rust-analyzer/crates/ra_assists/src/handlers/fill_match_arms.rs
2020-03-24 10:43:00 +02:00

659 lines
16 KiB
Rust

//! FIXME: write short doc here
use std::iter;
use hir::{Adt, HasSource, ModuleDef, Semantics};
use itertools::Itertools;
use ra_ide_db::RootDatabase;
use crate::{Assist, AssistCtx, AssistId};
use ra_syntax::ast::{self, edit::IndentLevel, make, AstNode, NameOwner};
use ast::{MatchArm, Pat};
// Assist: fill_match_arms
//
// Adds missing clauses to a `match` expression.
//
// ```
// enum Action { Move { distance: u32 }, Stop }
//
// fn handle(action: Action) {
// match action {
// <|>
// }
// }
// ```
// ->
// ```
// enum Action { Move { distance: u32 }, Stop }
//
// fn handle(action: Action) {
// match action {
// Action::Move { distance } => (),
// Action::Stop => (),
// }
// }
// ```
pub(crate) fn fill_match_arms(ctx: AssistCtx) -> Option<Assist> {
let match_expr = ctx.find_node_at_offset::<ast::MatchExpr>()?;
let match_arm_list = match_expr.match_arm_list()?;
let expr = match_expr.expr()?;
let mut arms: Vec<MatchArm> = match_arm_list.arms().collect();
if arms.len() == 1 {
if let Some(Pat::PlaceholderPat(..)) = arms[0].pat() {
arms.clear();
}
}
let module = ctx.sema.scope(expr.syntax()).module()?;
let missing_arms: Vec<MatchArm> = if let Some(enum_def) = resolve_enum_def(&ctx.sema, &expr) {
let variants = enum_def.variants(ctx.db);
variants
.into_iter()
.filter_map(|variant| build_pat(ctx.db, module, variant))
.filter(|variant_pat| is_variant_missing(&mut arms, variant_pat))
.map(|pat| make::match_arm(iter::once(pat), make::expr_unit()))
.collect()
} else if let Some(enum_defs) = resolve_tuple_of_enum_def(&ctx.sema, &expr) {
// Partial fill not currently supported for tuple of enums.
if !arms.is_empty() {
return None;
}
// We do not currently support filling match arms for a tuple
// containing a single enum.
if enum_defs.len() < 2 {
return None;
}
// When calculating the match arms for a tuple of enums, we want
// to create a match arm for each possible combination of enum
// values. The `multi_cartesian_product` method transforms
// Vec<Vec<EnumVariant>> into Vec<(EnumVariant, .., EnumVariant)>
// where each tuple represents a proposed match arm.
enum_defs
.into_iter()
.map(|enum_def| enum_def.variants(ctx.db))
.multi_cartesian_product()
.map(|variants| {
let patterns =
variants.into_iter().filter_map(|variant| build_pat(ctx.db, module, variant));
ast::Pat::from(make::tuple_pat(patterns))
})
.filter(|variant_pat| is_variant_missing(&mut arms, variant_pat))
.map(|pat| make::match_arm(iter::once(pat), make::expr_unit()))
.collect()
} else {
return None;
};
if missing_arms.is_empty() {
return None;
}
ctx.add_assist(AssistId("fill_match_arms"), "Fill match arms", |edit| {
arms.extend(missing_arms);
let indent_level = IndentLevel::from_node(match_arm_list.syntax());
let new_arm_list = indent_level.increase_indent(make::match_arm_list(arms));
edit.target(match_expr.syntax().text_range());
edit.set_cursor(expr.syntax().text_range().start());
edit.replace_ast(match_arm_list, new_arm_list);
})
}
fn is_variant_missing(existing_arms: &mut Vec<MatchArm>, var: &Pat) -> bool {
existing_arms.iter().filter_map(|arm| arm.pat()).all(|pat| {
// Special casee OrPat as separate top-level pats
let top_level_pats: Vec<Pat> = match pat {
Pat::OrPat(pats) => pats.pats().collect::<Vec<_>>(),
_ => vec![pat],
};
!top_level_pats.iter().any(|pat| does_pat_match_variant(pat, var))
})
}
fn does_pat_match_variant(pat: &Pat, var: &Pat) -> bool {
let pat_head = pat.syntax().first_child().map(|node| node.text());
let var_head = var.syntax().first_child().map(|node| node.text());
pat_head == var_head
}
fn resolve_enum_def(sema: &Semantics<RootDatabase>, expr: &ast::Expr) -> Option<hir::Enum> {
sema.type_of_expr(&expr)?.autoderef(sema.db).find_map(|ty| match ty.as_adt() {
Some(Adt::Enum(e)) => Some(e),
_ => None,
})
}
fn resolve_tuple_of_enum_def(
sema: &Semantics<RootDatabase>,
expr: &ast::Expr,
) -> Option<Vec<hir::Enum>> {
sema.type_of_expr(&expr)?
