expected_mutability == Mutability::Mut && *mutability == Mutability::Shared {
|
||
// TODO: throw type error - expected mut reference but found shared ref,
|
||
// which cannot be coerced
|
||
}
|
||
Expectation::has_type((**subty).clone())
|
||
} else {
|
||
Expectation::none()
|
||
};
|
||
// TODO reference coercions etc.
|
||
let inner_ty = self.infer_expr(*expr, &expectation);
|
||
Ty::Ref(Arc::new(inner_ty), *mutability)
|
||
}
|
||
Expr::UnaryOp { expr, op } => {
|
||
let inner_ty = self.infer_expr(*expr, &Expectation::none());
|
||
match op {
|
||
UnaryOp::Deref => {
|
||
if let Some(derefed_ty) = inner_ty.builtin_deref() {
|
||
derefed_ty
|
||
} else {
|
||
// TODO Deref::deref
|
||
Ty::Unknown
|
||
}
|
||
}
|
||
UnaryOp::Neg => {
|
||
match inner_ty {
|
||
Ty::Int(primitive::UncertainIntTy::Unknown)
|
||
| Ty::Int(primitive::UncertainIntTy::Signed(..))
|
||
| Ty::Infer(InferTy::IntVar(..))
|
||
| Ty::Infer(InferTy::FloatVar(..))
|
||
| Ty::Float(..) => inner_ty,
|
||
// TODO: resolve ops::Neg trait
|
||
_ => Ty::Unknown,
|
||
}
|
||
}
|
||
UnaryOp::Not => {
|
||
match inner_ty {
|
||
Ty::Bool | Ty::Int(_) | Ty::Infer(InferTy::IntVar(..)) => inner_ty,
|
||
// TODO: resolve ops::Not trait for inner_ty
|
||
_ => Ty::Unknown,
|
||
}
|
||
}
|
||
}
|
||
}
|
||
Expr::BinaryOp { lhs, rhs, op } => match op {
|
||
Some(op) => {
|
||
let lhs_expectation = match op {
|
||
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
|
||
Expectation::has_type(Ty::Bool)
|
||
}
|
||
_ => Expectation::none(),
|
||
};
|
||
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
|
||
// TODO: find implementation of trait corresponding to operation
|
||
// symbol and resolve associated `Output` type
|
||
let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
|
||
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
|
||
|
||
// TODO: similar as above, return ty is often associated trait type
|
||
op::binary_op_return_ty(*op, rhs_ty)
|
||
}
|
||
_ => Ty::Unknown,
|
||
},
|
||
Expr::Tuple { exprs } => {
|
||
let mut ty_vec = Vec::with_capacity(exprs.len());
|
||
for arg in exprs.iter() {
|
||
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
|
||
}
|
||
|
||
Ty::Tuple(Arc::from(ty_vec))
|
||
}
|
||
Expr::Array { exprs } => {
|
||
let elem_ty = match &expected.ty {
|
||
Ty::Slice(inner) | Ty::Array(inner) => Ty::clone(&inner),
|
||
_ => self.new_type_var(),
|
||
};
|
||
|
||
for expr in exprs.iter() {
|
||
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
|
||
}
|
||
|
||
Ty::Array(Arc::new(elem_ty))
|
||
}
|
||
Expr::Literal(lit) => match lit {
|
||
Literal::Bool(..) => Ty::Bool,
|
||
Literal::String(..) => Ty::Ref(Arc::new(Ty::Str), Mutability::Shared),
|
||
Literal::ByteString(..) => {
|
||
let byte_type = Arc::new(Ty::Int(primitive::UncertainIntTy::Unsigned(
|
||
primitive::UintTy::U8,
|
||
)));
|
||
let slice_type = Arc::new(Ty::Slice(byte_type));
|
||
Ty::Ref(slice_type, Mutability::Shared)
|
||
}
|
||
Literal::Char(..) => Ty::Char,
|
||
Literal::Int(_v, ty) => Ty::Int(*ty),
|
||
Literal::Float(_v, ty) => Ty::Float(*ty),
|
||
},
|
||
};
|
||
// use a new type variable if we got Ty::Unknown here
|
||
let ty = self.insert_type_vars_shallow(ty);
|
||
self.unify(&ty, &expected.ty);
|
||
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
|
||
self.write_expr_ty(tgt_expr, ty.clone());
|
||
ty
|
||
}
|
||
|
||
fn infer_block(
|
||
&mut self,
|
||
statements: &[Statement],
|
||
tail: Option<ExprId>,
|
||
expected: &Expectation,
|
||
) -> Ty {
|
||
for stmt in statements {
|
||
match stmt {
|
||
Statement::Let { pat, type_ref, initializer } => {
|
||
let decl_ty =
|
||
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
|
||
let decl_ty = self.insert_type_vars(decl_ty);
|
||
let ty = if let Some(expr) = initializer {
|
||
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
|
||
expr_ty
|
||
} else {
|
||
decl_ty
|
||
};
|
||
|
||
self.infer_pat(*pat, &ty);
|
||
}
|
||
Statement::Expr(expr) => {
|
||
self.infer_expr(*expr, &Expectation::none());
|
||
}
|
||
}
|
||
}
|
||
let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() };
|
||
ty
|
||
}
|
||
|
||
fn collect_fn_signature(&mut self, signature: &FnSignature) {
|
||
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
||
for (type_ref, pat) in signature.params().iter().zip(body.params()) {
|
||
let ty = self.make_ty(type_ref);
|
||
|
||
self.infer_pat(*pat, &ty);
|
||
}
|
||
self.return_ty = self.make_ty(signature.ret_type());
|
||
}
|
||
|
||
fn infer_body(&mut self) {
|
||
self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()));
|
||
}
|
||
}
|
||
|
||
/// The ID of a type variable.
