rust-analyzer/crates/hir-ty/src/infer.rs
bors 5df53c9612 Auto merge of #16351 - Veykril:eager-enum-variant, r=Veykril
internal: Eagerly lower enum variants in CrateDefMap construction
2024-01-16 08:39:13 +00:00

1509 lines
58 KiB
Rust

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
mod cast;
pub(crate) mod closure;
mod coerce;
mod expr;
mod mutability;
mod pat;
mod path;
pub(crate) mod unify;
use std::{convert::identity, ops::Index};
use chalk_ir::{
cast::Cast, fold::TypeFoldable, interner::HasInterner, DebruijnIndex, Mutability, Safety,
Scalar, TyKind, TypeFlags,
};
use either::Either;
use hir_def::{
body::Body,
builtin_type::{BuiltinInt, BuiltinType, BuiltinUint},
data::{ConstData, StaticData},
hir::LabelId,
hir::{BindingAnnotation, BindingId, ExprId, ExprOrPatId, PatId},
lang_item::{LangItem, LangItemTarget},
layout::Integer,
path::{ModPath, Path},
resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
type_ref::TypeRef,
AdtId, AssocItemId, DefWithBodyId, FieldId, FunctionId, ItemContainerId, Lookup, TraitId,
TupleFieldId, TupleId, TypeAliasId, VariantId,
};
use hir_expand::name::{name, Name};
use indexmap::IndexSet;
use la_arena::{ArenaMap, Entry};
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::{always, never};
use triomphe::Arc;
use crate::{
db::HirDatabase,
fold_tys,
infer::coerce::CoerceMany,
lower::ImplTraitLoweringMode,
static_lifetime, to_assoc_type_id,
traits::FnTrait,
utils::{InTypeConstIdMetadata, UnevaluatedConstEvaluatorFolder},
AliasEq, AliasTy, ClosureId, DomainGoal, GenericArg, Goal, ImplTraitId, InEnvironment,
Interner, ProjectionTy, RpitId, Substitution, TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt,
};
// This lint has a false positive here. See the link below for details.
//
// https://github.com/rust-lang/rust/issues/57411
#[allow(unreachable_pub)]
pub use coerce::could_coerce;
#[allow(unreachable_pub)]
pub use unify::could_unify;
use cast::CastCheck;
pub(crate) use closure::{CaptureKind, CapturedItem, CapturedItemWithoutTy};
/// The entry point of type inference.
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
let _p = profile::span("infer_query");
let resolver = def.resolver(db.upcast());
let body = db.body(def);
let mut ctx = InferenceContext::new(db, def, &body, resolver);
match def {
DefWithBodyId::FunctionId(f) => {
ctx.collect_fn(f);
}
DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)),
DefWithBodyId::VariantId(v) => {
ctx.return_ty = TyBuilder::builtin(
match db.enum_data(v.lookup(db.upcast()).parent.into()).variant_body_type() {
hir_def::layout::IntegerType::Pointer(signed) => match signed {
true => BuiltinType::Int(BuiltinInt::Isize),
false => BuiltinType::Uint(BuiltinUint::Usize),
},
hir_def::layout::IntegerType::Fixed(size, signed) => match signed {
true => BuiltinType::Int(match size {
Integer::I8 => BuiltinInt::I8,
Integer::I16 => BuiltinInt::I16,
Integer::I32 => BuiltinInt::I32,
Integer::I64 => BuiltinInt::I64,
Integer::I128 => BuiltinInt::I128,
}),
false => BuiltinType::Uint(match size {
Integer::I8 => BuiltinUint::U8,
Integer::I16 => BuiltinUint::U16,
Integer::I32 => BuiltinUint::U32,
Integer::I64 => BuiltinUint::U64,
Integer::I128 => BuiltinUint::U128,
}),
},
},
);
}
DefWithBodyId::InTypeConstId(c) => {
// FIXME(const-generic-body): We should not get the return type in this way.
ctx.return_ty = c
.lookup(db.upcast())
.expected_ty
.box_any()
.downcast::<InTypeConstIdMetadata>()
.unwrap()
.0;
}
}
ctx.infer_body();
ctx.infer_mut_body();
ctx.infer_closures();
Arc::new(ctx.resolve_all())
}
/// Fully normalize all the types found within `ty` in context of `owner` body definition.
///
/// This is appropriate to use only after type-check: it assumes
/// that normalization will succeed, for example.
pub(crate) fn normalize(db: &dyn HirDatabase, trait_env: Arc<TraitEnvironment>, ty: Ty) -> Ty {
// FIXME: TypeFlags::HAS_CT_PROJECTION is not implemented in chalk, so TypeFlags::HAS_PROJECTION only
// works for the type case, so we check array unconditionally. Remove the array part
// when the bug in chalk becomes fixed.
if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION)
&& !matches!(ty.kind(Interner), TyKind::Array(..))
{
return ty;
}
let mut table = unify::InferenceTable::new(db, trait_env);
let ty_with_vars = table.normalize_associated_types_in(ty);
table.resolve_obligations_as_possible();
table.propagate_diverging_flag();
table.resolve_completely(ty_with_vars)
}
/// Binding modes inferred for patterns.
