rust-analyzer/crates/ra_hir_def/src/nameres/collector.rs
2020-07-14 18:31:48 +02:00

1241 lines
47 KiB
Rust

//! The core of the module-level name resolution algorithm.
//!
//! `DefCollector::collect` contains the fixed-point iteration loop which
//! resolves imports and expands macros.
use hir_expand::{
ast_id_map::FileAstId,
builtin_derive::find_builtin_derive,
builtin_macro::find_builtin_macro,
name::{name, AsName, Name},
proc_macro::ProcMacroExpander,
HirFileId, MacroCallId, MacroDefId, MacroDefKind,
};
use ra_cfg::CfgOptions;
use ra_db::{CrateId, FileId, ProcMacroId};
use ra_syntax::ast;
use rustc_hash::FxHashMap;
use test_utils::mark;
use crate::{
attr::Attrs,
db::DefDatabase,
item_scope::{ImportType, PerNsGlobImports},
item_tree::{
self, FileItemTreeId, ItemTree, ItemTreeId, MacroCall, Mod, ModItem, ModKind, StructDefKind,
},
nameres::{
diagnostics::DefDiagnostic, mod_resolution::ModDir, path_resolution::ReachedFixedPoint,
BuiltinShadowMode, CrateDefMap, ModuleData, ModuleOrigin, ResolveMode,
},
path::{ImportAlias, ModPath, PathKind},
per_ns::PerNs,
visibility::{RawVisibility, Visibility},
AdtId, AsMacroCall, AstId, AstIdWithPath, ConstLoc, ContainerId, EnumLoc, EnumVariantId,
FunctionLoc, ImplLoc, Intern, LocalModuleId, ModuleDefId, ModuleId, StaticLoc, StructLoc,
TraitLoc, TypeAliasLoc, UnionLoc,
};
pub(super) fn collect_defs(db: &dyn DefDatabase, mut def_map: CrateDefMap) -> CrateDefMap {
let crate_graph = db.crate_graph();
// populate external prelude
for dep in &crate_graph[def_map.krate].dependencies {
log::debug!("crate dep {:?} -> {:?}", dep.name, dep.crate_id);
let dep_def_map = db.crate_def_map(dep.crate_id);
def_map.extern_prelude.insert(
dep.as_name(),
ModuleId { krate: dep.crate_id, local_id: dep_def_map.root }.into(),
);
// look for the prelude
// If the dependency defines a prelude, we overwrite an already defined
// prelude. This is necessary to import the "std" prelude if a crate
// depends on both "core" and "std".
if dep_def_map.prelude.is_some() {
def_map.prelude = dep_def_map.prelude;
}
}
let cfg_options = &crate_graph[def_map.krate].cfg_options;
let proc_macros = &crate_graph[def_map.krate].proc_macro;
let proc_macros = proc_macros
.iter()
.enumerate()
.map(|(idx, it)| {
// FIXME: a hacky way to create a Name from string.
let name = tt::Ident { text: it.name.clone(), id: tt::TokenId::unspecified() };
(name.as_name(), ProcMacroExpander::new(def_map.krate, ProcMacroId(idx as u32)))
})
.collect();
let mut collector = DefCollector {
db,
def_map,
glob_imports: FxHashMap::default(),
unresolved_imports: Vec::new(),
resolved_imports: Vec::new(),
unexpanded_macros: Vec::new(),
unexpanded_attribute_macros: Vec::new(),
mod_dirs: FxHashMap::default(),
cfg_options,
proc_macros,
from_glob_import: Default::default(),
};
collector.collect();
collector.finish()
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum PartialResolvedImport {
/// None of any namespaces is resolved
Unresolved,
/// One of namespaces is resolved
Indeterminate(PerNs),
/// All namespaces are resolved, OR it is came from other crate
Resolved(PerNs),
}
impl PartialResolvedImport {
fn namespaces(&self) -> PerNs {
match self {
PartialResolvedImport::Unresolved => PerNs::none(),
PartialResolvedImport::Indeterminate(ns) => *ns,
PartialResolvedImport::Resolved(ns) => *ns,
}
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
struct Import {
pub path: ModPath,
pub alias: Option<ImportAlias>,
pub visibility: RawVisibility,
pub is_glob: bool,
pub is_prelude: bool,
pub is_extern_crate: bool,
pub is_macro_use: bool,
}
impl Import {
fn from_use(tree: &ItemTree, id: FileItemTreeId<item_tree::Import>) -> Self {
let it = &tree[id];
let visibility = &tree[it.visibility];
Self {
path: it.path.clone(),
alias: it.alias.clone(),
visibility: visibility.clone(),
is_glob: it.is_glob,
is_prelude: it.is_prelude,
is_extern_crate: false,
is_macro_use: false,
}
}
fn from_extern_crate(tree: &ItemTree, id: FileItemTreeId<item_tree::ExternCrate>) -> Self {
let it = &tree[id];
