rust-analyzer/crates/ra_hir/src/code_model.rs
2019-11-25 00:12:36 +03:00

1076 lines
31 KiB
Rust

//! FIXME: write short doc here
pub(crate) mod src;
use std::sync::Arc;
use hir_def::{
adt::VariantData,
builtin_type::BuiltinType,
docs::Documentation,
per_ns::PerNs,
resolver::{HasResolver, TypeNs},
type_ref::TypeRef,
AstItemDef, ConstId, ContainerId, EnumId, FunctionId, HasModule, ImplId, LocalEnumVariantId,
LocalImportId, LocalModuleId, LocalStructFieldId, Lookup, ModuleId, StaticId, StructId,
TraitId, TypeAliasId, UnionId,
};
use hir_expand::{
diagnostics::DiagnosticSink,
name::{self, AsName},
AstId, MacroDefId,
};
use ra_db::{CrateId, Edition, FileId, FilePosition};
use ra_syntax::{ast, AstNode, SyntaxNode};
use crate::{
db::{DefDatabase, HirDatabase},
expr::{BindingAnnotation, Body, BodySourceMap, ExprValidator, Pat, PatId},
ty::{InferenceResult, Namespace, TraitRef},
Either, Name, Source, Ty,
};
/// hir::Crate describes a single crate. It's the main interface with which
/// a crate's dependencies interact. Mostly, it should be just a proxy for the
/// root module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Crate {
pub(crate) crate_id: CrateId,
}
#[derive(Debug)]
pub struct CrateDependency {
pub krate: Crate,
pub name: Name,
}
impl Crate {
pub fn crate_id(self) -> CrateId {
self.crate_id
}
pub fn dependencies(self, db: &impl DefDatabase) -> Vec<CrateDependency> {
db.crate_graph()
.dependencies(self.crate_id)
.map(|dep| {
let krate = Crate { crate_id: dep.crate_id() };
let name = dep.as_name();
CrateDependency { krate, name }
})
.collect()
}
pub fn root_module(self, db: &impl DefDatabase) -> Option<Module> {
let module_id = db.crate_def_map(self.crate_id).root;
Some(Module::new(self, module_id))
}
pub fn edition(self, db: &impl DefDatabase) -> Edition {
let crate_graph = db.crate_graph();
crate_graph.edition(self.crate_id)
}
pub fn all(db: &impl DefDatabase) -> Vec<Crate> {
db.crate_graph().iter().map(|crate_id| Crate { crate_id }).collect()
}
}
pub enum ModuleSource {
SourceFile(ast::SourceFile),
Module(ast::Module),
}
impl ModuleSource {
pub fn new(
db: &impl DefDatabase,
file_id: Option<FileId>,
decl_id: Option<AstId<ast::Module>>,
) -> ModuleSource {
match (file_id, decl_id) {
(Some(file_id), _) => {
let source_file = db.parse(file_id).tree();
ModuleSource::SourceFile(source_file)
}
(None, Some(item_id)) => {
let module = item_id.to_node(db);
assert!(module.item_list().is_some(), "expected inline module");
ModuleSource::Module(module)
}
(None, None) => panic!(),
}
}
// FIXME: this methods do not belong here
pub fn from_position(db: &impl DefDatabase, position: FilePosition) -> ModuleSource {
let parse = db.parse(position.file_id);
match &ra_syntax::algo::find_node_at_offset::<ast::Module>(
parse.tree().syntax(),
position.offset,
) {
Some(m) if !m.has_semi() => ModuleSource::Module(m.clone()),
_ => {
let source_file = parse.tree();
ModuleSource::SourceFile(source_file)
}
}
}
pub fn from_child_node(db: &impl DefDatabase, child: Source<&SyntaxNode>) -> ModuleSource {
if let Some(m) =
child.value.ancestors().filter_map(ast::Module::cast).find(|it| !it.has_semi())
{
ModuleSource::Module(m)
} else {
let file_id = child.file_id.original_file(db);
let source_file = db.parse(file_id).tree();
ModuleSource::SourceFile(source_file)
}
}
pub fn from_file_id(db: &impl DefDatabase, file_id: FileId) -> ModuleSource {
let source_file = db.parse(file_id).tree();
ModuleSource::SourceFile(source_file)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Module {
pub(crate) id: ModuleId,
}
/// The defs which can be visible in the module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ModuleDef {
Module(Module),
Function(Function),
Adt(Adt),
// Can't be directly declared, but can be imported.