/// <https://doc.rust-lang.org/reference/patterns.html#binding-modes>
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum BindingMode {
Move,
Ref(Mutability),
}
impl BindingMode {
fn convert(annotation: BindingAnnotation) -> BindingMode {
match annotation {
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not),
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
}
}
}
impl Default for BindingMode {
fn default() -> Self {
BindingMode::Move
}
}
#[derive(Debug)]
pub(crate) struct InferOk<T> {
value: T,
goals: Vec<InEnvironment<Goal>>,
}
impl<T> InferOk<T> {
fn map<U>(self, f: impl FnOnce(T) -> U) -> InferOk<U> {
InferOk { value: f(self.value), goals: self.goals }
}
}
#[derive(Debug)]
pub(crate) struct TypeError;
pub(crate) type InferResult<T> = Result<InferOk<T>, TypeError>;
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum InferenceDiagnostic {
NoSuchField {
field: ExprOrPatId,
private: bool,
},
PrivateField {
expr: ExprId,
field: FieldId,
},
PrivateAssocItem {
id: ExprOrPatId,
item: AssocItemId,
},
UnresolvedField {
expr: ExprId,
receiver: Ty,
name: Name,
method_with_same_name_exists: bool,
},
UnresolvedMethodCall {
expr: ExprId,
receiver: Ty,
name: Name,
/// Contains the type the field resolves to
field_with_same_name: Option<Ty>,
assoc_func_with_same_name: Option<AssocItemId>,
},
UnresolvedAssocItem {
id: ExprOrPatId,
},
// FIXME: This should be emitted in body lowering
BreakOutsideOfLoop {
expr: ExprId,
is_break: bool,
bad_value_break: bool,
},
MismatchedArgCount {
call_expr: ExprId,
expected: usize,
found: usize,
},
MismatchedTupleStructPatArgCount {
pat: ExprOrPatId,
expected: usize,
found: usize,
},
ExpectedFunction {
call_expr: ExprId,
found: Ty,
},
TypedHole {
expr: ExprId,
expected: Ty,
},
}
/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
pub expected: Ty,
pub actual: Ty,
}
#[derive(Clone, PartialEq, Eq, Debug)]
struct InternedStandardTypes {
unknown: Ty,
bool_: Ty,
unit: Ty,
never: Ty,
}
impl Default for InternedStandardTypes {
fn default() -> Self {
InternedStandardTypes {
unknown: TyKind::Error.intern(Interner),
bool_: TyKind::Scalar(Scalar::Bool).intern(Interner),
unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner),
never: TyKind::Never.intern(Interner),
}
}
}
/// Represents coercing a value to a different type of value.
///
/// We transform values by following a number of `Adjust` steps in order.
/// See the documentation on variants of `Adjust` for more details.
///
/// Here are some common scenarios:
///
/// 1. The simplest cases are where a pointer is not adjusted fat vs thin.
/// Here the pointer will be dereferenced N times (where a dereference can
/// happen to raw or borrowed pointers or any smart pointer which implements
/// Deref, including Box<_>). The types of dereferences is given by
/// `autoderefs`. It can then be auto-referenced zero or one times, indicated
/// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is
/// `false`.
///
/// 2. A thin-to-fat coercion involves unsizing the underlying data. We start
/// with a thin pointer, deref a number of times, unsize the underlying data,
/// then autoref. The 'unsize' phase may change a fixed length array to a
/// dynamically sized one, a concrete object to a trait object, or statically
/// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is
/// represented by:
///
/// ```
/// Deref(None) -> [i32; 4],
/// Borrow(AutoBorrow::Ref) -> &[i32; 4],
/// Unsize -> &[i32],
/// ```
///
/// Note that for a struct, the 'deep' unsizing of the struct is not recorded.
/// E.g., `struct Foo<T> { it: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]>
/// The autoderef and -ref are the same as in the above example, but the type
/// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about
/// the underlying conversions from `[i32; 4]` to `[i32]`.
///
/// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In
/// that case, we have the pointer we need coming in, so there are no
/// autoderefs, and no autoref. Instead we just do the `Unsize` transformation.
/// At some point, of course, `Box` should move out of the compiler, in which
/// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> ->
/// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Adjustment {
pub kind: Adjust,
pub target: Ty,
}
impl Adjustment {
pub fn borrow(m: Mutability, ty: Ty) -> Self {
let ty = TyKind::Ref(m, static_lifetime(), ty).intern(Interner);
Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(m)), target: ty }
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adjust {
/// Go from ! to any type.
NeverToAny,
/// Dereference once, producing a place.
Deref(Option<OverloadedDeref>),
/// Take the address and produce either a `&` or `*` pointer.
Borrow(AutoBorrow),
Pointer(PointerCast),
}
/// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)`
/// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`.
/// The target type is `U` in both cases, with the region and mutability
/// being those shared by both the receiver and the returned reference.
///
/// Mutability is `None` when we are not sure.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct OverloadedDeref(pub Option<Mutability>);
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AutoBorrow {
/// Converts from T to &T.
Ref(Mutability),
/// Converts from T to *T.
RawPtr(Mutability),
}
impl AutoBorrow {
fn mutability(self) -> Mutability {
let (AutoBorrow::Ref(m) | AutoBorrow::RawPtr(m)) = self;
m
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PointerCast {
/// Go from a fn-item type to a fn-pointer type.
ReifyFnPointer,
/// Go from a safe fn pointer to an unsafe fn pointer.
UnsafeFnPointer,
/// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer.
/// It cannot convert a closure that requires unsafe.
ClosureFnPointer(Safety),
/// Go from a mut raw pointer to a const raw pointer.
MutToConstPointer,
#[allow(dead_code)]
/// Go from `*const [T; N]` to `*const T`
ArrayToPointer,
/// Unsize a pointer/reference value, e.g., `&[T; n]` to
/// `&[T]`. Note that the source could be a thin or fat pointer.