.tuple_fields(sema.db)
.iter()
.map(|ty| {
ty.autoderef(sema.db).find_map(|ty| match ty.as_adt() {
Some(Adt::Enum(e)) => Some(e),
// For now we only handle expansion for a tuple of enums. Here
// we map non-enum items to None and rely on `collect` to
// convert Vec<Option<hir::Enum>> into Option<Vec<hir::Enum>>.
_ => None,
})
})
.collect()
}
fn build_pat(db: &RootDatabase, module: hir::Module, var: hir::EnumVariant) -> Option<ast::Pat> {
let path =
crate::ast_transform::path_to_ast(module.find_use_path(db, ModuleDef::from(var).into())?);
// FIXME: use HIR for this; it doesn't currently expose struct vs. tuple vs. unit variants though
let pat: ast::Pat = match var.source(db).value.kind() {
ast::StructKind::Tuple(field_list) => {
let pats =
iter::repeat(make::placeholder_pat().into()).take(field_list.fields().count());
make::tuple_struct_pat(path, pats).into()
}
ast::StructKind::Record(field_list) => {
let pats = field_list.fields().map(|f| make::bind_pat(f.name().unwrap()).into());
make::record_pat(path, pats).into()
}
ast::StructKind::Unit => make::path_pat(path),
};
Some(pat)
}
#[cfg(test)]
mod tests {
use crate::helpers::{check_assist, check_assist_not_applicable, check_assist_target};
use super::fill_match_arms;
#[test]
fn all_match_arms_provided() {
check_assist_not_applicable(
fill_match_arms,
r#"
enum A {
As,
Bs{x:i32, y:Option<i32>},
Cs(i32, Option<i32>),
}
fn main() {
match A::As<|> {
A::As,
A::Bs{x,y:Some(_)} => (),
A::Cs(_, Some(_)) => (),
}
}
"#,
);
}
#[test]
fn tuple_of_non_enum() {
// for now this case is not handled, although it potentially could be
// in the future
check_assist_not_applicable(
fill_match_arms,
r#"
fn main() {
match (0, false)<|> {
}
}
"#,
);
}
#[test]
fn partial_fill_record_tuple() {
check_assist(
fill_match_arms,
r#"
enum A {
As,
Bs{x:i32, y:Option<i32>},
Cs(i32, Option<i32>),
}
fn main() {
match A::As<|> {
A::Bs{x,y:Some(_)} => (),
A::Cs(_, Some(_)) => (),
}
}
"#,
r#"
enum A {
As,
Bs{x:i32, y:Option<i32>},
Cs(i32, Option<i32>),
}
fn main() {
match <|>A::As {
A::Bs{x,y:Some(_)} => (),
A::Cs(_, Some(_)) => (),
A::As => (),
}
}
"#,
);
}
#[test]
fn partial_fill_or_pat() {
check_assist(
fill_match_arms,
r#"
enum A {
As,
Bs,
Cs(Option<i32>),
}
fn main() {
match A::As<|> {
A::Cs(_) | A::Bs => (),
}
}
"#,
r#"
enum A {
As,
Bs,
Cs(Option<i32>),
}
fn main() {
match <|>A::As {
A::Cs(_) | A::Bs => (),
A::As => (),
}
}
"#,
);
}
#[test]
fn partial_fill() {
check_assist(
fill_match_arms,
r#"
enum A {
As,
Bs,
Cs,
Ds(String),
Es(B),
}
enum B {
Xs,
Ys,
}
fn main() {
match A::As<|> {
A::Bs if 0 < 1 => (),
A::Ds(_value) => (),
A::Es(B::Xs) => (),
}
}
"#,
r#"
enum A {
As,
Bs,
Cs,
Ds(String),
Es(B),
}
enum B {
Xs,
Ys,
}
fn main() {
match <|>A::As {
A::Bs if 0 < 1 => (),
A::Ds(_value) => (),
A::Es(B::Xs) => (),
A::As => (),
A::Cs => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_empty_body() {
check_assist(
fill_match_arms,
r#"
enum A {
As,
Bs,
Cs(String),
Ds(String, String),
Es{ x: usize, y: usize }
}
fn main() {
let a = A::As;
match a<|> {}
}
"#,
r#"
enum A {
As,
Bs,
Cs(String),