EnumVariant(EnumVariant),
Const(Const),
Static(Static),
Trait(Trait),
TypeAlias(TypeAlias),
BuiltinType(BuiltinType),
}
impl_froms!(
ModuleDef: Module,
Function,
Adt(Struct, Enum, Union),
EnumVariant,
Const,
Static,
Trait,
TypeAlias,
BuiltinType
);
pub use hir_def::attr::Attrs;
impl Module {
pub(crate) fn new(krate: Crate, crate_module_id: LocalModuleId) -> Module {
Module { id: ModuleId { krate: krate.crate_id, module_id: crate_module_id } }
}
/// Name of this module.
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
let def_map = db.crate_def_map(self.id.krate);
let parent = def_map[self.id.module_id].parent?;
def_map[parent].children.iter().find_map(|(name, module_id)| {
if *module_id == self.id.module_id {
Some(name.clone())
} else {
None
}
})
}
/// Returns the crate this module is part of.
pub fn krate(self) -> Crate {
Crate { crate_id: self.id.krate }
}
/// Topmost parent of this module. Every module has a `crate_root`, but some
/// might be missing `krate`. This can happen if a module's file is not included
/// in the module tree of any target in `Cargo.toml`.
pub fn crate_root(self, db: &impl DefDatabase) -> Module {
let def_map = db.crate_def_map(self.id.krate);
self.with_module_id(def_map.root)
}
/// Finds a child module with the specified name.
pub fn child(self, db: &impl DefDatabase, name: &Name) -> Option<Module> {
let def_map = db.crate_def_map(self.id.krate);
let child_id = def_map[self.id.module_id].children.get(name)?;
Some(self.with_module_id(*child_id))
}
/// Iterates over all child modules.
pub fn children(self, db: &impl DefDatabase) -> impl Iterator<Item = Module> {
let def_map = db.crate_def_map(self.id.krate);
let children = def_map[self.id.module_id]
.children
.iter()
.map(|(_, module_id)| self.with_module_id(*module_id))
.collect::<Vec<_>>();
children.into_iter()
}
/// Finds a parent module.
pub fn parent(self, db: &impl DefDatabase) -> Option<Module> {
let def_map = db.crate_def_map(self.id.krate);
let parent_id = def_map[self.id.module_id].parent?;
Some(self.with_module_id(parent_id))
}
pub fn path_to_root(self, db: &impl HirDatabase) -> Vec<Module> {
let mut res = vec![self];
let mut curr = self;
while let Some(next) = curr.parent(db) {
res.push(next);
curr = next
}
res
}
/// Returns a `ModuleScope`: a set of items, visible in this module.
pub fn scope(self, db: &impl HirDatabase) -> Vec<(Name, ScopeDef, Option<Import>)> {
db.crate_def_map(self.id.krate)[self.id.module_id]
.scope
.entries()
.map(|(name, res)| {
(name.clone(), res.def.into(), res.import.map(|id| Import { parent: self, id }))
})
.collect()
}
pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
db.crate_def_map(self.id.krate).add_diagnostics(db, self.id.module_id, sink);
for decl in self.declarations(db) {
match decl {
crate::ModuleDef::Function(f) => f.diagnostics(db, sink),
crate::ModuleDef::Module(m) => {
// Only add diagnostics from inline modules
if let ModuleSource::Module(_) = m.definition_source(db).value {
m.diagnostics(db, sink)
}
}
_ => (),
}
}
for impl_block in self.impl_blocks(db) {
for item in impl_block.items(db) {
if let AssocItem::Function(f) = item {
f.diagnostics(db, sink);
}
}
}
}
pub fn declarations(self, db: &impl DefDatabase) -> Vec<ModuleDef> {
let def_map = db.crate_def_map(self.id.krate);
def_map[self.id.module_id].scope.declarations().map(ModuleDef::from).collect()
}
pub fn impl_blocks(self, db: &impl DefDatabase) -> Vec<ImplBlock> {
let def_map = db.crate_def_map(self.id.krate);
def_map[self.id.module_id].impls.iter().copied().map(ImplBlock::from).collect()
}
fn with_module_id(self, module_id: LocalModuleId) -> Module {
Module::new(self.krate(), module_id)
}
}
pub struct Import {
pub(crate) parent: Module,
pub(crate) id: LocalImportId,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct StructField {
pub(crate) parent: VariantDef,
pub(crate) id: LocalStructFieldId,
}
#[derive(Debug, PartialEq, Eq)]
pub enum FieldSource {
Named(ast::RecordFieldDef),
Pos(ast::TupleFieldDef),
}
impl StructField {
pub fn name(&self, db: &impl HirDatabase) -> Name {
self.parent.variant_data(db).fields()[self.id].name.clone()
}
pub fn ty(&self, db: &impl HirDatabase) -> Ty {
db.field_types(self.parent.into())[self.id].clone()
}
pub fn parent_def(&self, _db: &impl HirDatabase) -> VariantDef {
self.parent
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Struct {
pub(crate) id: StructId,
}
impl Struct {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.0.module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.struct_data(self.id.into()).name.clone()
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
db.struct_data(self.id.into())
.variant_data
.fields()