/// This will do things like convert thin pointers to fat
/// pointers, or convert structs containing thin pointers to
/// structs containing fat pointers, or convert between fat
/// pointers. We don't store the details of how the transform is
/// done (in fact, we don't know that, because it might depend on
/// the precise type parameters). We just store the target
/// type. Codegen backends and miri figure out what has to be done
/// based on the precise source/target type at hand.
Unsize,
}
/// The result of type inference: A mapping from expressions and patterns to types.
///
/// When you add a field that stores types (including `Substitution` and the like), don't forget
/// `resolve_completely()`'ing them in `InferenceContext::resolve_all()`. Inference variables must
/// not appear in the final inference result.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, Either<FieldId, TupleFieldId>>,
/// For each struct literal or pattern, records the variant it resolves to.
variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
/// For each associated item record what it resolves to
assoc_resolutions: FxHashMap<ExprOrPatId, (AssocItemId, Substitution)>,
/// Whenever a tuple field expression access a tuple field, we allocate a tuple id in
/// [`InferenceContext`] and store the tuples substitution there. This map is the reverse of
/// that which allows us to resolve a [`TupleFieldId`]s type.
pub tuple_field_access_types: FxHashMap<TupleId, Substitution>,
pub diagnostics: Vec<InferenceDiagnostic>,
pub type_of_expr: ArenaMap<ExprId, Ty>,
/// For each pattern record the type it resolves to.
///
/// **Note**: When a pattern type is resolved it may still contain
/// unresolved or missing subpatterns or subpatterns of mismatched types.
pub type_of_pat: ArenaMap<PatId, Ty>,
pub type_of_binding: ArenaMap<BindingId, Ty>,
pub type_of_rpit: ArenaMap<RpitId, Ty>,
/// Type of the result of `.into_iter()` on the for. `ExprId` is the one of the whole for loop.
pub type_of_for_iterator: FxHashMap<ExprId, Ty>,
type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>,
/// Interned common types to return references to.
standard_types: InternedStandardTypes,
/// Stores the types which were implicitly dereferenced in pattern binding modes.
pub pat_adjustments: FxHashMap<PatId, Vec<Ty>>,
/// Stores the binding mode (`ref` in `let ref x = 2`) of bindings.
///
/// This one is tied to the `PatId` instead of `BindingId`, because in some rare cases, a binding in an
/// or pattern can have multiple binding modes. For example:
/// ```
/// fn foo(mut slice: &[u32]) -> usize {
/// slice = match slice {
/// [0, rest @ ..] | rest => rest,
/// };
/// }
/// ```
/// the first `rest` has implicit `ref` binding mode, but the second `rest` binding mode is `move`.
pub binding_modes: ArenaMap<PatId, BindingMode>,
pub expr_adjustments: FxHashMap<ExprId, Vec<Adjustment>>,
pub(crate) closure_info: FxHashMap<ClosureId, (Vec<CapturedItem>, FnTrait)>,
// FIXME: remove this field
pub mutated_bindings_in_closure: FxHashSet<BindingId>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> {
self.method_resolutions.get(&expr).cloned()
}
pub fn field_resolution(&self, expr: ExprId) -> Option<Either<FieldId, TupleFieldId>> {
self.field_resolutions.get(&expr).copied()
}
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
self.variant_resolutions.get(&id.into()).copied()
}
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
self.variant_resolutions.get(&id.into()).copied()
}
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<(AssocItemId, Substitution)> {
self.assoc_resolutions.get(&id.into()).cloned()
}
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, Substitution)> {
self.assoc_resolutions.get(&id.into()).cloned()
}
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
self.type_mismatches.get(&expr.into())
}
pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> {
self.type_mismatches.get(&pat.into())
}
pub fn type_mismatches(&self) -> impl Iterator<Item = (ExprOrPatId, &TypeMismatch)> {
self.type_mismatches.iter().map(|(expr_or_pat, mismatch)| (*expr_or_pat, mismatch))
}
pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> {
self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
ExprOrPatId::ExprId(expr) => Some((expr, mismatch)),
_ => None,
})
}
pub fn closure_info(&self, closure: &ClosureId) -> &(Vec<CapturedItem>, FnTrait) {
self.closure_info.get(closure).unwrap()
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown)
}
}
impl Index<BindingId> for InferenceResult {
type Output = Ty;
fn index(&self, b: BindingId) -> &Ty {
self.type_of_binding.get(b).unwrap_or(&self.standard_types.unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
pub(crate) struct InferenceContext<'a> {
pub(crate) db: &'a dyn HirDatabase,
pub(crate) owner: DefWithBodyId,
pub(crate) body: &'a Body,
pub(crate) resolver: Resolver,
table: unify::InferenceTable<'a>,
/// The traits in scope, disregarding block modules. This is used for caching purposes.
traits_in_scope: FxHashSet<TraitId>,
pub(crate) result: InferenceResult,
tuple_field_accesses_rev:
IndexSet<Substitution, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>,
/// The return type of the function being inferred, the closure or async block if we're
/// currently within one.