Ds(String, String),
Es{ x: usize, y: usize }
}
fn main() {
let a = A::As;
match <|>a {
A::As => (),
A::Bs => (),
A::Cs(_) => (),
A::Ds(_, _) => (),
A::Es { x, y } => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_tuple_of_enum() {
check_assist(
fill_match_arms,
r#"
enum A {
One,
Two,
}
enum B {
One,
Two,
}
fn main() {
let a = A::One;
let b = B::One;
match (a<|>, b) {}
}
"#,
r#"
enum A {
One,
Two,
}
enum B {
One,
Two,
}
fn main() {
let a = A::One;
let b = B::One;
match <|>(a, b) {
(A::One, B::One) => (),
(A::One, B::Two) => (),
(A::Two, B::One) => (),
(A::Two, B::Two) => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_tuple_of_enum_ref() {
check_assist(
fill_match_arms,
r#"
enum A {
One,
Two,
}
enum B {
One,
Two,
}
fn main() {
let a = A::One;
let b = B::One;
match (&a<|>, &b) {}
}
"#,
r#"
enum A {
One,
Two,
}
enum B {
One,
Two,
}
fn main() {
let a = A::One;
let b = B::One;
match <|>(&a, &b) {
(A::One, B::One) => (),
(A::One, B::Two) => (),
(A::Two, B::One) => (),
(A::Two, B::Two) => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_tuple_of_enum_partial() {
check_assist_not_applicable(
fill_match_arms,
r#"
enum A {
One,
Two,
}
enum B {
One,
Two,
}
fn main() {
let a = A::One;
let b = B::One;
match (a<|>, b) {
(A::Two, B::One) => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_tuple_of_enum_not_applicable() {
check_assist_not_applicable(
fill_match_arms,
r#"
enum A {
One,
Two,
}
enum B {
One,
Two,
}
fn main() {
let a = A::One;
let b = B::One;
match (a<|>, b) {
(A::Two, B::One) => (),
(A::One, B::One) => (),
(A::One, B::Two) => (),
(A::Two, B::Two) => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_single_element_tuple_of_enum() {
// For now we don't hande the case of a single element tuple, but
// we could handle this in the future if `make::tuple_pat` allowed
// creating a tuple with a single pattern.
check_assist_not_applicable(
fill_match_arms,
r#"
enum A {
One,
Two,
}
fn main() {
let a = A::One;
match (a<|>, ) {
}
}
"#,
);
}
#[test]
fn test_fill_match_arm_refs() {
check_assist(
fill_match_arms,
r#"
enum A {
As,
}
fn foo(a: &A) {
match a<|> {
}
}
"#,
r#"
enum A {
As,
}
fn foo(a: &A) {
match <|>a {
A::As => (),
}
}
"#,
);
check_assist(
fill_match_arms,
r#"
enum A {
Es{ x: usize, y: usize }
}
fn foo(a: &mut A) {
match a<|> {
}
}
"#,
r#"
enum A {
Es{ x: usize, y: usize }
}
fn foo(a: &mut A) {
match <|>a {
A::Es { x, y } => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_target() {
check_assist_target(
fill_match_arms,
r#"
enum E { X, Y }
fn main() {
match E::X<|> {}
}
"#,
"match E::X {}",
);
}
#[test]
fn fill_match_arms_trivial_arm() {
check_assist(
fill_match_arms,
r#"
enum E { X, Y }
fn main() {
match E::X {
<|>_ => {},
}
}
"#,
r#"
enum E { X, Y }
fn main() {
match <|>E::X {
E::X => (),
E::Y => (),
}
}
"#,
);
}
#[test]
fn fill_match_arms_qualifies_path() {
check_assist(
fill_match_arms,
r#"
mod foo { pub enum E { X, Y } }
use foo::E::X;
fn main() {
match X {
<|>
}
}
"#,
r#"
mod foo { pub enum E { X, Y } }
use foo::E::X;
fn main() {
match <|>X {
X => (),
foo::E::Y => (),
}
}
"#,
);
}
}