let visibility = &tree[it.visibility];
Self {
path: it.path.clone(),
alias: it.alias.clone(),
visibility: visibility.clone(),
is_glob: false,
is_prelude: false,
is_extern_crate: true,
is_macro_use: it.is_macro_use,
}
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
struct ImportDirective {
module_id: LocalModuleId,
import: Import,
status: PartialResolvedImport,
}
#[derive(Clone, Debug, Eq, PartialEq)]
struct MacroDirective {
module_id: LocalModuleId,
ast_id: AstIdWithPath<ast::MacroCall>,
legacy: Option<MacroCallId>,
depth: usize,
}
#[derive(Clone, Debug, Eq, PartialEq)]
struct DeriveDirective {
module_id: LocalModuleId,
ast_id: AstIdWithPath<ast::ModuleItem>,
}
struct DefData<'a> {
id: ModuleDefId,
name: &'a Name,
visibility: &'a RawVisibility,
has_constructor: bool,
}
/// Walks the tree of module recursively
struct DefCollector<'a> {
db: &'a dyn DefDatabase,
def_map: CrateDefMap,
glob_imports: FxHashMap<LocalModuleId, Vec<(LocalModuleId, Visibility)>>,
unresolved_imports: Vec<ImportDirective>,
resolved_imports: Vec<ImportDirective>,
unexpanded_macros: Vec<MacroDirective>,
unexpanded_attribute_macros: Vec<DeriveDirective>,
mod_dirs: FxHashMap<LocalModuleId, ModDir>,
cfg_options: &'a CfgOptions,
proc_macros: Vec<(Name, ProcMacroExpander)>,
from_glob_import: PerNsGlobImports,
}
impl DefCollector<'_> {
fn collect(&mut self) {
let file_id = self.db.crate_graph()[self.def_map.krate].root_file_id;
let item_tree = self.db.item_tree(file_id.into());
let module_id = self.def_map.root;
self.def_map.modules[module_id].origin = ModuleOrigin::CrateRoot { definition: file_id };
ModCollector {
def_collector: &mut *self,
macro_depth: 0,
module_id,
file_id: file_id.into(),
item_tree: &item_tree,
mod_dir: ModDir::root(),
}
.collect(item_tree.top_level_items());
// main name resolution fixed-point loop.
let mut i = 0;
loop {
self.db.check_canceled();
self.resolve_imports();
match self.resolve_macros() {
ReachedFixedPoint::Yes => break,
ReachedFixedPoint::No => i += 1,
}
if i == 10000 {
log::error!("name resolution is stuck");
break;
}
}
// Resolve all indeterminate resolved imports again
// As some of the macros will expand newly import shadowing partial resolved imports
// FIXME: We maybe could skip this, if we handle the Indetermine imports in `resolve_imports`
// correctly
let partial_resolved = self.resolved_imports.iter().filter_map(|directive| {
if let PartialResolvedImport::Indeterminate(_) = directive.status {
let mut directive = directive.clone();
directive.status = PartialResolvedImport::Unresolved;
Some(directive)
} else {
None
}
});
self.unresolved_imports.extend(partial_resolved);
self.resolve_imports();
let unresolved_imports = std::mem::replace(&mut self.unresolved_imports, Vec::new());
// show unresolved imports in completion, etc
for directive in unresolved_imports {
self.record_resolved_import(&directive)
}
// Record proc-macros
self.collect_proc_macro();
}
fn collect_proc_macro(&mut self) {
let proc_macros = std::mem::take(&mut self.proc_macros);
for (name, expander) in proc_macros {
let krate = self.def_map.krate;
let macro_id = MacroDefId {
ast_id: None,
krate: Some(krate),
kind: MacroDefKind::CustomDerive(expander),
local_inner: false,
};
self.define_proc_macro(name.clone(), macro_id);
}
}
/// Define a macro with `macro_rules`.
///
/// It will define the macro in legacy textual scope, and if it has `#[macro_export]`,
/// then it is also defined in the root module scope.
/// You can `use` or invoke it by `crate::macro_name` anywhere, before or after the definition.
///
/// It is surprising that the macro will never be in the current module scope.
/// These code fails with "unresolved import/macro",
/// ```rust,compile_fail
/// mod m { macro_rules! foo { () => {} } }
/// use m::foo as bar;
/// ```
///
/// ```rust,compile_fail
/// macro_rules! foo { () => {} }
/// self::foo!();
/// crate::foo!();
/// ```
///
/// Well, this code compiles, because the plain path `foo` in `use` is searched
/// in the legacy textual scope only.