///
/// We might consider using a nested inference context for checking
/// closures so we can swap all shared things out at once.
return_ty: Ty,
/// If `Some`, this stores coercion information for returned
/// expressions. If `None`, this is in a context where return is
/// inappropriate, such as a const expression.
return_coercion: Option<CoerceMany>,
/// The resume type and the yield type, respectively, of the coroutine being inferred.
resume_yield_tys: Option<(Ty, Ty)>,
diverges: Diverges,
breakables: Vec<BreakableContext>,
deferred_cast_checks: Vec<CastCheck>,
// fields related to closure capture
current_captures: Vec<CapturedItemWithoutTy>,
current_closure: Option<ClosureId>,
/// Stores the list of closure ids that need to be analyzed before this closure. See the
/// comment on `InferenceContext::sort_closures`
closure_dependencies: FxHashMap<ClosureId, Vec<ClosureId>>,
deferred_closures: FxHashMap<ClosureId, Vec<(Ty, Ty, Vec<Ty>, ExprId)>>,
}
#[derive(Clone, Debug)]
struct BreakableContext {
/// Whether this context contains at least one break expression.
may_break: bool,
/// The coercion target of the context.
coerce: Option<CoerceMany>,
/// The optional label of the context.
label: Option<LabelId>,
kind: BreakableKind,
}
#[derive(Clone, Debug)]
enum BreakableKind {
Block,
Loop,
/// A border is something like an async block, closure etc. Anything that prevents
/// breaking/continuing through
Border,
}
fn find_breakable<'c>(
ctxs: &'c mut [BreakableContext],
label: Option<LabelId>,
) -> Option<&'c mut BreakableContext> {
let mut ctxs = ctxs
.iter_mut()
.rev()
.take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop));
match label {
Some(_) => ctxs.find(|ctx| ctx.label == label),
None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)),
}
}
fn find_continuable<'c>(
ctxs: &'c mut [BreakableContext],
label: Option<LabelId>,
) -> Option<&'c mut BreakableContext> {
match label {
Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)),
None => find_breakable(ctxs, label),
}
}
impl<'a> InferenceContext<'a> {
fn new(
db: &'a dyn HirDatabase,
owner: DefWithBodyId,
body: &'a Body,
resolver: Resolver,
) -> Self {
let trait_env = db.trait_environment_for_body(owner);
InferenceContext {
result: InferenceResult::default(),
table: unify::InferenceTable::new(db, trait_env),
tuple_field_accesses_rev: Default::default(),
return_ty: TyKind::Error.intern(Interner), // set in collect_* calls
resume_yield_tys: None,
return_coercion: None,
db,
owner,
body,
traits_in_scope: resolver.traits_in_scope(db.upcast()),
resolver,
diverges: Diverges::Maybe,
breakables: Vec::new(),
deferred_cast_checks: Vec::new(),
current_captures: Vec::new(),
current_closure: None,
deferred_closures: FxHashMap::default(),
closure_dependencies: FxHashMap::default(),
}
}
// FIXME: This function should be private in module. It is currently only used in the consteval, since we need
// `InferenceResult` in the middle of inference. See the fixme comment in `consteval::eval_to_const`. If you
// used this function for another workaround, mention it here. If you really need this function and believe that
// there is no problem in it being `pub(crate)`, remove this comment.
pub(crate) fn resolve_all(self) -> InferenceResult {
let InferenceContext {
mut table,
mut result,
deferred_cast_checks,
tuple_field_accesses_rev,
..
} = self;
// Destructure every single field so whenever new fields are added to `InferenceResult` we
// don't forget to handle them here.
let InferenceResult {
method_resolutions,
field_resolutions: _,
variant_resolutions: _,
assoc_resolutions,
diagnostics,
type_of_expr,
type_of_pat,
type_of_binding,
type_of_rpit,
type_of_for_iterator,
type_mismatches,
standard_types: _,
pat_adjustments,
binding_modes: _,
expr_adjustments,
// Types in `closure_info` have already been `resolve_completely()`'d during
// `InferenceContext::infer_closures()` (in `HirPlace::ty()` specifically), so no need
// to resolve them here.
closure_info: _,
mutated_bindings_in_closure: _,
tuple_field_access_types: _,
} = &mut result;
table.fallback_if_possible();
// Comment from rustc:
// Even though coercion casts provide type hints, we check casts after fallback for
// backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
for cast in deferred_cast_checks {
cast.check(&mut table);
}
// FIXME resolve obligations as well (use Guidance if necessary)
table.resolve_obligations_as_possible();
// make sure diverging type variables are marked as such
table.propagate_diverging_flag();
for ty in type_of_expr.values_mut() {
*ty = table.resolve_completely(ty.clone());
}
for ty in type_of_pat.values_mut() {
*ty = table.resolve_completely(ty.clone());
}
for ty in type_of_binding.values_mut() {
*ty = table.resolve_completely(ty.clone());
}
for ty in type_of_rpit.values_mut() {
*ty = table.resolve_completely(ty.clone());
}
for ty in type_of_for_iterator.values_mut() {
*ty = table.resolve_completely(ty.clone());
}
for mismatch in type_mismatches.values_mut() {
mismatch.expected = table.resolve_completely(mismatch.expected.clone());
mismatch.actual = table.resolve_completely(mismatch.actual.clone());
}
diagnostics.retain_mut(|diagnostic| {
use InferenceDiagnostic::*;
match diagnostic {
ExpectedFunction { found: ty, .. }
| UnresolvedField { receiver: ty, .. }
| UnresolvedMethodCall { receiver: ty, .. } => {
*ty = table.resolve_completely(ty.clone());
// FIXME: Remove this when we are on par with rustc in terms of inference
if ty.contains_unknown() {
return false;
}
if let UnresolvedMethodCall { field_with_same_name, .. } = diagnostic {
if let Some(ty) = field_with_same_name {
*ty = table.resolve_completely(ty.clone());
if ty.contains_unknown() {
*field_with_same_name = None;
}
}
}
}
TypedHole { expected: ty, .. } => {
*ty = table.resolve_completely(ty.clone());
}
_ => (),
}
true
});
for (_, subst) in method_resolutions.values_mut() {
*subst = table.resolve_completely(subst.clone());
}
for (_, subst) in assoc_resolutions.values_mut() {