.iter()
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
pub fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
db.struct_data(self.id.into())
.variant_data
.fields()
.iter()
.find(|(_id, data)| data.name == *name)
.map(|(id, _)| StructField { parent: self.into(), id })
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
pub fn constructor_ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Values)
}
fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
db.struct_data(self.id.into()).variant_data.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Union {
pub(crate) id: UnionId,
}
impl Union {
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.struct_data(self.id.into()).name.clone()
}
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.0.module(db) }
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Enum {
pub(crate) id: EnumId,
}
impl Enum {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.enum_data(self.id).name.clone()
}
pub fn variants(self, db: &impl DefDatabase) -> Vec<EnumVariant> {
db.enum_data(self.id)
.variants
.iter()
.map(|(id, _)| EnumVariant { parent: self, id })
.collect()
}
pub fn variant(self, db: &impl DefDatabase, name: &Name) -> Option<EnumVariant> {
db.enum_data(self.id)
.variants
.iter()
.find(|(_id, data)| data.name.as_ref() == Some(name))
.map(|(id, _)| EnumVariant { parent: self, id })
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct EnumVariant {
pub(crate) parent: Enum,
pub(crate) id: LocalEnumVariantId,
}
impl EnumVariant {
pub fn module(self, db: &impl HirDatabase) -> Module {
self.parent.module(db)
}
pub fn parent_enum(self, _db: &impl DefDatabase) -> Enum {
self.parent
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.enum_data(self.parent.id).variants[self.id].name.clone()
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
self.variant_data(db)
.fields()
.iter()
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
pub fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
self.variant_data(db)
.fields()
.iter()
.find(|(_id, data)| data.name == *name)
.map(|(id, _)| StructField { parent: self.into(), id })
}
pub(crate) fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
db.enum_data(self.parent.id).variants[self.id].variant_data.clone()
}
}
/// A Data Type
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adt {
Struct(Struct),
Union(Union),
Enum(Enum),
}
impl_froms!(Adt: Struct, Union, Enum);
impl Adt {
pub fn ty(self, db: &impl HirDatabase) -> Ty {
match self {
Adt::Struct(it) => it.ty(db),
Adt::Union(it) => it.ty(db),
Adt::Enum(it) => it.ty(db),
}
}
pub fn module(self, db: &impl DefDatabase) -> Module {
match self {
Adt::Struct(s) => s.module(db),
Adt::Union(s) => s.module(db),
Adt::Enum(e) => e.module(db),
}
}
pub fn krate(self, db: &impl HirDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum VariantDef {
Struct(Struct),
EnumVariant(EnumVariant),
}
impl_froms!(VariantDef: Struct, EnumVariant);
impl VariantDef {
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
match self {
VariantDef::Struct(it) => it.fields(db),
VariantDef::EnumVariant(it) => it.fields(db),
}
}
pub(crate) fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
match self {
VariantDef::Struct(it) => it.field(db, name),
VariantDef::EnumVariant(it) => it.field(db, name),
}
}
pub fn module(self, db: &impl HirDatabase) -> Module {
match self {
VariantDef::Struct(it) => it.module(db),
VariantDef::EnumVariant(it) => it.module(db),
}
}
pub(crate) fn variant_data(self, db: &impl DefDatabase) -> Arc<VariantData> {
match self {
VariantDef::Struct(it) => it.variant_data(db),
VariantDef::EnumVariant(it) => it.variant_data(db),
}
}
}
/// The defs which have a body.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum DefWithBody {
Function(Function),
Static(Static),
Const(Const),
}
impl_froms!(DefWithBody: Function, Const, Static);
impl DefWithBody {
pub(crate) fn krate(self, db: &impl HirDatabase) -> Option<Crate> {
match self {
DefWithBody::Const(c) => c.krate(db),
DefWithBody::Function(f) => f.krate(db),
DefWithBody::Static(s) => s.krate(db),
}
}
pub fn module(self, db: &impl HirDatabase) -> Module {
match self {
DefWithBody::Const(c) => c.module(db),
DefWithBody::Function(f) => f.module(db),
DefWithBody::Static(s) => s.module(db),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Function {
pub(crate) id: FunctionId,
}
impl Function {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.lookup(db).module(db).into()
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl HirDatabase) -> Name {
db.function_data(self.id).name.clone()
}
pub fn has_self_param(self, db: &impl HirDatabase) -> bool {
db.function_data(self.id).has_self_param
