rust-analyzer/crates/hir-def/src/nameres/collector.rs

2245 lines
90 KiB
Rust

//! The core of the module-level name resolution algorithm.
//!
//! `DefCollector::collect` contains the fixed-point iteration loop which
//! resolves imports and expands macros.
use std::{iter, mem};
use base_db::{CrateId, Edition, FileId};
use cfg::{CfgExpr, CfgOptions};
use either::Either;
use hir_expand::{
ast_id_map::FileAstId,
builtin_attr_macro::find_builtin_attr,
builtin_derive_macro::find_builtin_derive,
builtin_fn_macro::find_builtin_macro,
name::{name, AsName, Name},
proc_macro::ProcMacroExpander,
ExpandTo, HirFileId, InFile, MacroCallId, MacroCallKind, MacroCallLoc, MacroDefId,
MacroDefKind,
};
use itertools::{izip, Itertools};
use la_arena::Idx;
use limit::Limit;
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::always;
use syntax::{ast, SmolStr};
use crate::{
attr::{Attr, AttrId, Attrs},
attr_macro_as_call_id,
db::DefDatabase,
derive_macro_as_call_id,
item_scope::{ImportType, PerNsGlobImports},
item_tree::{
self, Fields, FileItemTreeId, ImportKind, ItemTree, ItemTreeId, ItemTreeNode, MacroCall,
MacroDef, MacroRules, Mod, ModItem, ModKind, TreeId,
},
macro_call_as_call_id, macro_id_to_def_id,
nameres::{
diagnostics::DefDiagnostic,
mod_resolution::ModDir,
path_resolution::ReachedFixedPoint,
proc_macro::{parse_macro_name_and_helper_attrs, ProcMacroDef, ProcMacroKind},
BuiltinShadowMode, DefMap, ModuleData, ModuleOrigin, ResolveMode,
},
path::{ImportAlias, ModPath, PathKind},
per_ns::PerNs,
visibility::{RawVisibility, Visibility},
AdtId, AstId, AstIdWithPath, ConstLoc, EnumLoc, EnumVariantId, ExternBlockLoc, FunctionId,
FunctionLoc, ImplLoc, Intern, ItemContainerId, LocalModuleId, Macro2Id, Macro2Loc,
MacroExpander, MacroId, MacroRulesId, MacroRulesLoc, ModuleDefId, ModuleId, ProcMacroId,
ProcMacroLoc, StaticLoc, StructLoc, TraitLoc, TypeAliasLoc, UnionLoc, UnresolvedMacro,
};
static GLOB_RECURSION_LIMIT: Limit = Limit::new(100);
static EXPANSION_DEPTH_LIMIT: Limit = Limit::new(128);
static FIXED_POINT_LIMIT: Limit = Limit::new(8192);
pub(super) fn collect_defs(db: &dyn DefDatabase, mut def_map: DefMap, tree_id: TreeId) -> DefMap {
let crate_graph = db.crate_graph();
let mut deps = FxHashMap::default();
// populate external prelude and dependency list
let krate = &crate_graph[def_map.krate];
for dep in &krate.dependencies {
tracing::debug!("crate dep {:?} -> {:?}", dep.name, dep.crate_id);
let dep_def_map = db.crate_def_map(dep.crate_id);
let dep_root = dep_def_map.module_id(dep_def_map.root);
deps.insert(dep.as_name(), dep_root.into());
if dep.is_prelude() && !tree_id.is_block() {
def_map.extern_prelude.insert(dep.as_name(), dep_root);
}
}
let cfg_options = &krate.cfg_options;
let proc_macros = match &krate.proc_macro {
Ok(proc_macros) => {
proc_macros
.iter()
.enumerate()
.map(|(idx, it)| {
// FIXME: a hacky way to create a Name from string.
let name = tt::Ident { text: it.name.clone(), id: tt::TokenId::unspecified() };
(
name.as_name(),
ProcMacroExpander::new(def_map.krate, base_db::ProcMacroId(idx as u32)),
)
})
.collect()
}
Err(e) => {
def_map.proc_macro_loading_error = Some(e.clone().into_boxed_str());
Vec::new()
}
};
let is_proc_macro = krate.is_proc_macro;
let mut collector = DefCollector {
db,
def_map,
deps,
glob_imports: FxHashMap::default(),
unresolved_imports: Vec::new(),
indeterminate_imports: Vec::new(),
unresolved_macros: Vec::new(),
mod_dirs: FxHashMap::default(),
cfg_options,
proc_macros,
from_glob_import: Default::default(),
skip_attrs: Default::default(),
is_proc_macro,
};
if tree_id.is_block() {
collector.seed_with_inner(tree_id);
} else {
collector.seed_with_top_level();
}
collector.collect();
let mut def_map = collector.finish();
def_map.shrink_to_fit();
def_map
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum PartialResolvedImport {
/// None of any namespaces is resolved
Unresolved,
/// One of namespaces is resolved
Indeterminate(PerNs),
/// All namespaces are resolved, OR it comes from other crate
Resolved(PerNs),
}
impl PartialResolvedImport {
fn namespaces(self) -> PerNs {
match self {
PartialResolvedImport::Unresolved => PerNs::none(),
PartialResolvedImport::Indeterminate(ns) | PartialResolvedImport::Resolved(ns) => ns,
}
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
enum ImportSource {
Import { id: ItemTreeId<item_tree::Import>, use_tree: Idx<ast::UseTree> },
ExternCrate(ItemTreeId<item_tree::ExternCrate>),
}
#[derive(Debug, Eq, PartialEq)]
struct Import {
path: ModPath,
alias: Option<ImportAlias>,
visibility: RawVisibility,
kind: ImportKind,
is_prelude: bool,
is_extern_crate: bool,
is_macro_use: bool,
source: ImportSource,
}
impl Import {
fn from_use(
db: &dyn DefDatabase,
krate: CrateId,
tree: &ItemTree,
id: ItemTreeId<item_tree::Import>,
) -> Vec<Self> {
let it = &tree[id.value];
let attrs = &tree.attrs(db, krate, ModItem::from(id.value).into());
let visibility = &tree[it.visibility];
let is_prelude = attrs.by_key("prelude_import").exists();
let mut res = Vec::new();
it.use_tree.expand(|idx, path, kind, alias| {
res.push(Self {
path,
alias,
visibility: visibility.clone(),
kind,
is_prelude,
is_extern_crate: false,
is_macro_use: false,
source: ImportSource::Import { id, use_tree: idx },
});
});
res
}
fn from_extern_crate(
db: &dyn DefDatabase,
krate: CrateId,
tree: &ItemTree,
id: ItemTreeId<item_tree::ExternCrate>,
) -> Self {
let it = &tree[id.value];
let attrs = &tree.attrs(db, krate, ModItem::from(id.value).into());
let visibility = &tree[it.visibility];
Self {
path: ModPath::from_segments(PathKind::Plain, iter::once(it.name.clone())),
alias: it.alias.clone(),
visibility: visibility.clone(),
kind: ImportKind::Plain,
is_prelude: false,
is_extern_crate: true,
is_macro_use: attrs.by_key("macro_use").exists(),
source: ImportSource::ExternCrate(id),
}
}
}
#[derive(Debug, Eq, PartialEq)]
struct ImportDirective {
/// The module this import directive is in.