*subst = table.resolve_completely(subst.clone());
}
for adjustment in expr_adjustments.values_mut().flatten() {
adjustment.target = table.resolve_completely(adjustment.target.clone());
}
for adjustment in pat_adjustments.values_mut().flatten() {
*adjustment = table.resolve_completely(adjustment.clone());
}
result.tuple_field_access_types = tuple_field_accesses_rev
.into_iter()
.enumerate()
.map(|(idx, subst)| (TupleId(idx as u32), table.resolve_completely(subst)))
.collect();
result
}
fn collect_const(&mut self, data: &ConstData) {
self.return_ty = self.make_ty(&data.type_ref);
}
fn collect_static(&mut self, data: &StaticData) {
self.return_ty = self.make_ty(&data.type_ref);
}
fn collect_fn(&mut self, func: FunctionId) {
let data = self.db.function_data(func);
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, func.into())
.with_impl_trait_mode(ImplTraitLoweringMode::Param);
let mut param_tys =
data.params.iter().map(|type_ref| ctx.lower_ty(type_ref)).collect::<Vec<_>>();
// Check if function contains a va_list, if it does then we append it to the parameter types
// that are collected from the function data
if data.is_varargs() {
let va_list_ty = match self.resolve_va_list() {
Some(va_list) => TyBuilder::adt(self.db, va_list)
.fill_with_defaults(self.db, || self.table.new_type_var())
.build(),
None => self.err_ty(),
};
param_tys.push(va_list_ty)
}
for (ty, pat) in param_tys.into_iter().zip(self.body.params.iter()) {
let ty = self.insert_type_vars(ty);
let ty = self.normalize_associated_types_in(ty);
self.infer_top_pat(*pat, &ty);
}
let return_ty = &*data.ret_type;
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into())
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque);
let return_ty = ctx.lower_ty(return_ty);
let return_ty = self.insert_type_vars(return_ty);
let return_ty = if let Some(rpits) = self.db.return_type_impl_traits(func) {
// RPIT opaque types use substitution of their parent function.
let fn_placeholders = TyBuilder::placeholder_subst(self.db, func);
let result =
self.insert_inference_vars_for_rpit(return_ty, rpits.clone(), fn_placeholders);
let rpits = rpits.skip_binders();
for (id, _) in rpits.impl_traits.iter() {
if let Entry::Vacant(e) = self.result.type_of_rpit.entry(id) {
never!("Missed RPIT in `insert_inference_vars_for_rpit`");
e.insert(TyKind::Error.intern(Interner));
}
}
result
} else {
return_ty
};
self.return_ty = self.normalize_associated_types_in(return_ty);
self.return_coercion = Some(CoerceMany::new(self.return_ty.clone()));
}
fn insert_inference_vars_for_rpit<T>(
&mut self,
t: T,
rpits: Arc<chalk_ir::Binders<crate::ReturnTypeImplTraits>>,
fn_placeholders: Substitution,
) -> T
where
T: crate::HasInterner<Interner = Interner> + crate::TypeFoldable<Interner>,
{
fold_tys(
t,
|ty, _| {
let opaque_ty_id = match ty.kind(Interner) {
TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id,
_ => return ty,
};
let idx = match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) {
ImplTraitId::ReturnTypeImplTrait(_, idx) => idx,
_ => unreachable!(),
};
let bounds = (*rpits)
.map_ref(|rpits| rpits.impl_traits[idx].bounds.map_ref(|it| it.into_iter()));
let var = self.table.new_type_var();
let var_subst = Substitution::from1(Interner, var.clone());
for bound in bounds {
let predicate =
bound.map(|it| it.cloned()).substitute(Interner, &fn_placeholders);
let (var_predicate, binders) =
predicate.substitute(Interner, &var_subst).into_value_and_skipped_binders();
always!(binders.is_empty(Interner)); // quantified where clauses not yet handled
let var_predicate = self.insert_inference_vars_for_rpit(
var_predicate,
rpits.clone(),
fn_placeholders.clone(),
);
self.push_obligation(var_predicate.cast(Interner));
}
self.result.type_of_rpit.insert(idx, var.clone());
var
},
DebruijnIndex::INNERMOST,
)
}
fn infer_body(&mut self) {
match self.return_coercion {
Some(_) => self.infer_return(self.body.body_expr),
None => {
_ = self.infer_expr_coerce(
self.body.body_expr,
&Expectation::has_type(self.return_ty.clone()),
)
}
}
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.result.type_of_expr.insert(expr, ty);
}
fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec<Adjustment>) {
self.result.expr_adjustments.insert(expr, adjustments);
}
fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) {
self.result.method_resolutions.insert(expr, (func, subst));
}
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
self.result.variant_resolutions.insert(id, variant);
}
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId, subs: Substitution) {
self.result.assoc_resolutions.insert(id, (item, subs));
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.result.type_of_pat.insert(pat, ty);
}
fn write_binding_ty(&mut self, id: BindingId, ty: Ty) {
self.result.type_of_binding.insert(id, ty);
}
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
self.result.diagnostics.push(diagnostic);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into());
let ty = ctx.lower_ty(type_ref);
let ty = self.insert_type_vars(ty);
self.normalize_associated_types_in(ty)
}
fn err_ty(&self) -> Ty {
self.result.standard_types.unknown.clone()
}
/// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
self.table.insert_type_vars_shallow(ty)
}
fn insert_type_vars<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
self.table.insert_type_vars(ty)
}
fn push_obligation(&mut self, o: DomainGoal) {
self.table.register_obligation(o.cast(Interner));
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
let ty1 = ty1
.clone()
.try_fold_with(
&mut UnevaluatedConstEvaluatorFolder { db: self.db },
DebruijnIndex::INNERMOST,
)
.unwrap();
let ty2 = ty2
.clone()
.try_fold_with(
&mut UnevaluatedConstEvaluatorFolder { db: self.db },
DebruijnIndex::INNERMOST,
)
.unwrap();
self.table.unify(&ty1, &ty2)
}
/// Attempts to returns the deeply last field of nested structures, but
/// does not apply any normalization in its search. Returns the same type
/// if input `ty` is not a structure at all.