}
pub fn params(self, db: &impl HirDatabase) -> Vec<TypeRef> {
db.function_data(self.id).params.clone()
}
pub fn body_source_map(self, db: &impl HirDatabase) -> Arc<BodySourceMap> {
db.body_with_source_map(self.id.into()).1
}
pub fn body(self, db: &impl HirDatabase) -> Arc<Body> {
db.body(self.id.into())
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Values)
}
pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
/// The containing impl block, if this is a method.
pub fn impl_block(self, db: &impl DefDatabase) -> Option<ImplBlock> {
match self.container(db) {
Some(Container::ImplBlock(it)) => Some(it),
_ => None,
}
}
/// The containing trait, if this is a trait method definition.
pub fn parent_trait(self, db: &impl DefDatabase) -> Option<Trait> {
match self.container(db) {
Some(Container::Trait(it)) => Some(it),
_ => None,
}
}
pub fn container(self, db: &impl DefDatabase) -> Option<Container> {
match self.id.lookup(db).container {
ContainerId::TraitId(it) => Some(Container::Trait(it.into())),
ContainerId::ImplId(it) => Some(Container::ImplBlock(it.into())),
ContainerId::ModuleId(_) => None,
}
}
pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
let infer = self.infer(db);
infer.add_diagnostics(db, self, sink);
let mut validator = ExprValidator::new(self, infer, sink);
validator.validate_body(db);
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Const {
pub(crate) id: ConstId,
}
impl Const {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn name(self, db: &impl HirDatabase) -> Option<Name> {
db.const_data(self.id).name.clone()
}
pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
/// The containing impl block, if this is a type alias.
pub fn impl_block(self, db: &impl DefDatabase) -> Option<ImplBlock> {
match self.container(db) {
Some(Container::ImplBlock(it)) => Some(it),
_ => None,
}
}
/// The containing trait, if this is a trait type alias definition.
pub fn parent_trait(self, db: &impl DefDatabase) -> Option<Trait> {
match self.container(db) {
Some(Container::Trait(it)) => Some(it),
_ => None,
}
}
pub fn container(self, db: &impl DefDatabase) -> Option<Container> {
match self.id.lookup(db).container {
ContainerId::TraitId(it) => Some(Container::Trait(it.into())),
ContainerId::ImplId(it) => Some(Container::ImplBlock(it.into())),
ContainerId::ModuleId(_) => None,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Static {
pub(crate) id: StaticId,
}
impl Static {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Trait {
pub(crate) id: TraitId,
}
impl Trait {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.module(db) }
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.trait_data(self.id).name.clone()
}
pub fn items(self, db: &impl DefDatabase) -> Vec<AssocItem> {
db.trait_data(self.id).items.iter().map(|it| (*it).into()).collect()
}
fn direct_super_traits(self, db: &impl HirDatabase) -> Vec<Trait> {
let resolver = self.id.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
db.generic_params(self.id.into())
.where_predicates
.iter()
.filter_map(|pred| match &pred.type_ref {
TypeRef::Path(p) if p.as_ident() == Some(&name::SELF_TYPE) => pred.bound.as_path(),
_ => None,
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path) {
Some(TypeNs::TraitId(t)) => Some(t),
_ => None,
})
.map(Trait::from)
.collect()
}
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub fn all_super_traits(self, db: &impl HirDatabase) -> Vec<Trait> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![self];
let mut i = 0;
while i < result.len() {
let t = result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in t.direct_super_traits(db) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
pub fn associated_type_by_name(self, db: &impl DefDatabase, name: &Name) -> Option<TypeAlias> {
let trait_data = db.trait_data(self.id);
let res =
trait_data.associated_types().map(TypeAlias::from).find(|t| &t.name(db) == name)?;
Some(res)
}
pub fn associated_type_by_name_including_super_traits(
self,
db: &impl HirDatabase,
name: &Name,
) -> Option<TypeAlias> {
self.all_super_traits(db).into_iter().find_map(|t| t.associated_type_by_name(db, name))
}
pub fn trait_ref(self, db: &impl HirDatabase) -> TraitRef {
TraitRef::for_trait(db, self)
}
pub fn is_auto(self, db: &impl DefDatabase) -> bool {
db.trait_data(self.id).auto
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeAlias {
pub(crate) id: TypeAliasId,
}
impl TypeAlias {
pub fn module(self, db: &impl DefDatabase) -> Module {
Module { id: self.id.lookup(db).module(db) }
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
Some(self.module(db).krate())
}
/// The containing impl block, if this is a type alias.