/// ```rust
/// macro_rules! foo { () => {} }
/// use foo as bar;
/// ```
fn define_macro(
&mut self,
module_id: LocalModuleId,
name: Name,
macro_: MacroDefId,
export: bool,
) {
// Textual scoping
self.define_legacy_macro(module_id, name.clone(), macro_);
// Module scoping
// In Rust, `#[macro_export]` macros are unconditionally visible at the
// crate root, even if the parent modules is **not** visible.
if export {
self.update(
self.def_map.root,
&[(name, PerNs::macros(macro_, Visibility::Public))],
Visibility::Public,
ImportType::Named,
);
}
}
/// Define a legacy textual scoped macro in module
///
/// We use a map `legacy_macros` to store all legacy textual scoped macros visible per module.
/// It will clone all macros from parent legacy scope, whose definition is prior to
/// the definition of current module.
/// And also, `macro_use` on a module will import all legacy macros visible inside to
/// current legacy scope, with possible shadowing.
fn define_legacy_macro(&mut self, module_id: LocalModuleId, name: Name, mac: MacroDefId) {
// Always shadowing
self.def_map.modules[module_id].scope.define_legacy_macro(name, mac);
}
/// Define a proc macro
///
/// A proc macro is similar to normal macro scope, but it would not visiable in legacy textual scoped.
/// And unconditionally exported.
fn define_proc_macro(&mut self, name: Name, macro_: MacroDefId) {
self.update(
self.def_map.root,
&[(name, PerNs::macros(macro_, Visibility::Public))],
Visibility::Public,
ImportType::Named,
);
}
/// Import macros from `#[macro_use] extern crate`.
fn import_macros_from_extern_crate(
&mut self,
current_module_id: LocalModuleId,
import: &item_tree::ExternCrate,
) {
log::debug!(
"importing macros from extern crate: {:?} ({:?})",
import,
self.def_map.edition,
);
let res = self.def_map.resolve_name_in_extern_prelude(
&import
.path
.as_ident()
.expect("extern crate should have been desugared to one-element path"),
);
if let Some(ModuleDefId::ModuleId(m)) = res.take_types() {
mark::hit!(macro_rules_from_other_crates_are_visible_with_macro_use);
self.import_all_macros_exported(current_module_id, m.krate);
}
}
/// Import all exported macros from another crate
///
/// Exported macros are just all macros in the root module scope.
/// Note that it contains not only all `#[macro_export]` macros, but also all aliases
/// created by `use` in the root module, ignoring the visibility of `use`.
fn import_all_macros_exported(&mut self, current_module_id: LocalModuleId, krate: CrateId) {
let def_map = self.db.crate_def_map(krate);
for (name, def) in def_map[def_map.root].scope.macros() {
// `macro_use` only bring things into legacy scope.
self.define_legacy_macro(current_module_id, name.clone(), def);
}
}
/// Import resolution
///
/// This is a fix point algorithm. We resolve imports until no forward
/// progress in resolving imports is made
fn resolve_imports(&mut self) {
let mut n_previous_unresolved = self.unresolved_imports.len() + 1;
while self.unresolved_imports.len() < n_previous_unresolved {
n_previous_unresolved = self.unresolved_imports.len();
let imports = std::mem::replace(&mut self.unresolved_imports, Vec::new());
for mut directive in imports {
directive.status = self.resolve_import(directive.module_id, &directive.import);
match directive.status {
PartialResolvedImport::Indeterminate(_) => {
self.record_resolved_import(&directive);
// FIXME: For avoid performance regression,
// we consider an imported resolved if it is indeterminate (i.e not all namespace resolved)
self.resolved_imports.push(directive)
}
PartialResolvedImport::Resolved(_) => {
self.record_resolved_import(&directive);
self.resolved_imports.push(directive)
}
PartialResolvedImport::Unresolved => {
self.unresolved_imports.push(directive);
}
}
}
}
}
fn resolve_import(&self, module_id: LocalModuleId, import: &Import) -> PartialResolvedImport {
log::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition);
if import.is_extern_crate {
let res = self.def_map.resolve_name_in_extern_prelude(
&import
.path
.as_ident()
.expect("extern crate should have been desugared to one-element path"),
);
PartialResolvedImport::Resolved(res)
} else {
let res = self.def_map.resolve_path_fp_with_macro(
self.db,
ResolveMode::Import,
module_id,
&import.path,
BuiltinShadowMode::Module,
);
let def = res.resolved_def;
if res.reached_fixedpoint == ReachedFixedPoint::No || def.is_none() {
return PartialResolvedImport::Unresolved;
}
if let Some(krate) = res.krate {
if krate != self.def_map.krate {
return PartialResolvedImport::Resolved(def);
}
}
// Check whether all namespace is resolved
if def.take_types().is_some()
&& def.take_values().is_some()
&& def.take_macros().is_some()
{
PartialResolvedImport::Resolved(def)
} else {
PartialResolvedImport::Indeterminate(def)
}
}
}
fn record_resolved_import(&mut self, directive: &ImportDirective) {
let module_id = directive.module_id;
let import = &directive.import;
let def = directive.status.namespaces();
let vis = self
.def_map
.resolve_visibility(self.db, module_id, &directive.import.visibility)
.unwrap_or(Visibility::Public);
if import.is_glob {
log::debug!("glob import: {:?}", import);
match def.take_types() {
Some(ModuleDefId::ModuleId(m)) => {
if import.is_prelude {
mark::hit!(std_prelude);
self.def_map.prelude = Some(m);
} else if m.krate != self.def_map.krate {
mark::hit!(glob_across_crates);
// glob import from other crate => we can just import everything once
let item_map = self.db.crate_def_map(m.krate);
let scope = &item_map[m.local_id].scope;
// Module scoped macros is included
let items = scope
.resolutions()
// only keep visible names...