module_id: LocalModuleId,
import: Import,
status: PartialResolvedImport,
}
#[derive(Clone, Debug, Eq, PartialEq)]
struct MacroDirective {
module_id: LocalModuleId,
depth: usize,
kind: MacroDirectiveKind,
container: ItemContainerId,
}
#[derive(Clone, Debug, Eq, PartialEq)]
enum MacroDirectiveKind {
FnLike { ast_id: AstIdWithPath<ast::MacroCall>, expand_to: ExpandTo },
Derive { ast_id: AstIdWithPath<ast::Adt>, derive_attr: AttrId, derive_pos: usize },
Attr { ast_id: AstIdWithPath<ast::Item>, attr: Attr, mod_item: ModItem, tree: TreeId },
}
/// Walks the tree of module recursively
struct DefCollector<'a> {
db: &'a dyn DefDatabase,
def_map: DefMap,
deps: FxHashMap<Name, ModuleId>,
glob_imports: FxHashMap<LocalModuleId, Vec<(LocalModuleId, Visibility)>>,
unresolved_imports: Vec<ImportDirective>,
indeterminate_imports: Vec<ImportDirective>,
unresolved_macros: Vec<MacroDirective>,
mod_dirs: FxHashMap<LocalModuleId, ModDir>,
cfg_options: &'a CfgOptions,
/// List of procedural macros defined by this crate. This is read from the dynamic library
/// built by the build system, and is the list of proc. macros we can actually expand. It is
/// empty when proc. macro support is disabled (in which case we still do name resolution for
/// them).
proc_macros: Vec<(Name, ProcMacroExpander)>,
is_proc_macro: bool,
from_glob_import: PerNsGlobImports,
/// If we fail to resolve an attribute on a `ModItem`, we fall back to ignoring the attribute.
/// This map is used to skip all attributes up to and including the one that failed to resolve,
/// in order to not expand them twice.
///
/// This also stores the attributes to skip when we resolve derive helpers and non-macro
/// non-builtin attributes in general.
skip_attrs: FxHashMap<InFile<ModItem>, AttrId>,
}
impl DefCollector<'_> {
fn seed_with_top_level(&mut self) {
let _p = profile::span("seed_with_top_level");
let file_id = self.db.crate_graph()[self.def_map.krate].root_file_id;
let item_tree = self.db.file_item_tree(file_id.into());
let module_id = self.def_map.root;
let attrs = item_tree.top_level_attrs(self.db, self.def_map.krate);
if attrs.cfg().map_or(true, |cfg| self.cfg_options.check(&cfg) != Some(false)) {
self.inject_prelude(&attrs);
// Process other crate-level attributes.
for attr in &*attrs {
let attr_name = match attr.path.as_ident() {
Some(name) => name,
None => continue,
};
if *attr_name == hir_expand::name![recursion_limit] {
if let Some(limit) = attr.string_value() {
if let Ok(limit) = limit.parse() {
self.def_map.recursion_limit = Some(limit);
}
}
continue;
}
if *attr_name == hir_expand::name![crate_type] {
if let Some("proc-macro") = attr.string_value().map(SmolStr::as_str) {
self.is_proc_macro = true;
}
continue;
}
if *attr_name == hir_expand::name![feature] {
let features =
attr.parse_path_comma_token_tree().into_iter().flatten().filter_map(
|feat| match feat.segments() {
[name] => Some(name.to_smol_str()),
_ => None,
},
);
self.def_map.unstable_features.extend(features);
}
let attr_is_register_like = *attr_name == hir_expand::name![register_attr]
|| *attr_name == hir_expand::name![register_tool];
if !attr_is_register_like {
continue;
}
let registered_name = match attr.single_ident_value() {
Some(ident) => ident.as_name(),
_ => continue,
};
if *attr_name == hir_expand::name![register_attr] {
self.def_map.registered_attrs.push(registered_name.to_smol_str());
cov_mark::hit!(register_attr);
} else {
self.def_map.registered_tools.push(registered_name.to_smol_str());
cov_mark::hit!(register_tool);
}
}
ModCollector {
def_collector: self,
macro_depth: 0,
module_id,
tree_id: TreeId::new(file_id.into(), None),
item_tree: &item_tree,
mod_dir: ModDir::root(),
}
.collect_in_top_module(item_tree.top_level_items());
}
}
fn seed_with_inner(&mut self, tree_id: TreeId) {
let item_tree = tree_id.item_tree(self.db);
let module_id = self.def_map.root;
let is_cfg_enabled = item_tree
.top_level_attrs(self.db, self.def_map.krate)
.cfg()
.map_or(true, |cfg| self.cfg_options.check(&cfg) != Some(false));
if is_cfg_enabled {
ModCollector {
def_collector: self,
macro_depth: 0,
module_id,
tree_id,
item_tree: &item_tree,
mod_dir: ModDir::root(),
}
.collect_in_top_module(item_tree.top_level_items());
}
}
fn resolution_loop(&mut self) {
let _p = profile::span("DefCollector::resolution_loop");
// main name resolution fixed-point loop.
let mut i = 0;
'resolve_attr: loop {
'resolve_macros: loop {
self.db.unwind_if_cancelled();
{
let _p = profile::span("resolve_imports loop");
'resolve_imports: loop {
if self.resolve_imports() == ReachedFixedPoint::Yes {
break 'resolve_imports;
}
}
}
if self.resolve_macros() == ReachedFixedPoint::Yes {
break 'resolve_macros;
}
i += 1;
if FIXED_POINT_LIMIT.check(i).is_err() {
tracing::error!("name resolution is stuck");
break 'resolve_attr;
}
}
if self.reseed_with_unresolved_attribute() == ReachedFixedPoint::Yes {
break 'resolve_attr;
}
}
}
fn collect(&mut self) {
let _p = profile::span("DefCollector::collect");
self.resolution_loop();
// Resolve all indeterminate resolved imports again
// As some of the macros will expand newly import shadowing partial resolved imports
// FIXME: We maybe could skip this, if we handle the indeterminate imports in `resolve_imports`
// correctly
let partial_resolved = self.indeterminate_imports.drain(..).map(|directive| {
ImportDirective { status: PartialResolvedImport::Unresolved, ..directive }
});
self.unresolved_imports.extend(partial_resolved);
self.resolve_imports();
let unresolved_imports = mem::take(&mut self.unresolved_imports);
// show unresolved imports in completion, etc
for directive in &unresolved_imports {
self.record_resolved_import(directive);
}
self.unresolved_imports = unresolved_imports;
if self.is_proc_macro {
// A crate exporting procedural macros is not allowed to export anything else.
//
// Additionally, while the proc macro entry points must be `pub`, they are not publicly
// exported in type/value namespace. This function reduces the visibility of all items
// in the crate root that aren't proc macros.
let root = self.def_map.root;
let module_id = self.def_map.module_id(root);
let root = &mut self.def_map.modules[root];
root.scope.censor_non_proc_macros(module_id);
}
}
/// When the fixed-point loop reaches a stable state, we might still have
/// some unresolved attributes left over. This takes one of them, and feeds
/// the item it's applied to back into name resolution.
///
/// This effectively ignores the fact that the macro is there and just treats the items as
/// normal code.