fn struct_tail_without_normalization(&mut self, ty: Ty) -> Ty {
self.struct_tail_with_normalize(ty, identity)
}
/// Returns the deeply last field of nested structures, or the same type if
/// not a structure at all. Corresponds to the only possible unsized field,
/// and its type can be used to determine unsizing strategy.
///
/// This is parameterized over the normalization strategy (i.e. how to
/// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
/// function to indicate no normalization should take place.
fn struct_tail_with_normalize(
&mut self,
mut ty: Ty,
mut normalize: impl FnMut(Ty) -> Ty,
) -> Ty {
// FIXME: fetch the limit properly
let recursion_limit = 10;
for iteration in 0.. {
if iteration > recursion_limit {
return self.err_ty();
}
match ty.kind(Interner) {
TyKind::Adt(chalk_ir::AdtId(hir_def::AdtId::StructId(struct_id)), substs) => {
match self.db.field_types((*struct_id).into()).values().next_back().cloned() {
Some(field) => {
ty = field.substitute(Interner, substs);
}
None => break,
}
}
TyKind::Adt(..) => break,
TyKind::Tuple(_, substs) => {
match substs
.as_slice(Interner)
.split_last()
.and_then(|(last_ty, _)| last_ty.ty(Interner))
{
Some(last_ty) => ty = last_ty.clone(),
None => break,
}
}
TyKind::Alias(..) => {
let normalized = normalize(ty.clone());
if ty == normalized {
return ty;
} else {
ty = normalized;
}
}
_ => break,
}
}
ty
}
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
fn normalize_associated_types_in<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
self.table.normalize_associated_types_in(ty)
}
fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
self.table.resolve_ty_shallow(ty)
}
fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
}
fn resolve_associated_type_with_params(
&mut self,
inner_ty: Ty,
assoc_ty: Option<TypeAliasId>,
// FIXME(GATs): these are args for the trait ref, args for assoc type itself should be
// handled when we support them.
params: &[GenericArg],
) -> Ty {
match assoc_ty {
Some(res_assoc_ty) => {
let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container {
hir_def::ItemContainerId::TraitId(trait_) => trait_,
_ => panic!("resolve_associated_type called with non-associated type"),
};
let ty = self.table.new_type_var();
let mut param_iter = params.iter().cloned();
let trait_ref = TyBuilder::trait_ref(self.db, trait_)
.push(inner_ty)
.fill(|_| param_iter.next().unwrap())
.build();
let alias_eq = AliasEq {
alias: AliasTy::Projection(ProjectionTy {
associated_ty_id: to_assoc_type_id(res_assoc_ty),
substitution: trait_ref.substitution.clone(),
}),
ty: ty.clone(),
};
self.push_obligation(trait_ref.cast(Interner));
self.push_obligation(alias_eq.cast(Interner));
ty
}
None => self.err_ty(),
}
}
fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option<VariantId>) {
let path = match path {
Some(path) => path,
None => return (self.err_ty(), None),
};
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into());
let (resolution, unresolved) = if value_ns {
match self.resolver.resolve_path_in_value_ns(self.db.upcast(), path) {
Some(ResolveValueResult::ValueNs(value, _)) => match value {
ValueNs::EnumVariantId(var) => {
let substs = ctx.substs_from_path(path, var.into(), true);
let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into());
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
return (ty, Some(var.into()));
}
ValueNs::StructId(strukt) => {
let substs = ctx.substs_from_path(path, strukt.into(), true);
let ty = self.db.ty(strukt.into());
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
return (ty, Some(strukt.into()));
}
ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None),
_ => return (self.err_ty(), None),
},
Some(ResolveValueResult::Partial(typens, unresolved, _)) => {
(typens, Some(unresolved))
}
None => return (self.err_ty(), None),
}
} else {
match self.resolver.resolve_path_in_type_ns(self.db.upcast(), path) {
Some((it, idx, _)) => (it, idx),
None => return (self.err_ty(), None),
}
};
let Some(mod_path) = path.mod_path() else {
never!("resolver should always resolve lang item paths");
return (self.err_ty(), None);
};
return match resolution {
TypeNs::AdtId(AdtId::StructId(strukt)) => {
let substs = ctx.substs_from_path(path, strukt.into(), true);
let ty = self.db.ty(strukt.into());
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
forbid_unresolved_segments((ty, Some(strukt.into())), unresolved)
}
TypeNs::AdtId(AdtId::UnionId(u)) => {
let substs = ctx.substs_from_path(path, u.into(), true);
let ty = self.db.ty(u.into());
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
forbid_unresolved_segments((ty, Some(u.into())), unresolved)
}
TypeNs::EnumVariantId(var) => {
let substs = ctx.substs_from_path(path, var.into(), true);
let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into());
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
forbid_unresolved_segments((ty, Some(var.into())), unresolved)
}
TypeNs::SelfType(impl_id) => {
let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
let substs = generics.placeholder_subst(self.db);
let mut ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs);
let Some(mut remaining_idx) = unresolved else {
return self.resolve_variant_on_alias(ty, None, mod_path);
};
let mut remaining_segments = path.segments().skip(remaining_idx);
// We need to try resolving unresolved segments one by one because each may resolve
// to a projection, which `TyLoweringContext` cannot handle on its own.