.map(|(n, res)| {
(n, res.filter_visibility(|v| v.is_visible_from_other_crate()))
})
.filter(|(_, res)| !res.is_none())
.collect::<Vec<_>>();
self.update(module_id, &items, vis, ImportType::Glob);
} else {
// glob import from same crate => we do an initial
// import, and then need to propagate any further
// additions
let scope = &self.def_map[m.local_id].scope;
// Module scoped macros is included
let items = scope
.resolutions()
// only keep visible names...
.map(|(n, res)| {
(
n,
res.filter_visibility(|v| {
v.is_visible_from_def_map(&self.def_map, module_id)
}),
)
})
.filter(|(_, res)| !res.is_none())
.collect::<Vec<_>>();
self.update(module_id, &items, vis, ImportType::Glob);
// record the glob import in case we add further items
let glob = self.glob_imports.entry(m.local_id).or_default();
if !glob.iter().any(|(mid, _)| *mid == module_id) {
glob.push((module_id, vis));
}
}
}
Some(ModuleDefId::AdtId(AdtId::EnumId(e))) => {
mark::hit!(glob_enum);
// glob import from enum => just import all the variants
// XXX: urgh, so this works by accident! Here, we look at
// the enum data, and, in theory, this might require us to
// look back at the crate_def_map, creating a cycle. For
// example, `enum E { crate::some_macro!(); }`. Luckely, the
// only kind of macro that is allowed inside enum is a
// `cfg_macro`, and we don't need to run name resolution for
// it, but this is sheer luck!
let enum_data = self.db.enum_data(e);
let resolutions = enum_data
.variants
.iter()
.map(|(local_id, variant_data)| {
let name = variant_data.name.clone();
let variant = EnumVariantId { parent: e, local_id };
let res = PerNs::both(variant.into(), variant.into(), vis);
(name, res)
})
.collect::<Vec<_>>();
self.update(module_id, &resolutions, vis, ImportType::Glob);
}
Some(d) => {
log::debug!("glob import {:?} from non-module/enum {:?}", import, d);
}
None => {
log::debug!("glob import {:?} didn't resolve as type", import);
}
}
} else {
match import.path.segments.last() {
Some(last_segment) => {
let name = match &import.alias {
Some(ImportAlias::Alias(name)) => name.clone(),
Some(ImportAlias::Underscore) => last_segment.clone(), // FIXME rust-analyzer#2736
None => last_segment.clone(),
};
log::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def);
// extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658
if import.is_extern_crate && module_id == self.def_map.root {
if let Some(def) = def.take_types() {
self.def_map.extern_prelude.insert(name.clone(), def);
}
}
self.update(module_id, &[(name, def)], vis, ImportType::Named);
}
None => mark::hit!(bogus_paths),
}
}
}
fn update(
&mut self,
module_id: LocalModuleId,
resolutions: &[(Name, PerNs)],
vis: Visibility,
import_type: ImportType,
) {
self.update_recursive(module_id, resolutions, vis, import_type, 0)
}
fn update_recursive(
&mut self,
module_id: LocalModuleId,
resolutions: &[(Name, PerNs)],
// All resolutions are imported with this visibility; the visibilies in
// the `PerNs` values are ignored and overwritten
vis: Visibility,
import_type: ImportType,
depth: usize,
) {
if depth > 100 {
// prevent stack overflows (but this shouldn't be possible)
panic!("infinite recursion in glob imports!");
}
let scope = &mut self.def_map.modules[module_id].scope;
let mut changed = false;
for (name, res) in resolutions {
changed |= scope.push_res_with_import(
&mut self.from_glob_import,
(module_id, name.clone()),
res.with_visibility(vis),
import_type,
);
}
if !changed {
return;
}
let glob_imports = self
.glob_imports
.get(&module_id)
.into_iter()
.flat_map(|v| v.iter())
.cloned()
.collect::<Vec<_>>();
for (glob_importing_module, glob_import_vis) in glob_imports {
// we know all resolutions have the same visibility (`vis`), so we