///
/// This improves UX for unresolved attributes, and replicates the
/// behavior before we supported proc. attribute macros.
fn reseed_with_unresolved_attribute(&mut self) -> ReachedFixedPoint {
cov_mark::hit!(unresolved_attribute_fallback);
let unresolved_attr =
self.unresolved_macros.iter().enumerate().find_map(|(idx, directive)| match &directive
.kind
{
MacroDirectiveKind::Attr { ast_id, mod_item, attr, tree } => {
self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call(
directive.module_id,
MacroCallKind::Attr {
ast_id: ast_id.ast_id,
attr_args: Default::default(),
invoc_attr_index: attr.id.ast_index,
is_derive: false,
},
attr.path().clone(),
));
self.skip_attrs.insert(ast_id.ast_id.with_value(*mod_item), attr.id);
Some((idx, directive, *mod_item, *tree))
}
_ => None,
});
match unresolved_attr {
Some((pos, &MacroDirective { module_id, depth, container, .. }, mod_item, tree_id)) => {
let item_tree = &tree_id.item_tree(self.db);
let mod_dir = self.mod_dirs[&module_id].clone();
ModCollector {
def_collector: self,
macro_depth: depth,
module_id,
tree_id,
item_tree,
mod_dir,
}
.collect(&[mod_item], container);
self.unresolved_macros.swap_remove(pos);
// Continue name resolution with the new data.
ReachedFixedPoint::No
}
None => ReachedFixedPoint::Yes,
}
}
fn inject_prelude(&mut self, crate_attrs: &Attrs) {
// See compiler/rustc_builtin_macros/src/standard_library_imports.rs
if crate_attrs.by_key("no_core").exists() {
// libcore does not get a prelude.
return;
}
let krate = if crate_attrs.by_key("no_std").exists() {
name![core]
} else {
let std = name![std];
if self.def_map.extern_prelude().any(|(name, _)| *name == std) {
std
} else {
// If `std` does not exist for some reason, fall back to core. This mostly helps
// keep r-a's own tests minimal.
name![core]
}
};
let edition = match self.def_map.edition {
Edition::Edition2015 => name![rust_2015],
Edition::Edition2018 => name![rust_2018],
Edition::Edition2021 => name![rust_2021],
};
let path_kind = match self.def_map.edition {
Edition::Edition2015 => PathKind::Plain,
_ => PathKind::Abs,
};
let path =
ModPath::from_segments(path_kind, [krate.clone(), name![prelude], edition].into_iter());
// Fall back to the older `std::prelude::v1` for compatibility with Rust <1.52.0
// FIXME remove this fallback
let fallback_path =
ModPath::from_segments(path_kind, [krate, name![prelude], name![v1]].into_iter());
for path in &[path, fallback_path] {
let (per_ns, _) = self.def_map.resolve_path(
self.db,
self.def_map.root,
path,
BuiltinShadowMode::Other,
);
match per_ns.types {
Some((ModuleDefId::ModuleId(m), _)) => {
self.def_map.prelude = Some(m);
break;
}
types => {
tracing::debug!(
"could not resolve prelude path `{}` to module (resolved to {:?})",
path,
types
);
}
}
}
}
/// Adds a definition of procedural macro `name` to the root module.
///
/// # Notes on procedural macro resolution
///
/// Procedural macro functionality is provided by the build system: It has to build the proc
/// macro and pass the resulting dynamic library to rust-analyzer.
///
/// When procedural macro support is enabled, the list of proc macros exported by a crate is
/// known before we resolve names in the crate. This list is stored in `self.proc_macros` and is
/// derived from the dynamic library.
///
/// However, we *also* would like to be able to at least *resolve* macros on our own, without
/// help by the build system. So, when the macro isn't found in `self.proc_macros`, we instead
/// use a dummy expander that always errors. This comes with the drawback of macros potentially
/// going out of sync with what the build system sees (since we resolve using VFS state, but
/// Cargo builds only on-disk files). We could and probably should add diagnostics for that.
fn export_proc_macro(
&mut self,
def: ProcMacroDef,
id: ItemTreeId<item_tree::Function>,
fn_id: FunctionId,
module_id: ModuleId,
) {
let kind = def.kind.to_basedb_kind();
let (expander, kind) = match self.proc_macros.iter().find(|(n, _)| n == &def.name) {
Some(&(_, expander)) => (expander, kind),
None => (ProcMacroExpander::dummy(self.def_map.krate), kind),
};
let proc_macro_id =
ProcMacroLoc { container: module_id, id, expander, kind }.intern(self.db);
self.define_proc_macro(def.name.clone(), proc_macro_id);
if let ProcMacroKind::CustomDerive { helpers } = def.kind {
self.def_map
.exported_derives
.insert(macro_id_to_def_id(self.db, proc_macro_id.into()), helpers);
}
self.def_map.fn_proc_macro_mapping.insert(fn_id, proc_macro_id);
}
/// Define a macro with `macro_rules`.
///
/// It will define the macro in legacy textual scope, and if it has `#[macro_export]`,
/// then it is also defined in the root module scope.
/// You can `use` or invoke it by `crate::macro_name` anywhere, before or after the definition.
///
/// It is surprising that the macro will never be in the current module scope.
/// These code fails with "unresolved import/macro",
/// ```rust,compile_fail
/// mod m { macro_rules! foo { () => {} } }
/// use m::foo as bar;
/// ```
///
/// ```rust,compile_fail
/// macro_rules! foo { () => {} }
/// self::foo!();
/// crate::foo!();
/// ```
///
/// Well, this code compiles, because the plain path `foo` in `use` is searched
/// in the legacy textual scope only.
/// ```rust
/// macro_rules! foo { () => {} }
/// use foo as bar;
/// ```
fn define_macro_rules(
&mut self,
module_id: LocalModuleId,
name: Name,
macro_: MacroRulesId,
export: bool,
) {
// Textual scoping
self.define_legacy_macro(module_id, name.clone(), macro_.into());
// Module scoping
// In Rust, `#[macro_export]` macros are unconditionally visible at the
// crate root, even if the parent modules is **not** visible.
if export {
let module_id = self.def_map.root;
self.def_map.modules[module_id].scope.declare(macro_.into());
self.update(
module_id,
&[(Some(name), PerNs::macros(macro_.into(), Visibility::Public))],
Visibility::Public,
ImportType::Named,
);
}
}
/// Define a legacy textual scoped macro in module
///
/// We use a map `legacy_macros` to store all legacy textual scoped macros visible per module.
/// It will clone all macros from parent legacy scope, whose definition is prior to
/// the definition of current module.
/// And also, `macro_use` on a module will import all legacy macros visible inside to
/// current legacy scope, with possible shadowing.
fn define_legacy_macro(&mut self, module_id: LocalModuleId, name: Name, mac: MacroId) {
// Always shadowing
self.def_map.modules[module_id].scope.define_legacy_macro(name, mac);
}
/// Define a macro 2.0 macro
///
/// The scoped of macro 2.0 macro is equal to normal function
fn define_macro_def(
&mut self,
module_id: LocalModuleId,
name: Name,
macro_: Macro2Id,
vis: &RawVisibility,
) {
let vis =
self.def_map.resolve_visibility(self.db, module_id, vis).unwrap_or(Visibility::Public);
self.def_map.modules[module_id].scope.declare(macro_.into());
self.update(
module_id,
&[(Some(name), PerNs::macros(macro_.into(), Visibility::Public))],
vis,
ImportType::Named,
);
}
/// Define a proc macro
///
/// A proc macro is similar to normal macro scope, but it would not visible in legacy textual scoped.