while !remaining_segments.is_empty() {
let resolved_segment = path.segments().get(remaining_idx - 1).unwrap();
let current_segment = remaining_segments.take(1);
// If we can resolve to an enum variant, it takes priority over associated type
// of the same name.
if let Some((AdtId::EnumId(id), _)) = ty.as_adt() {
let enum_data = self.db.enum_data(id);
let name = current_segment.first().unwrap().name;
if let Some(variant) = enum_data.variant(name) {
return if remaining_segments.len() == 1 {
(ty, Some(variant.into()))
} else {
// We still have unresolved paths, but enum variants never have
// associated types!
(self.err_ty(), None)
};
}
}
// `lower_partly_resolved_path()` returns `None` as type namespace unless
// `remaining_segments` is empty, which is never the case here. We don't know
// which namespace the new `ty` is in until normalized anyway.
(ty, _) = ctx.lower_partly_resolved_path(
resolution,
resolved_segment,
current_segment,
false,
);
ty = self.table.insert_type_vars(ty);
ty = self.table.normalize_associated_types_in(ty);
ty = self.table.resolve_ty_shallow(&ty);
if ty.is_unknown() {
return (self.err_ty(), None);
}
// FIXME(inherent_associated_types): update `resolution` based on `ty` here.
remaining_idx += 1;
remaining_segments = remaining_segments.skip(1);
}
let variant = ty.as_adt().and_then(|(id, _)| match id {
AdtId::StructId(s) => Some(VariantId::StructId(s)),
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
AdtId::EnumId(_) => {
// FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
None
}
});
(ty, variant)
}
TypeNs::TypeAliasId(it) => {
let resolved_seg = match unresolved {
None => path.segments().last().unwrap(),
Some(n) => path.segments().get(path.segments().len() - n - 1).unwrap(),
};
let substs =
ctx.substs_from_path_segment(resolved_seg, Some(it.into()), true, None);
let ty = self.db.ty(it.into());
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
self.resolve_variant_on_alias(ty, unresolved, mod_path)
}
TypeNs::AdtSelfType(_) => {
// FIXME this could happen in array size expressions, once we're checking them
(self.err_ty(), None)
}
TypeNs::GenericParam(_) => {
// FIXME potentially resolve assoc type
(self.err_ty(), None)
}
TypeNs::AdtId(AdtId::EnumId(_))
| TypeNs::BuiltinType(_)
| TypeNs::TraitId(_)
| TypeNs::TraitAliasId(_) => {
// FIXME diagnostic
(self.err_ty(), None)
}
};
fn forbid_unresolved_segments(
result: (Ty, Option<VariantId>),
unresolved: Option<usize>,
) -> (Ty, Option<VariantId>) {
if unresolved.is_none() {
result
} else {
// FIXME diagnostic
(TyKind::Error.intern(Interner), None)
}
}
}
fn resolve_variant_on_alias(
&mut self,
ty: Ty,
unresolved: Option<usize>,
path: &ModPath,
) -> (Ty, Option<VariantId>) {
let remaining = unresolved.map(|it| path.segments()[it..].len()).filter(|it| it > &0);
let ty = match ty.kind(Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
self.db.normalize_projection(proj_ty.clone(), self.table.trait_env.clone())
}
_ => ty,
};
match remaining {
None => {
let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id {
AdtId::StructId(s) => Some(VariantId::StructId(s)),
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
AdtId::EnumId(_) => {
// FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
None
}
});
(ty, variant)
}
Some(1) => {
let segment = path.segments().last().unwrap();
// this could be an enum variant or associated type
if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() {
let enum_data = self.db.enum_data(enum_id);
if let Some(variant) = enum_data.variant(segment) {
return (ty, Some(variant.into()));
}
}
// FIXME potentially resolve assoc type
(self.err_ty(), None)
}
Some(_) => {
// FIXME diagnostic
(self.err_ty(), None)
}
}
}
fn resolve_lang_item(&self, item: LangItem) -> Option<LangItemTarget> {
let krate = self.resolver.krate();
self.db.lang_item(krate, item)
}
fn resolve_output_on(&self, trait_: TraitId) -> Option<TypeAliasId> {
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
}
fn resolve_lang_trait(&self, lang: LangItem) -> Option<TraitId> {
self.resolve_lang_item(lang)?.as_trait()
}
fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
self.resolve_output_on(self.resolve_lang_trait(LangItem::Neg)?)