// just need to check that once
if !vis.is_visible_from_def_map(&self.def_map, glob_importing_module) {
continue;
}
self.update_recursive(
glob_importing_module,
resolutions,
glob_import_vis,
ImportType::Glob,
depth + 1,
);
}
}
fn resolve_macros(&mut self) -> ReachedFixedPoint {
let mut macros = std::mem::replace(&mut self.unexpanded_macros, Vec::new());
let mut attribute_macros =
std::mem::replace(&mut self.unexpanded_attribute_macros, Vec::new());
let mut resolved = Vec::new();
let mut res = ReachedFixedPoint::Yes;
macros.retain(|directive| {
if let Some(call_id) = directive.legacy {
res = ReachedFixedPoint::No;
resolved.push((directive.module_id, call_id, directive.depth));
return false;
}
if let Some(call_id) =
directive.ast_id.as_call_id(self.db, self.def_map.krate, |path| {
let resolved_res = self.def_map.resolve_path_fp_with_macro(
self.db,
ResolveMode::Other,
directive.module_id,
&path,
BuiltinShadowMode::Module,
);
resolved_res.resolved_def.take_macros()
})
{
resolved.push((directive.module_id, call_id, directive.depth));
res = ReachedFixedPoint::No;
return false;
}
true
});
attribute_macros.retain(|directive| {
if let Some(call_id) =
directive.ast_id.as_call_id(self.db, self.def_map.krate, |path| {
self.resolve_attribute_macro(&directive, &path)
})
{
resolved.push((directive.module_id, call_id, 0));
res = ReachedFixedPoint::No;
return false;
}
true
});
self.unexpanded_macros = macros;
self.unexpanded_attribute_macros = attribute_macros;
for (module_id, macro_call_id, depth) in resolved {
if depth > 1024 {
log::debug!("Max macro expansion depth reached");
continue;
}
self.collect_macro_expansion(module_id, macro_call_id, depth);
}
res
}
fn resolve_attribute_macro(
&self,
directive: &DeriveDirective,
path: &ModPath,
) -> Option<MacroDefId> {
if let Some(name) = path.as_ident() {
// FIXME this should actually be handled with the normal name
// resolution; the std lib defines built-in stubs for the derives,
// but these are new-style `macro`s, which we don't support yet
if let Some(def_id) = find_builtin_derive(name) {
return Some(def_id);
}
}
let resolved_res = self.def_map.resolve_path_fp_with_macro(
self.db,
ResolveMode::Other,
directive.module_id,
&path,
BuiltinShadowMode::Module,
);
resolved_res.resolved_def.take_macros()
}
fn collect_macro_expansion(
&mut self,
module_id: LocalModuleId,
macro_call_id: MacroCallId,
depth: usize,
) {
if depth > 100 {
mark::hit!(macro_expansion_overflow);
log::warn!("macro expansion is too deep");
return;
}
let file_id: HirFileId = macro_call_id.as_file();
let item_tree = self.db.item_tree(file_id);
let mod_dir = self.mod_dirs[&module_id].clone();
ModCollector {
def_collector: &mut *self,
macro_depth: depth,
file_id,
module_id,
item_tree: &item_tree,
mod_dir,
}
.collect(item_tree.top_level_items());
}
fn finish(self) -> CrateDefMap {
self.def_map
}
}
/// Walks a single module, populating defs, imports and macros
struct ModCollector<'a, 'b> {
def_collector: &'a mut DefCollector<'b>,
macro_depth: usize,
module_id: LocalModuleId,
file_id: HirFileId,
item_tree: &'a ItemTree,
mod_dir: ModDir,
}
impl ModCollector<'_, '_> {
fn collect(&mut self, items: &[ModItem]) {
// Note: don't assert that inserted value is fresh: it's simply not true
// for macros.
self.def_collector.mod_dirs.insert(self.module_id, self.mod_dir.clone());
// Prelude module is always considered to be `#[macro_use]`.
if let Some(prelude_module) = self.def_collector.def_map.prelude {
if prelude_module.krate != self.def_collector.def_map.krate {
mark::hit!(prelude_is_macro_use);
self.def_collector.import_all_macros_exported(self.module_id, prelude_module.krate);
}
}
// This should be processed eagerly instead of deferred to resolving.