/// And unconditionally exported.
fn define_proc_macro(&mut self, name: Name, macro_: ProcMacroId) {
let module_id = self.def_map.root;
self.def_map.modules[module_id].scope.declare(macro_.into());
self.update(
module_id,
&[(Some(name), PerNs::macros(macro_.into(), Visibility::Public))],
Visibility::Public,
ImportType::Named,
);
}
/// Import macros from `#[macro_use] extern crate`.
fn import_macros_from_extern_crate(
&mut self,
current_module_id: LocalModuleId,
extern_crate: &item_tree::ExternCrate,
) {
tracing::debug!(
"importing macros from extern crate: {:?} ({:?})",
extern_crate,
self.def_map.edition,
);
if let Some(m) = self.resolve_extern_crate(&extern_crate.name) {
if m == self.def_map.module_id(current_module_id) {
cov_mark::hit!(ignore_macro_use_extern_crate_self);
return;
}
cov_mark::hit!(macro_rules_from_other_crates_are_visible_with_macro_use);
self.import_all_macros_exported(current_module_id, m.krate);
}
}
/// Import all exported macros from another crate
///
/// Exported macros are just all macros in the root module scope.
/// Note that it contains not only all `#[macro_export]` macros, but also all aliases
/// created by `use` in the root module, ignoring the visibility of `use`.
fn import_all_macros_exported(&mut self, current_module_id: LocalModuleId, krate: CrateId) {
let def_map = self.db.crate_def_map(krate);
for (name, def) in def_map[def_map.root].scope.macros() {
// `#[macro_use]` brings macros into legacy scope. Yes, even non-`macro_rules!` macros.
self.define_legacy_macro(current_module_id, name.clone(), def);
}
}
/// Tries to resolve every currently unresolved import.
fn resolve_imports(&mut self) -> ReachedFixedPoint {
let mut res = ReachedFixedPoint::Yes;
let imports = mem::take(&mut self.unresolved_imports);
self.unresolved_imports = imports
.into_iter()
.filter_map(|mut directive| {
directive.status = self.resolve_import(directive.module_id, &directive.import);
match directive.status {
PartialResolvedImport::Indeterminate(_) => {
self.record_resolved_import(&directive);
self.indeterminate_imports.push(directive);
res = ReachedFixedPoint::No;
None
}
PartialResolvedImport::Resolved(_) => {
self.record_resolved_import(&directive);
res = ReachedFixedPoint::No;
None
}
PartialResolvedImport::Unresolved => Some(directive),
}
})
.collect();
res
}
fn resolve_import(&self, module_id: LocalModuleId, import: &Import) -> PartialResolvedImport {
let _p = profile::span("resolve_import").detail(|| format!("{}", import.path));
tracing::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition);
if import.is_extern_crate {
let name = import
.path
.as_ident()
.expect("extern crate should have been desugared to one-element path");
let res = self.resolve_extern_crate(name);
match res {
Some(res) => {
PartialResolvedImport::Resolved(PerNs::types(res.into(), Visibility::Public))
}
None => PartialResolvedImport::Unresolved,
}
} else {
let res = self.def_map.resolve_path_fp_with_macro(
self.db,
ResolveMode::Import,
module_id,
&import.path,
BuiltinShadowMode::Module,
);
let def = res.resolved_def;
if res.reached_fixedpoint == ReachedFixedPoint::No || def.is_none() {
return PartialResolvedImport::Unresolved;
}
if let Some(krate) = res.krate {
if krate != self.def_map.krate {
return PartialResolvedImport::Resolved(
def.filter_visibility(|v| matches!(v, Visibility::Public)),
);
}
}
// Check whether all namespace is resolved
if def.take_types().is_some()
&& def.take_values().is_some()
&& def.take_macros().is_some()
{
PartialResolvedImport::Resolved(def)
} else {
PartialResolvedImport::Indeterminate(def)
}
}
}
fn resolve_extern_crate(&self, name: &Name) -> Option<ModuleId> {
if *name == name!(self) {
cov_mark::hit!(extern_crate_self_as);
let root = match self.def_map.block {
Some(_) => {
let def_map = self.def_map.crate_root(self.db).def_map(self.db);
def_map.module_id(def_map.root())
}
None => self.def_map.module_id(self.def_map.root()),
};
Some(root)
} else {
self.deps.get(name).copied()
}
}
fn record_resolved_import(&mut self, directive: &ImportDirective) {
let _p = profile::span("record_resolved_import");
let module_id = directive.module_id;
let import = &directive.import;
let mut def = directive.status.namespaces();
let vis = self
.def_map
.resolve_visibility(self.db, module_id, &directive.import.visibility)
.unwrap_or(Visibility::Public);
match import.kind {
ImportKind::Plain | ImportKind::TypeOnly => {
let name = match &import.alias {
Some(ImportAlias::Alias(name)) => Some(name),
Some(ImportAlias::Underscore) => None,
None => match import.path.segments().last() {
Some(last_segment) => Some(last_segment),
None => {
cov_mark::hit!(bogus_paths);
return;
}
},
};
if import.kind == ImportKind::TypeOnly {
def.values = None;
def.macros = None;
}
tracing::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def);
// extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658
if import.is_extern_crate
&& self.def_map.block.is_none()
&& module_id == self.def_map.root
{
if let (Some(ModuleDefId::ModuleId(def)), Some(name)) = (def.take_types(), name)
{
self.def_map.extern_prelude.insert(name.clone(), def);
}
}
self.update(module_id, &[(name.cloned(), def)], vis, ImportType::Named);
}
ImportKind::Glob => {
tracing::debug!("glob import: {:?}", import);
match def.take_types() {
Some(ModuleDefId::ModuleId(m)) => {
if import.is_prelude {
// Note: This dodgily overrides the injected prelude. The rustc
// implementation seems to work the same though.
cov_mark::hit!(std_prelude);
self.def_map.prelude = Some(m);
} else if m.krate != self.def_map.krate {
cov_mark::hit!(glob_across_crates);
// glob import from other crate => we can just import everything once
let item_map = m.def_map(self.db);
let scope = &item_map[m.local_id].scope;
// Module scoped macros is included
let items = scope
.resolutions()
// only keep visible names...
.map(|(n, res)| {
(n, res.filter_visibility(|v| v.is_visible_from_other_crate()))
})
.filter(|(_, res)| !res.is_none())
.collect::<Vec<_>>();
self.update(module_id, &items, vis, ImportType::Glob);
} else {
// glob import from same crate => we do an initial
// import, and then need to propagate any further
// additions
let def_map;
let scope = if m.block == self.def_map.block_id() {
&self.def_map[m.local_id].scope
} else {
def_map = m.def_map(self.db);
&def_map[m.local_id].scope
};
// Module scoped macros is included
let items = scope
.resolutions()
// only keep visible names...