}
fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
self.resolve_output_on(self.resolve_lang_trait(LangItem::Not)?)
}
fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
let ItemContainerId::TraitId(trait_) = self
.resolve_lang_item(LangItem::IntoFutureIntoFuture)?
.as_function()?
.lookup(self.db.upcast())
.container
else {
return None;
};
self.resolve_output_on(trait_)
}
fn resolve_boxed_box(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::OwnedBox)?.as_struct()?;
Some(struct_.into())
}
fn resolve_range_full(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::RangeFull)?.as_struct()?;
Some(struct_.into())
}
fn resolve_range(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::Range)?.as_struct()?;
Some(struct_.into())
}
fn resolve_range_inclusive(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::RangeInclusiveStruct)?.as_struct()?;
Some(struct_.into())
}
fn resolve_range_from(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::RangeFrom)?.as_struct()?;
Some(struct_.into())
}
fn resolve_range_to(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::RangeTo)?.as_struct()?;
Some(struct_.into())
}
fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::RangeToInclusive)?.as_struct()?;
Some(struct_.into())
}
fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
self.resolve_output_on(self.resolve_lang_trait(LangItem::Index)?)
}
fn resolve_va_list(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item(LangItem::VaList)?.as_struct()?;
Some(struct_.into())
}
fn get_traits_in_scope(&self) -> Either<FxHashSet<TraitId>, &FxHashSet<TraitId>> {
let mut b_traits = self.resolver.traits_in_scope_from_block_scopes().peekable();
if b_traits.peek().is_some() {
Either::Left(self.traits_in_scope.iter().copied().chain(b_traits).collect())
} else {
Either::Right(&self.traits_in_scope)
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) enum Expectation {
None,
HasType(Ty),
#[allow(dead_code)]
Castable(Ty),
RValueLikeUnsized(Ty),
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
if ty.is_unknown() {
// FIXME: get rid of this?
Expectation::None
} else {
Expectation::HasType(ty)
}
}
/// The following explanation is copied straight from rustc:
/// Provides an expectation for an rvalue expression given an *optional*
/// hint, which is not required for type safety (the resulting type might
/// be checked higher up, as is the case with `&expr` and `box expr`), but
/// is useful in determining the concrete type.
///
/// The primary use case is where the expected type is a fat pointer,
/// like `&[isize]`. For example, consider the following statement:
///
/// let it: &[isize] = &[1, 2, 3];
///
/// In this case, the expected type for the `&[1, 2, 3]` expression is
/// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
/// expectation `ExpectHasType([isize])`, that would be too strong --
/// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
/// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
/// to the type `&[isize]`. Therefore, we propagate this more limited hint,
/// which still is useful, because it informs integer literals and the like.
/// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
/// for examples of where this comes up,.
fn rvalue_hint(ctx: &mut InferenceContext<'_>, ty: Ty) -> Self {
match ctx.struct_tail_without_normalization(ty.clone()).kind(Interner) {
TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty),
_ => Expectation::has_type(ty),
}
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation::None
}
fn resolve(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
match self {
Expectation::None => Expectation::None,
Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)),
Expectation::Castable(t) => Expectation::Castable(table.resolve_ty_shallow(t)),
Expectation::RValueLikeUnsized(t) => {
Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t))
}
}
}
fn to_option(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
match self.resolve(table) {
Expectation::None => None,
Expectation::HasType(t)
| Expectation::Castable(t)
| Expectation::RValueLikeUnsized(t) => Some(t),
}
}
fn only_has_type(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
match self {
Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)),
Expectation::Castable(_) | Expectation::RValueLikeUnsized(_) | Expectation::None => {
None
}
}
}
fn coercion_target_type(&self, table: &mut unify::InferenceTable<'_>) -> Ty {
self.only_has_type(table).unwrap_or_else(|| table.new_type_var())
}
/// Comment copied from rustc:
/// Disregard "castable to" expectations because they
/// can lead us astray. Consider for example `if cond
/// {22} else {c} as u8` -- if we propagate the
/// "castable to u8" constraint to 22, it will pick the
/// type 22u8, which is overly constrained (c might not
/// be a u8). In effect, the problem is that the
/// "castable to" expectation is not the tightest thing
/// we can say, so we want to drop it in this case.
/// The tightest thing we can say is "must unify with
/// else branch". Note that in the case of a "has type"
/// constraint, this limitation does not hold.
///
/// If the expected type is just a type variable, then don't use
/// an expected type. Otherwise, we might write parts of the type
/// when checking the 'then' block which are incompatible with the
/// 'else' branch.
fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
match self {
Expectation::HasType(ety) => {
let ety = table.resolve_ty_shallow(ety);
if !ety.is_ty_var() {
Expectation::HasType(ety)
} else {
Expectation::None
}
}
Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()),
_ => Expectation::None,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Diverges {
Maybe,
Always,
}
impl Diverges {
fn is_always(self) -> bool {
self == Diverges::Always
}
}
impl std::ops::BitAnd for Diverges {
type Output = Self;
fn bitand(self, other: Self) -> Self {
std::cmp::min(self, other)
}
}
impl std::ops::BitOr for Diverges {
type Output = Self;
fn bitor(self, other: Self) -> Self {
std::cmp::max(self, other)
}
}
impl std::ops::BitAndAssign for Diverges {
fn bitand_assign(&mut self, other: Self) {
*self = *self & other;
}
}
impl std::ops::BitOrAssign for Diverges {
fn bitor_assign(&mut self, other: Self) {
*self = *self | other;
}
}