pub fn impl_block(self, db: &impl DefDatabase) -> Option<ImplBlock> {
match self.container(db) {
Some(Container::ImplBlock(it)) => Some(it),
_ => None,
}
}
/// The containing trait, if this is a trait type alias definition.
pub fn parent_trait(self, db: &impl DefDatabase) -> Option<Trait> {
match self.container(db) {
Some(Container::Trait(it)) => Some(it),
_ => None,
}
}
pub fn container(self, db: &impl DefDatabase) -> Option<Container> {
match self.id.lookup(db).container {
ContainerId::TraitId(it) => Some(Container::Trait(it.into())),
ContainerId::ImplId(it) => Some(Container::ImplBlock(it.into())),
ContainerId::ModuleId(_) => None,
}
}
pub fn type_ref(self, db: &impl DefDatabase) -> Option<TypeRef> {
db.type_alias_data(self.id).type_ref.clone()
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.type_alias_data(self.id).name.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct MacroDef {
pub(crate) id: MacroDefId,
}
impl MacroDef {}
pub enum Container {
Trait(Trait),
ImplBlock(ImplBlock),
}
impl_froms!(Container: Trait, ImplBlock);
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AssocItem {
Function(Function),
Const(Const),
TypeAlias(TypeAlias),
}
// FIXME: not every function, ... is actually an assoc item. maybe we should make
// sure that you can only turn actual assoc items into AssocItems. This would
// require not implementing From, and instead having some checked way of
// casting them, and somehow making the constructors private, which would be annoying.
impl_froms!(AssocItem: Function, Const, TypeAlias);
impl AssocItem {
pub fn module(self, db: &impl DefDatabase) -> Module {
match self {
AssocItem::Function(f) => f.module(db),
AssocItem::Const(c) => c.module(db),
AssocItem::TypeAlias(t) => t.module(db),
}
}
pub fn container(self, db: &impl DefDatabase) -> Container {
match self {
AssocItem::Function(f) => f.container(db),
AssocItem::Const(c) => c.container(db),
AssocItem::TypeAlias(t) => t.container(db),
}
.expect("AssocItem without container")
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum GenericDef {
Function(Function),
Adt(Adt),
Trait(Trait),
TypeAlias(TypeAlias),
ImplBlock(ImplBlock),
// enum variants cannot have generics themselves, but their parent enums
// can, and this makes some code easier to write
EnumVariant(EnumVariant),
// consts can have type parameters from their parents (i.e. associated consts of traits)
Const(Const),
}
impl_froms!(
GenericDef: Function,
Adt(Struct, Enum, Union),
Trait,
TypeAlias,
ImplBlock,
EnumVariant,
Const
);
impl From<AssocItem> for GenericDef {
fn from(item: AssocItem) -> Self {
match item {
AssocItem::Function(f) => f.into(),
AssocItem::Const(c) => c.into(),
AssocItem::TypeAlias(t) => t.into(),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Local {
pub(crate) parent: DefWithBody,
pub(crate) pat_id: PatId,
}
impl Local {
pub fn name(self, db: &impl HirDatabase) -> Option<Name> {
let body = db.body(self.parent.into());
match &body[self.pat_id] {
Pat::Bind { name, .. } => Some(name.clone()),
_ => None,
}
}
pub fn is_self(self, db: &impl HirDatabase) -> bool {
self.name(db) == Some(name::SELF_PARAM)
}
pub fn is_mut(self, db: &impl HirDatabase) -> bool {
let body = db.body(self.parent.into());
match &body[self.pat_id] {
Pat::Bind { mode, .. } => match mode {
BindingAnnotation::Mutable | BindingAnnotation::RefMut => true,
_ => false,
},
_ => false,
}
}
pub fn parent(self, _db: &impl HirDatabase) -> DefWithBody {
self.parent
}
pub fn module(self, db: &impl HirDatabase) -> Module {
self.parent.module(db)
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
let infer = db.infer(self.parent);
infer[self.pat_id].clone()
}
pub fn source(self, db: &impl HirDatabase) -> Source<Either<ast::BindPat, ast::SelfParam>> {
let (_body, source_map) = db.body_with_source_map(self.parent.into());
let src = source_map.pat_syntax(self.pat_id).unwrap(); // Hmm...