.map(|(n, res)| {
(
n,
res.filter_visibility(|v| {
v.is_visible_from_def_map(
self.db,
&self.def_map,
module_id,
)
}),
)
})
.filter(|(_, res)| !res.is_none())
.collect::<Vec<_>>();
self.update(module_id, &items, vis, ImportType::Glob);
// record the glob import in case we add further items
let glob = self.glob_imports.entry(m.local_id).or_default();
if !glob.iter().any(|(mid, _)| *mid == module_id) {
glob.push((module_id, vis));
}
}
}
Some(ModuleDefId::AdtId(AdtId::EnumId(e))) => {
cov_mark::hit!(glob_enum);
// glob import from enum => just import all the variants
// XXX: urgh, so this works by accident! Here, we look at
// the enum data, and, in theory, this might require us to
// look back at the crate_def_map, creating a cycle. For
// example, `enum E { crate::some_macro!(); }`. Luckily, the
// only kind of macro that is allowed inside enum is a
// `cfg_macro`, and we don't need to run name resolution for
// it, but this is sheer luck!
let enum_data = self.db.enum_data(e);
let resolutions = enum_data
.variants
.iter()
.map(|(local_id, variant_data)| {
let name = variant_data.name.clone();
let variant = EnumVariantId { parent: e, local_id };
let res = PerNs::both(variant.into(), variant.into(), vis);
(Some(name), res)
})
.collect::<Vec<_>>();
self.update(module_id, &resolutions, vis, ImportType::Glob);
}
Some(d) => {
tracing::debug!("glob import {:?} from non-module/enum {:?}", import, d);
}
None => {
tracing::debug!("glob import {:?} didn't resolve as type", import);
}
}
}
}
}
fn update(
&mut self,
// The module for which `resolutions` have been resolve
module_id: LocalModuleId,
resolutions: &[(Option<Name>, PerNs)],
// Visibility this import will have
vis: Visibility,
import_type: ImportType,
) {
self.db.unwind_if_cancelled();
self.update_recursive(module_id, resolutions, vis, import_type, 0)
}
fn update_recursive(
&mut self,
// The module for which `resolutions` have been resolve
module_id: LocalModuleId,
resolutions: &[(Option<Name>, PerNs)],
// All resolutions are imported with this visibility; the visibilities in
// the `PerNs` values are ignored and overwritten
vis: Visibility,
import_type: ImportType,
depth: usize,
) {
if GLOB_RECURSION_LIMIT.check(depth).is_err() {
// prevent stack overflows (but this shouldn't be possible)
panic!("infinite recursion in glob imports!");
}
let mut changed = false;
for (name, res) in resolutions {
match name {
Some(name) => {
let scope = &mut self.def_map.modules[module_id].scope;
changed |= scope.push_res_with_import(
&mut self.from_glob_import,
(module_id, name.clone()),
res.with_visibility(vis),
import_type,
);
}
None => {
let tr = match res.take_types() {
Some(ModuleDefId::TraitId(tr)) => tr,
Some(other) => {
tracing::debug!("non-trait `_` import of {:?}", other);
continue;
}
None => continue,
};
let old_vis = self.def_map.modules[module_id].scope.unnamed_trait_vis(tr);
let should_update = match old_vis {
None => true,
Some(old_vis) => {
let max_vis = old_vis.max(vis, &self.def_map).unwrap_or_else(|| {
panic!("`Tr as _` imports with unrelated visibilities {:?} and {:?} (trait {:?})", old_vis, vis, tr);
});
if max_vis == old_vis {
false
} else {
cov_mark::hit!(upgrade_underscore_visibility);
true
}
}
};
if should_update {
changed = true;
self.def_map.modules[module_id].scope.push_unnamed_trait(tr, vis);
}
}
}
}
if !changed {
return;
}
let glob_imports = self
.glob_imports
.get(&module_id)
.into_iter()
.flatten()
.filter(|(glob_importing_module, _)| {
// we know all resolutions have the same visibility (`vis`), so we
// just need to check that once
vis.is_visible_from_def_map(self.db, &self.def_map, *glob_importing_module)
})
.cloned()
.collect::<Vec<_>>();
for (glob_importing_module, glob_import_vis) in glob_imports {
self.update_recursive(
glob_importing_module,
resolutions,
glob_import_vis,
ImportType::Glob,
depth + 1,
);
}
}
fn resolve_macros(&mut self) -> ReachedFixedPoint {
let mut macros = mem::take(&mut self.unresolved_macros);
let mut resolved = Vec::new();
let mut push_resolved = |directive: &MacroDirective, call_id| {
resolved.push((directive.module_id, directive.depth, directive.container, call_id));
};
let mut res = ReachedFixedPoint::Yes;
macros.retain(|directive| {
let resolver = |path| {
let resolved_res = self.def_map.resolve_path_fp_with_macro(
self.db,
ResolveMode::Other,
directive.module_id,
&path,
BuiltinShadowMode::Module,
);
resolved_res
.resolved_def
.take_macros()
.map(|it| (it, macro_id_to_def_id(self.db, it)))
};
let resolver_def_id = |path| resolver(path).map(|(_, it)| it);
match &directive.kind {
MacroDirectiveKind::FnLike { ast_id, expand_to } => {
let call_id = macro_call_as_call_id(
self.db,
ast_id,
*expand_to,
self.def_map.krate,
&resolver_def_id,
&mut |_err| (),
);
if let Ok(Ok(call_id)) = call_id {
push_resolved(directive, call_id);
res = ReachedFixedPoint::No;
return false;
}
}
MacroDirectiveKind::Derive { ast_id, derive_attr, derive_pos } => {
let id = derive_macro_as_call_id(
self.db,
ast_id,
*derive_attr,
*derive_pos as u32,
self.def_map.krate,
&resolver,
);
if let Ok((macro_id, def_id, call_id)) = id {
self.def_map.modules[directive.module_id].scope.set_derive_macro_invoc(
ast_id.ast_id,
call_id,
*derive_attr,
*derive_pos,
);
// Record its helper attributes.
if def_id.krate != self.def_map.krate {
let def_map = self.db.crate_def_map(def_id.krate);
if let Some(helpers) = def_map.exported_derives.get(&def_id) {
self.def_map
.derive_helpers_in_scope
.entry(ast_id.ast_id.map(|it| it.upcast()))
.or_default()
.extend(izip!(
helpers.iter().cloned(),
iter::repeat(macro_id),
iter::repeat(call_id),
));
}
}
push_resolved(directive, call_id);
res = ReachedFixedPoint::No;
return false;
}
}
MacroDirectiveKind::Attr { ast_id: file_ast_id, mod_item, attr, tree } => {
let &AstIdWithPath { ast_id, ref path } = file_ast_id;
let file_id = ast_id.file_id;
let mut recollect_without = |collector: &mut Self| {
// Remove the original directive since we resolved it.
let mod_dir = collector.mod_dirs[&directive.module_id].clone();
collector.skip_attrs.insert(InFile::new(file_id, *mod_item), attr.id);
let item_tree = tree.item_tree(self.db);
ModCollector {
def_collector: collector,
macro_depth: directive.depth,
module_id: directive.module_id,
tree_id: *tree,
item_tree: &item_tree,
mod_dir,
}
.collect(&[*mod_item], directive.container);
res = ReachedFixedPoint::No;
false
};
if let Some(ident) = path.as_ident() {
if let Some(helpers) = self.def_map.derive_helpers_in_scope.get(&ast_id) {
if helpers.iter().any(|(it, ..)| it == ident) {
cov_mark::hit!(resolved_derive_helper);
// Resolved to derive helper. Collect the item's attributes again,
// starting after the derive helper.