// `#[macro_use] extern crate` is hoisted to imports macros before collecting
// any other items.
for item in items {
if self.is_cfg_enabled(self.item_tree.attrs((*item).into())) {
if let ModItem::ExternCrate(id) = item {
let import = self.item_tree[*id].clone();
if import.is_macro_use {
self.def_collector.import_macros_from_extern_crate(self.module_id, &import);
}
}
}
}
for &item in items {
let attrs = self.item_tree.attrs(item.into());
if self.is_cfg_enabled(attrs) {
let module =
ModuleId { krate: self.def_collector.def_map.krate, local_id: self.module_id };
let container = ContainerId::ModuleId(module);
let mut def = None;
match item {
ModItem::Mod(m) => self.collect_module(&self.item_tree[m], attrs),
ModItem::Import(import_id) => {
self.def_collector.unresolved_imports.push(ImportDirective {
module_id: self.module_id,
import: Import::from_use(&self.item_tree, import_id),
status: PartialResolvedImport::Unresolved,
})
}
ModItem::ExternCrate(import_id) => {
self.def_collector.unresolved_imports.push(ImportDirective {
module_id: self.module_id,
import: Import::from_extern_crate(&self.item_tree, import_id),
status: PartialResolvedImport::Unresolved,
})
}
ModItem::MacroCall(mac) => self.collect_macro(&self.item_tree[mac]),
ModItem::Impl(imp) => {
let module = ModuleId {
krate: self.def_collector.def_map.krate,
local_id: self.module_id,
};
let container = ContainerId::ModuleId(module);
let impl_id = ImplLoc { container, id: ItemTreeId::new(self.file_id, imp) }
.intern(self.def_collector.db);
self.def_collector.def_map.modules[self.module_id]
.scope
.define_impl(impl_id)
}
ModItem::Function(id) => {
let func = &self.item_tree[id];
def = Some(DefData {
id: FunctionLoc {
container: container.into(),
id: ItemTreeId::new(self.file_id, id),
}
.intern(self.def_collector.db)
.into(),
name: &func.name,
visibility: &self.item_tree[func.visibility],
has_constructor: false,
});
}
ModItem::Struct(id) => {
let it = &self.item_tree[id];
// FIXME: check attrs to see if this is an attribute macro invocation;
// in which case we don't add the invocation, just a single attribute
// macro invocation
self.collect_derives(attrs, it.ast_id.upcast());
def = Some(DefData {
id: StructLoc { container, id: ItemTreeId::new(self.file_id, id) }
.intern(self.def_collector.db)
.into(),
name: &it.name,
visibility: &self.item_tree[it.visibility],
has_constructor: it.kind != StructDefKind::Record,
});
}
ModItem::Union(id) => {
let it = &self.item_tree[id];
// FIXME: check attrs to see if this is an attribute macro invocation;
// in which case we don't add the invocation, just a single attribute
// macro invocation
self.collect_derives(attrs, it.ast_id.upcast());
def = Some(DefData {
id: UnionLoc { container, id: ItemTreeId::new(self.file_id, id) }
.intern(self.def_collector.db)
.into(),
name: &it.name,
visibility: &self.item_tree[it.visibility],
has_constructor: false,
});
}
ModItem::Enum(id) => {
let it = &self.item_tree[id];
// FIXME: check attrs to see if this is an attribute macro invocation;
// in which case we don't add the invocation, just a single attribute
// macro invocation
self.collect_derives(attrs, it.ast_id.upcast());
def = Some(DefData {
id: EnumLoc { container, id: ItemTreeId::new(self.file_id, id) }
.intern(self.def_collector.db)
.into(),
name: &it.name,
visibility: &self.item_tree[it.visibility],
has_constructor: false,
});
}
ModItem::Const(id) => {
let it = &self.item_tree[id];
if let Some(name) = &it.name {
def = Some(DefData {
id: ConstLoc {
container: container.into(),
id: ItemTreeId::new(self.file_id, id),
}
.intern(self.def_collector.db)
.into(),
name,
visibility: &self.item_tree[it.visibility],
has_constructor: false,
});
}
}
ModItem::Static(id) => {
let it = &self.item_tree[id];
def = Some(DefData {
id: StaticLoc { container, id: ItemTreeId::new(self.file_id, id) }
.intern(self.def_collector.db)
.into(),
name: &it.name,
visibility: &self.item_tree[it.visibility],
has_constructor: false,
});
}
ModItem::Trait(id) => {
let it = &self.item_tree[id];