let root = src.file_syntax(db);
src.map(|ast| ast.map(|it| it.cast().unwrap().to_node(&root), |it| it.to_node(&root)))
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct GenericParam {
pub(crate) parent: GenericDef,
pub(crate) idx: u32,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct ImplBlock {
pub(crate) id: ImplId,
}
impl ImplBlock {
pub fn target_trait(&self, db: &impl DefDatabase) -> Option<TypeRef> {
db.impl_data(self.id).target_trait.clone()
}
pub fn target_type(&self, db: &impl DefDatabase) -> TypeRef {
db.impl_data(self.id).target_type.clone()
}
pub fn target_ty(&self, db: &impl HirDatabase) -> Ty {
Ty::from_hir(db, &self.id.resolver(db), &self.target_type(db))
}
pub fn target_trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> {
let target_ty = self.target_ty(db);
TraitRef::from_hir(db, &self.id.resolver(db), &self.target_trait(db)?, Some(target_ty))
}
pub fn items(&self, db: &impl DefDatabase) -> Vec<AssocItem> {
db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect()
}
pub fn is_negative(&self, db: &impl DefDatabase) -> bool {
db.impl_data(self.id).is_negative
}
pub fn module(&self, db: &impl DefDatabase) -> Module {
self.id.module(db).into()
}
pub fn krate(&self, db: &impl DefDatabase) -> Crate {
Crate { crate_id: self.module(db).id.krate }
}
}
/// For IDE only
pub enum ScopeDef {
ModuleDef(ModuleDef),
MacroDef(MacroDef),
GenericParam(GenericParam),
ImplSelfType(ImplBlock),
AdtSelfType(Adt),
Local(Local),
Unknown,
}
impl From<PerNs> for ScopeDef {
fn from(def: PerNs) -> Self {
def.take_types()
.or_else(|| def.take_values())
.map(|module_def_id| ScopeDef::ModuleDef(module_def_id.into()))
.or_else(|| {
def.take_macros().map(|macro_def_id| ScopeDef::MacroDef(macro_def_id.into()))
})
.unwrap_or(ScopeDef::Unknown)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AttrDef {
Module(Module),
StructField(StructField),
Adt(Adt),
Function(Function),
EnumVariant(EnumVariant),
Static(Static),
Const(Const),
Trait(Trait),
TypeAlias(TypeAlias),
MacroDef(MacroDef),
}
impl_froms!(
AttrDef: Module,
StructField,
Adt(Struct, Enum, Union),
EnumVariant,
Static,
Const,
Function,
Trait,
TypeAlias,
MacroDef
);
pub trait HasAttrs {
fn attrs(self, db: &impl DefDatabase) -> Attrs;
}
impl<T: Into<AttrDef>> HasAttrs for T {
fn attrs(self, db: &impl DefDatabase) -> Attrs {
let def: AttrDef = self.into();
db.attrs(def.into())
}
}
pub trait Docs {
fn docs(&self, db: &impl HirDatabase) -> Option<Documentation>;
}
impl<T: Into<AttrDef> + Copy> Docs for T {
fn docs(&self, db: &impl HirDatabase) -> Option<Documentation> {
let def: AttrDef = (*self).into();
db.documentation(def.into())
}
}