return recollect_without(self);
}
}
}
let def = match resolver_def_id(path.clone()) {
Some(def) if def.is_attribute() => def,
_ => return true,
};
if matches!(
def,
MacroDefId { kind:MacroDefKind::BuiltInAttr(expander, _),.. }
if expander.is_derive()
) {
// Resolved to `#[derive]`
let item_tree = tree.item_tree(self.db);
let ast_adt_id: FileAstId<ast::Adt> = match *mod_item {
ModItem::Struct(strukt) => item_tree[strukt].ast_id().upcast(),
ModItem::Union(union) => item_tree[union].ast_id().upcast(),
ModItem::Enum(enum_) => item_tree[enum_].ast_id().upcast(),
_ => {
let diag = DefDiagnostic::invalid_derive_target(
directive.module_id,
ast_id,
attr.id,
);
self.def_map.diagnostics.push(diag);
return recollect_without(self);
}
};
let ast_id = ast_id.with_value(ast_adt_id);
match attr.parse_path_comma_token_tree() {
Some(derive_macros) => {
let mut len = 0;
for (idx, path) in derive_macros.enumerate() {
let ast_id = AstIdWithPath::new(file_id, ast_id.value, path);
self.unresolved_macros.push(MacroDirective {
module_id: directive.module_id,
depth: directive.depth + 1,
kind: MacroDirectiveKind::Derive {
ast_id,
derive_attr: attr.id,
derive_pos: idx,
},
container: directive.container,
});
len = idx;
}
// We treat the #[derive] macro as an attribute call, but we do not resolve it for nameres collection.
// This is just a trick to be able to resolve the input to derives as proper paths.
// Check the comment in [`builtin_attr_macro`].
let call_id = attr_macro_as_call_id(
self.db,
file_ast_id,
attr,
self.def_map.krate,
def,
true,
);
self.def_map.modules[directive.module_id]
.scope
.init_derive_attribute(ast_id, attr.id, call_id, len + 1);
}
None => {
let diag = DefDiagnostic::malformed_derive(
directive.module_id,
ast_id,
attr.id,
);
self.def_map.diagnostics.push(diag);
}
}
return recollect_without(self);
}
// Not resolved to a derive helper or the derive attribute, so try to treat as a normal attribute.
let call_id = attr_macro_as_call_id(
self.db,
file_ast_id,
attr,
self.def_map.krate,
def,
false,
);
let loc: MacroCallLoc = self.db.lookup_intern_macro_call(call_id);
// If proc attribute macro expansion is disabled, skip expanding it here
if !self.db.enable_proc_attr_macros() {
self.def_map.diagnostics.push(DefDiagnostic::unresolved_proc_macro(
directive.module_id,
loc.kind,
loc.def.krate,
));
return recollect_without(self);
}
// Skip #[test]/#[bench] expansion, which would merely result in more memory usage
// due to duplicating functions into macro expansions
if matches!(
loc.def.kind,
MacroDefKind::BuiltInAttr(expander, _)
if expander.is_test() || expander.is_bench()
) {
return recollect_without(self);
}
if let MacroDefKind::ProcMacro(exp, ..) = loc.def.kind {
if exp.is_dummy() {
// If there's no expander for the proc macro (e.g.
// because proc macros are disabled, or building the
// proc macro crate failed), report this and skip
// expansion like we would if it was disabled
self.def_map.diagnostics.push(DefDiagnostic::unresolved_proc_macro(
directive.module_id,
loc.kind,
loc.def.krate,
));
return recollect_without(self);
}
}
self.def_map.modules[directive.module_id]
.scope
.add_attr_macro_invoc(ast_id, call_id);
push_resolved(directive, call_id);
res = ReachedFixedPoint::No;
return false;
}
}
true
});
// Attribute resolution can add unresolved macro invocations, so concatenate the lists.
macros.extend(mem::take(&mut self.unresolved_macros));
self.unresolved_macros = macros;
for (module_id, depth, container, macro_call_id) in resolved {
self.collect_macro_expansion(module_id, macro_call_id, depth, container);
}
res
}
fn collect_macro_expansion(
&mut self,
module_id: LocalModuleId,
macro_call_id: MacroCallId,
depth: usize,
container: ItemContainerId,
) {
if EXPANSION_DEPTH_LIMIT.check(depth).is_err() {
cov_mark::hit!(macro_expansion_overflow);
tracing::warn!("macro expansion is too deep");
return;
}
let file_id = macro_call_id.as_file();
// First, fetch the raw expansion result for purposes of error reporting. This goes through
// `macro_expand_error` to avoid depending on the full expansion result (to improve
// incrementality).
let loc: MacroCallLoc = self.db.lookup_intern_macro_call(macro_call_id);
let err = self.db.macro_expand_error(macro_call_id);
if let Some(err) = err {
let diag = match err {
hir_expand::ExpandError::UnresolvedProcMacro(krate) => {
always!(krate == loc.def.krate);
// Missing proc macros are non-fatal, so they are handled specially.
DefDiagnostic::unresolved_proc_macro(module_id, loc.kind.clone(), loc.def.krate)
}
_ => DefDiagnostic::macro_error(module_id, loc.kind.clone(), err.to_string()),
};
self.def_map.diagnostics.push(diag);
}
// Then, fetch and process the item tree. This will reuse the expansion result from above.
let item_tree = self.db.file_item_tree(file_id);
let mod_dir = self.mod_dirs[&module_id].clone();
ModCollector {
def_collector: &mut *self,
macro_depth: depth,
tree_id: TreeId::new(file_id, None),
module_id,
item_tree: &item_tree,
mod_dir,
}
.collect(item_tree.top_level_items(), container);
}
fn finish(mut self) -> DefMap {
// Emit diagnostics for all remaining unexpanded macros.
let _p = profile::span("DefCollector::finish");
for directive in &self.unresolved_macros {
match &directive.kind {
MacroDirectiveKind::FnLike { ast_id, expand_to } => {
let macro_call_as_call_id = macro_call_as_call_id(
self.db,
ast_id,
*expand_to,
self.def_map.krate,
|path| {
let resolved_res = self.def_map.resolve_path_fp_with_macro(
self.db,
ResolveMode::Other,
directive.module_id,
&path,
BuiltinShadowMode::Module,
);
resolved_res
.resolved_def
.take_macros()
.map(|it| macro_id_to_def_id(self.db, it))
},
&mut |_| (),
);
if let Err(UnresolvedMacro { path }) = macro_call_as_call_id {
self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call(
directive.module_id,
MacroCallKind::FnLike { ast_id: ast_id.ast_id, expand_to: *expand_to },
path,
));
}
}
MacroDirectiveKind::Derive { ast_id, derive_attr, derive_pos } => {
self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call(
directive.module_id,
MacroCallKind::Derive {
ast_id: ast_id.ast_id,
derive_attr_index: derive_attr.ast_index,
derive_index: *derive_pos as u32,
},
ast_id.path.clone(),
));
}
// These are diagnosed by `reseed_with_unresolved_attribute`, as that function consumes them
MacroDirectiveKind::Attr { .. } => {}
}
}
// Emit diagnostics for all remaining unresolved imports.