|
||
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
|
||
pub struct TypeVarId(u32);
|
||
|
||
impl UnifyKey for TypeVarId {
|
||
type Value = TypeVarValue;
|
||
|
||
fn index(&self) -> u32 {
|
||
self.0
|
||
}
|
||
|
||
fn from_index(i: u32) -> Self {
|
||
TypeVarId(i)
|
||
}
|
||
|
||
fn tag() -> &'static str {
|
||
"TypeVarId"
|
||
}
|
||
}
|
||
|
||
/// The value of a type variable: either we already know the type, or we don't
|
||
/// know it yet.
|
||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||
pub enum TypeVarValue {
|
||
Known(Ty),
|
||
Unknown,
|
||
}
|
||
|
||
impl TypeVarValue {
|
||
fn known(&self) -> Option<&Ty> {
|
||
match self {
|
||
TypeVarValue::Known(ty) => Some(ty),
|
||
TypeVarValue::Unknown => None,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl UnifyValue for TypeVarValue {
|
||
type Error = NoError;
|
||
|
||
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
|
||
match (value1, value2) {
|
||
// We should never equate two type variables, both of which have
|
||
// known types. Instead, we recursively equate those types.
|
||
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
|
||
"equating two type variables, both of which have known types: {:?} and {:?}",
|
||
t1, t2
|
||
),
|
||
|
||
// If one side is known, prefer that one.
|
||
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
|
||
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
|
||
|
||
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The kinds of placeholders we need during type inference. There's separate
|
||
/// values for general types, and for integer and float variables. The latter
|
||
/// two are used for inference of literal values (e.g. `100` could be one of
|
||
/// several integer types).
|
||
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
|
||
pub enum InferTy {
|
||
TypeVar(TypeVarId),
|
||
IntVar(TypeVarId),
|
||
FloatVar(TypeVarId),
|
||
}
|
||
|
||
impl InferTy {
|
||
fn to_inner(self) -> TypeVarId {
|
||
match self {
|
||
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
|
||
}
|
||
}
|
||
|
||
fn fallback_value(self) -> Ty {
|
||
match self {
|
||
InferTy::TypeVar(..) => Ty::Unknown,
|
||
InferTy::IntVar(..) => {
|
||
Ty::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32))
|
||
}
|
||
InferTy::FloatVar(..) => {
|
||
Ty::Float(primitive::UncertainFloatTy::Known(primitive::FloatTy::F64))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// When inferring an expression, we propagate downward whatever type hint we
|
||
/// are able in the form of an `Expectation`.
|
||
#[derive(Clone, PartialEq, Eq, Debug)]
|
||
struct Expectation {
|
||
ty: Ty,
|
||
// TODO: In some cases, we need to be aware whether the expectation is that
|
||
// the type match exactly what we passed, or whether it just needs to be
|
||
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
|
||
}
|
||
|
||
impl Expectation {
|
||
/// The expectation that the type of the expression needs to equal the given
|
||
/// type.
|
||
fn has_type(ty: Ty) -> Self {
|
||
Expectation { ty }
|
||
}
|
||
|
||
/// This expresses no expectation on the type.
|
||
fn none() -> Self {
|
||
Expectation { ty: Ty::Unknown }
|
||
}
|
||
}
|