def = Some(DefData {
id: TraitLoc { container, id: ItemTreeId::new(self.file_id, id) }
.intern(self.def_collector.db)
.into(),
name: &it.name,
visibility: &self.item_tree[it.visibility],
has_constructor: false,
});
}
ModItem::TypeAlias(id) => {
let it = &self.item_tree[id];
def = Some(DefData {
id: TypeAliasLoc {
container: container.into(),
id: ItemTreeId::new(self.file_id, id),
}
.intern(self.def_collector.db)
.into(),
name: &it.name,
visibility: &self.item_tree[it.visibility],
has_constructor: false,
});
}
}
if let Some(DefData { id, name, visibility, has_constructor }) = def {
self.def_collector.def_map.modules[self.module_id].scope.define_def(id);
let vis = self
.def_collector
.def_map
.resolve_visibility(self.def_collector.db, self.module_id, visibility)
.unwrap_or(Visibility::Public);
self.def_collector.update(
self.module_id,
&[(name.clone(), PerNs::from_def(id, vis, has_constructor))],
vis,
ImportType::Named,
)
}
}
}
}
fn collect_module(&mut self, module: &Mod, attrs: &Attrs) {
let path_attr = attrs.by_key("path").string_value();
let is_macro_use = attrs.by_key("macro_use").exists();
match &module.kind {
// inline module, just recurse
ModKind::Inline { items } => {
let module_id = self.push_child_module(
module.name.clone(),
AstId::new(self.file_id, module.ast_id),
None,
&self.item_tree[module.visibility],
);
ModCollector {
def_collector: &mut *self.def_collector,
macro_depth: self.macro_depth,
module_id,
file_id: self.file_id,
item_tree: self.item_tree,
mod_dir: self.mod_dir.descend_into_definition(&module.name, path_attr),
}
.collect(&*items);
if is_macro_use {
self.import_all_legacy_macros(module_id);
}
}
// out of line module, resolve, parse and recurse
ModKind::Outline {} => {
let ast_id = AstId::new(self.file_id, module.ast_id);
match self.mod_dir.resolve_declaration(
self.def_collector.db,
self.file_id,
&module.name,
path_attr,
) {
Ok((file_id, is_mod_rs, mod_dir)) => {
let module_id = self.push_child_module(
module.name.clone(),
ast_id,
Some((file_id, is_mod_rs)),
&self.item_tree[module.visibility],
);
let item_tree = self.def_collector.db.item_tree(file_id.into());
ModCollector {
def_collector: &mut *self.def_collector,
macro_depth: self.macro_depth,
module_id,
file_id: file_id.into(),
item_tree: &item_tree,
mod_dir,
}
.collect(item_tree.top_level_items());
if is_macro_use {
self.import_all_legacy_macros(module_id);
}
}
Err(candidate) => self.def_collector.def_map.diagnostics.push(
DefDiagnostic::UnresolvedModule {
module: self.module_id,
declaration: ast_id,
candidate,
},
),
};
}
}
}
fn push_child_module(
&mut self,
name: Name,
declaration: AstId<ast::Module>,
definition: Option<(FileId, bool)>,
visibility: &crate::visibility::RawVisibility,
) -> LocalModuleId {
let vis = self
.def_collector
.def_map
.resolve_visibility(self.def_collector.db, self.module_id, visibility)
.unwrap_or(Visibility::Public);
let modules = &mut self.def_collector.def_map.modules;
let res = modules.alloc(ModuleData::default());
modules[res].parent = Some(self.module_id);
modules[res].origin = match definition {
None => ModuleOrigin::Inline { definition: declaration },
Some((definition, is_mod_rs)) => {
ModuleOrigin::File { declaration, definition, is_mod_rs }
}
};
for (name, mac) in modules[self.module_id].scope.collect_legacy_macros() {
modules[res].scope.define_legacy_macro(name, mac)
}
modules[self.module_id].children.insert(name.clone(), res);
let module = ModuleId { krate: self.def_collector.def_map.krate, local_id: res };
let def: ModuleDefId = module.into();
self.def_collector.def_map.modules[self.module_id].scope.define_def(def);
self.def_collector.update(
self.module_id,
&[(name, PerNs::from_def(def, vis, false))],
vis,
ImportType::Named,
);
res
}
fn collect_derives(&mut self, attrs: &Attrs, ast_id: FileAstId<ast::ModuleItem>) {
for derive_subtree in attrs.by_key("derive").tt_values() {
// for #[derive(Copy, Clone)], `derive_subtree` is the `(Copy, Clone)` subtree
for tt in &derive_subtree.token_trees {
let ident = match &tt {
tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) => ident,
tt::TokenTree::Leaf(tt::Leaf::Punct(_)) => continue, // , is ok
_ => continue, // anything else would be an error (which we currently ignore)
};
let path = ModPath::from_tt_ident(ident);
let ast_id = AstIdWithPath::new(self.file_id, ast_id, path);
self.def_collector
.unexpanded_attribute_macros
.push(DeriveDirective { module_id: self.module_id, ast_id });
}
}
}
fn collect_macro(&mut self, mac: &MacroCall) {
let mut ast_id = AstIdWithPath::new(self.file_id, mac.ast_id, mac.path.clone());
// Case 0: builtin macros
if mac.is_builtin {
if let Some(name) = &mac.name {
let krate = self.def_collector.def_map.krate;
if let Some(macro_id) = find_builtin_macro(name, krate, ast_id.ast_id) {
self.def_collector.define_macro(
self.module_id,
name.clone(),
macro_id,
mac.is_export,
);
return;
}
}
}
// Case 1: macro rules, define a macro in crate-global mutable scope
if is_macro_rules(&mac.path) {
if let Some(name) = &mac.name {
let macro_id = MacroDefId {
ast_id: Some(ast_id.ast_id),
krate: Some(self.def_collector.def_map.krate),
kind: MacroDefKind::Declarative,
local_inner: mac.is_local_inner,
};
self.def_collector.define_macro(
self.module_id,
name.clone(),
macro_id,
mac.is_export,
);
}
return;
}
// Case 2: try to resolve in legacy scope and expand macro_rules
if let Some(macro_call_id) =
ast_id.as_call_id(self.def_collector.db, self.def_collector.def_map.krate, |path| {
path.as_ident().and_then(|name| {
self.def_collector.def_map[self.module_id].scope.get_legacy_macro(&name)
})
})
{
self.def_collector.unexpanded_macros.push(MacroDirective {
module_id: self.module_id,
ast_id,
legacy: Some(macro_call_id),
depth: self.macro_depth + 1,
});
return;
}
// Case 3: resolve in module scope, expand during name resolution.
// We rewrite simple path `macro_name` to `self::macro_name` to force resolve in module scope only.
if ast_id.path.is_ident() {
ast_id.path.kind = PathKind::Super(0);
}
self.def_collector.unexpanded_macros.push(MacroDirective {
module_id: self.module_id,
ast_id,
legacy: None,
depth: self.macro_depth + 1,
});
}
fn import_all_legacy_macros(&mut self, module_id: LocalModuleId) {
let macros = self.def_collector.def_map[module_id].scope.collect_legacy_macros();
for (name, macro_) in macros {
self.def_collector.define_legacy_macro(self.module_id, name.clone(), macro_);
}
}
fn is_cfg_enabled(&self, attrs: &Attrs) -> bool {
attrs.is_cfg_enabled(self.def_collector.cfg_options)
}
}
fn is_macro_rules(path: &ModPath) -> bool {
path.as_ident() == Some(&name![macro_rules])
}
#[cfg(test)]
mod tests {
use crate::{db::DefDatabase, test_db::TestDB};
use ra_arena::Arena;
use ra_db::{fixture::WithFixture, SourceDatabase};
use super::*;
fn do_collect_defs(db: &dyn DefDatabase, def_map: CrateDefMap) -> CrateDefMap {
let mut collector = DefCollector {
db,
def_map,
glob_imports: FxHashMap::default(),
unresolved_imports: Vec::new(),
resolved_imports: Vec::new(),
unexpanded_macros: Vec::new(),
unexpanded_attribute_macros: Vec::new(),
mod_dirs: FxHashMap::default(),
cfg_options: &CfgOptions::default(),
proc_macros: Default::default(),
from_glob_import: Default::default(),
};
collector.collect();
collector.def_map
}
fn do_resolve(code: &str) -> CrateDefMap {
let (db, _file_id) = TestDB::with_single_file(&code);
let krate = db.test_crate();
let def_map = {
let edition = db.crate_graph()[krate].edition;
let mut modules: Arena<ModuleData> = Arena::default();
let root = modules.alloc(ModuleData::default());
CrateDefMap {
krate,
edition,
extern_prelude: FxHashMap::default(),
prelude: None,
root,
modules,
diagnostics: Vec::new(),
}
};
do_collect_defs(&db, def_map)
}
#[test]
fn test_macro_expand_will_stop_1() {
do_resolve(
r#"
macro_rules! foo {
($($ty:ty)*) => { foo!($($ty)*); }
}
foo!(KABOOM);
"#,
);
}
#[ignore] // this test does succeed, but takes quite a while :/
#[test]
fn test_macro_expand_will_stop_2() {
do_resolve(
r#"
macro_rules! foo {
($($ty:ty)*) => { foo!($($ty)* $($ty)*); }
}
foo!(KABOOM);
"#,
);
}
}