// We'd like to avoid emitting a diagnostics avalanche when some `extern crate` doesn't
// resolve. We first emit diagnostics for unresolved extern crates and collect the missing
// crate names. Then we emit diagnostics for unresolved imports, but only if the import
// doesn't start with an unresolved crate's name. Due to renaming and reexports, this is a
// heuristic, but it works in practice.
let mut diagnosed_extern_crates = FxHashSet::default();
for directive in &self.unresolved_imports {
if let ImportSource::ExternCrate(krate) = directive.import.source {
let item_tree = krate.item_tree(self.db);
let extern_crate = &item_tree[krate.value];
diagnosed_extern_crates.insert(extern_crate.name.clone());
self.def_map.diagnostics.push(DefDiagnostic::unresolved_extern_crate(
directive.module_id,
InFile::new(krate.file_id(), extern_crate.ast_id),
));
}
}
for directive in &self.unresolved_imports {
if let ImportSource::Import { id: import, use_tree } = directive.import.source {
if matches!(
(directive.import.path.segments().first(), &directive.import.path.kind),
(Some(krate), PathKind::Plain | PathKind::Abs) if diagnosed_extern_crates.contains(krate)
) {
continue;
}
self.def_map.diagnostics.push(DefDiagnostic::unresolved_import(
directive.module_id,
import,
use_tree,
));
}
}
self.def_map
}
}
/// Walks a single module, populating defs, imports and macros
struct ModCollector<'a, 'b> {
def_collector: &'a mut DefCollector<'b>,
macro_depth: usize,
module_id: LocalModuleId,
tree_id: TreeId,
item_tree: &'a ItemTree,
mod_dir: ModDir,
}
impl ModCollector<'_, '_> {
fn collect_in_top_module(&mut self, items: &[ModItem]) {
let module = self.def_collector.def_map.module_id(self.module_id);
self.collect(items, module.into())
}
fn collect(&mut self, items: &[ModItem], container: ItemContainerId) {
let krate = self.def_collector.def_map.krate;
// Note: don't assert that inserted value is fresh: it's simply not true
// for macros.
self.def_collector.mod_dirs.insert(self.module_id, self.mod_dir.clone());
// Prelude module is always considered to be `#[macro_use]`.
if let Some(prelude_module) = self.def_collector.def_map.prelude {
if prelude_module.krate != krate {
cov_mark::hit!(prelude_is_macro_use);
self.def_collector.import_all_macros_exported(self.module_id, prelude_module.krate);
}
}
// This should be processed eagerly instead of deferred to resolving.
// `#[macro_use] extern crate` is hoisted to imports macros before collecting
// any other items.
for &item in items {
let attrs = self.item_tree.attrs(self.def_collector.db, krate, item.into());
if attrs.cfg().map_or(true, |cfg| self.is_cfg_enabled(&cfg)) {
if let ModItem::ExternCrate(id) = item {
let import = &self.item_tree[id];
let attrs = self.item_tree.attrs(
self.def_collector.db,
krate,
ModItem::from(id).into(),
);
if attrs.by_key("macro_use").exists() {
self.def_collector.import_macros_from_extern_crate(self.module_id, import);
}
}
}
}
for &item in items {
let attrs = self.item_tree.attrs(self.def_collector.db, krate, item.into());
if let Some(cfg) = attrs.cfg() {
if !self.is_cfg_enabled(&cfg) {
self.emit_unconfigured_diagnostic(item, &cfg);
continue;
}
}
if let Err(()) = self.resolve_attributes(&attrs, item, container) {
// Do not process the item. It has at least one non-builtin attribute, so the
// fixed-point algorithm is required to resolve the rest of them.
continue;
}
let db = self.def_collector.db;
let module = self.def_collector.def_map.module_id(self.module_id);
let def_map = &mut self.def_collector.def_map;
let update_def =
|def_collector: &mut DefCollector<'_>, id, name: &Name, vis, has_constructor| {
def_collector.def_map.modules[self.module_id].scope.declare(id);
def_collector.update(
self.module_id,
&[(Some(name.clone()), PerNs::from_def(id, vis, has_constructor))],
vis,
ImportType::Named,
)
};
let resolve_vis = |def_map: &DefMap, visibility| {
def_map
.resolve_visibility(db, self.module_id, visibility)
.unwrap_or(Visibility::Public)
};
match item {
ModItem::Mod(m) => self.collect_module(m, &attrs),
ModItem::Import(import_id) => {
let imports = Import::from_use(
db,
krate,
self.item_tree,
ItemTreeId::new(self.tree_id, import_id),
);
self.def_collector.unresolved_imports.extend(imports.into_iter().map(
|import| ImportDirective {
module_id: self.module_id,
import,
status: PartialResolvedImport::Unresolved,
},
));
}
ModItem::ExternCrate(import_id) => {
self.def_collector.unresolved_imports.push(ImportDirective {
module_id: self.module_id,
import: Import::from_extern_crate(
db,
krate,
self.item_tree,
ItemTreeId::new(self.tree_id, import_id),
),
status: PartialResolvedImport::Unresolved,
})
}
ModItem::ExternBlock(block) => self.collect(
&self.item_tree[block].children,
ItemContainerId::ExternBlockId(
ExternBlockLoc {
container: module,
id: ItemTreeId::new(self.tree_id, block),
}
.intern(db),
),
),
ModItem::MacroCall(mac) => self.collect_macro_call(&self.item_tree[mac], container),
ModItem::MacroRules(id) => self.collect_macro_rules(id, module),
ModItem::MacroDef(id) => self.collect_macro_def(id, module),
ModItem::Impl(imp) => {
let impl_id =
ImplLoc { container: module, id: ItemTreeId::new(self.tree_id, imp) }
.intern(db);
self.def_collector.def_map.modules[self.module_id].scope.define_impl(impl_id)
}
ModItem::Function(id) => {
let it = &self.item_tree[id];
let fn_id =
FunctionLoc { container, id: ItemTreeId::new(self.tree_id, id) }.intern(db);
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
if self.def_collector.is_proc_macro {
if self.module_id == def_map.root {
if let Some(proc_macro) = attrs.parse_proc_macro_decl(&it.name) {
let crate_root = def_map.module_id(def_map.root);
self.def_collector.export_proc_macro(
proc_macro,
ItemTreeId::new(self.tree_id, id),
fn_id,
crate_root,
);
}
}
}
update_def(self.def_collector, fn_id.into(), &it.name, vis, false);
}
ModItem::Struct(id) => {
let it = &self.item_tree[id];
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(
self.def_collector,
StructLoc { container: module, id: ItemTreeId::new(self.tree_id, id) }
.intern(db)
.into(),
&it.name,
vis,
!matches!(it.fields, Fields::Record(_)),
);
}
ModItem::Union(id) => {
let it = &self.item_tree[id];
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(
self.def_collector,
UnionLoc { container: module, id: ItemTreeId::new(self.tree_id, id) }
.intern(db)
.into(),
&it.name,
vis,
false,
);
}
ModItem::Enum(id) => {
let it = &self.item_tree[id];
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(
self.def_collector,
EnumLoc { container: module, id: ItemTreeId::new(self.tree_id, id) }
.intern(db)
.into(),
&it.name,
vis,
false,
);
}
ModItem::Const(id) => {
let it = &self.item_tree[id];
let const_id =
ConstLoc { container, id: ItemTreeId::new(self.tree_id, id) }.intern(db);
match &it.name {
Some(name) => {
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(self.def_collector, const_id.into(), name, vis, false);
}
None => {
// const _: T = ...;
self.def_collector.def_map.modules[self.module_id]
.scope
.define_unnamed_const(const_id);
}
}
}
ModItem::Static(id) => {
let it = &self.item_tree[id];
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(
self.def_collector,
StaticLoc { container, id: ItemTreeId::new(self.tree_id, id) }
.intern(db)
.into(),
&it.name,
vis,
false,
);
}
ModItem::Trait(id) => {
let it = &self.item_tree[id];
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(
self.def_collector,
TraitLoc { container: module, id: ItemTreeId::new(self.tree_id, id) }
.intern(db)
.into(),
&it.name,
vis,
false,
);
}
ModItem::TypeAlias(id) => {
let it = &self.item_tree[id];
let vis = resolve_vis(def_map, &self.item_tree[it.visibility]);
update_def(
self.def_collector,
TypeAliasLoc { container, id: ItemTreeId::new(self.tree_id, id) }
.intern(db)
.into(),
&it.name,
vis,
false,
);
}
}
}
}
fn collect_module(&mut self, module_id: FileItemTreeId<Mod>, attrs: &Attrs) {
let path_attr = attrs.by_key("path").string_value();
let is_macro_use = attrs.by_key("macro_use").exists();
let module = &self.item_tree[module_id];
match &module.kind {
// inline module, just recurse
ModKind::Inline { items } => {
let module_id = self.push_child_module(
module.name.clone(),
AstId::new(self.file_id(), module.ast_id),
None,
&self.item_tree[module.visibility],
module_id,
);
if let Some(mod_dir) = self.mod_dir.descend_into_definition(&module.name, path_attr)
{
ModCollector {
def_collector: &mut *self.def_collector,
macro_depth: self.macro_depth,
module_id,
tree_id: self.tree_id,
item_tree: self.item_tree,
mod_dir,
}
.collect_in_top_module(&*items);
if is_macro_use {
self.import_all_legacy_macros(module_id);
}
}
}
// out of line module, resolve, parse and recurse
ModKind::Outline => {
let ast_id = AstId::new(self.tree_id.file_id(), module.ast_id);
let db = self.def_collector.db;
match self.mod_dir.resolve_declaration(db, self.file_id(), &module.name, path_attr)
{
Ok((file_id, is_mod_rs, mod_dir)) => {
let item_tree = db.file_item_tree(file_id.into());
let krate = self.def_collector.def_map.krate;
let is_enabled = item_tree
.top_level_attrs(db, krate)
.cfg()
.map_or(true, |cfg| self.is_cfg_enabled(&cfg));
if is_enabled {
let module_id = self.push_child_module(
module.name.clone(),
ast_id,
Some((file_id, is_mod_rs)),
&self.item_tree[module.visibility],
module_id,
);
ModCollector {
def_collector: self.def_collector,
macro_depth: self.macro_depth,
module_id,
tree_id: TreeId::new(file_id.into(), None),
item_tree: &item_tree,
mod_dir,
}
.collect_in_top_module(item_tree.top_level_items());
let is_macro_use = is_macro_use
|| item_tree
.top_level_attrs(db, krate)
.by_key("macro_use")
.exists();
if is_macro_use {
self.import_all_legacy_macros(module_id);
}
}
}
Err(candidates) => {
self.push_child_module(
module.name.clone(),
ast_id,
None,
&self.item_tree[module.visibility],
module_id,
);
self.def_collector.def_map.diagnostics.push(
DefDiagnostic::unresolved_module(self.module_id, ast_id, candidates),
);
}
};
}
}
}
fn push_child_module(
&mut self,
name: Name,
declaration: AstId<ast::Module>,
definition: Option<(FileId, bool)>,
visibility: &crate::visibility::RawVisibility,
mod_tree_id: FileItemTreeId<Mod>,
) -> LocalModuleId {
let def_map = &mut self.def_collector.def_map;
let vis = def_map
.resolve_visibility(self.def_collector.db, self.module_id, visibility)
.unwrap_or(Visibility::Public);
let modules = &mut def_map.modules;
let origin = match definition {
None => ModuleOrigin::Inline {
definition: declaration,
definition_tree_id: ItemTreeId::new(self.tree_id, mod_tree_id),
},
Some((definition, is_mod_rs)) => ModuleOrigin::File {
declaration,
definition,
is_mod_rs,
declaration_tree_id: ItemTreeId::new(self.tree_id, mod_tree_id),
},
};
let res = modules.alloc(ModuleData::new(origin, vis));
modules[res].parent = Some(self.module_id);
for (name, mac) in modules[self.module_id].scope.collect_legacy_macros() {
for &mac in &mac {
modules[res].scope.define_legacy_macro(name.clone(), mac);
}
}
modules[self.module_id].children.insert(name.clone(), res);
let module = def_map.module_id(res);
let def = ModuleDefId::from(module);
def_map.modules[self.module_id].scope.declare(def);
self.def_collector.update(
self.module_id,
&[(Some(name), PerNs::from_def(def, vis, false))],
vis,
ImportType::Named,
);
res
}
/// Resolves attributes on an item.
///
/// Returns `Err` when some attributes could not be resolved to builtins and have been
/// registered as unresolved.
///
/// If `ignore_up_to` is `Some`, attributes preceding and including that attribute will be
/// assumed to be resolved already.
fn resolve_attributes(
&mut self,
attrs: &Attrs,
mod_item: ModItem,
container: ItemContainerId,
) -> Result<(), ()> {
let mut ignore_up_to =
self.def_collector.skip_attrs.get(&InFile::new(self.file_id(), mod_item)).copied();
let iter = attrs
.iter()
.dedup_by(|a, b| {
// FIXME: this should not be required, all attributes on an item should have a
// unique ID!
// Still, this occurs because `#[cfg_attr]` can "expand" to multiple attributes:
// #[cfg_attr(not(off), unresolved, unresolved)]
// struct S;
// We should come up with a different way to ID attributes.
a.id == b.id
})
.skip_while(|attr| match ignore_up_to {
Some(id) if attr.id == id => {
ignore_up_to = None;
true
}
Some(_) => true,
None => false,
});
for attr in iter {
if self.def_collector.def_map.is_builtin_or_registered_attr(&attr.path) {
continue;
}
tracing::debug!("non-builtin attribute {}", attr.path);
let ast_id = AstIdWithPath::new(
self.file_id(),
mod_item.ast_id(self.item_tree),
attr.path.as_ref().clone(),
);
self.def_collector.unresolved_macros.push(MacroDirective {
module_id: self.module_id,
depth: self.macro_depth + 1,
kind: MacroDirectiveKind::Attr {
ast_id,
attr: attr.clone(),
mod_item,
tree: self.tree_id,
},
container,
});
return Err(());
}
Ok(())
}
fn collect_macro_rules(&mut self, id: FileItemTreeId<MacroRules>, module: ModuleId) {
let krate = self.def_collector.def_map.krate;
let mac = &self.item_tree[id];
let attrs = self.item_tree.attrs(self.def_collector.db, krate, ModItem::from(id).into());
let ast_id = InFile::new(self.file_id(), mac.ast_id.upcast());
let export_attr = attrs.by_key("macro_export");
let is_export = export_attr.exists();
let local_inner = if is_export {
export_attr.tt_values().flat_map(|it| &it.token_trees).any(|it| match it {
tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) => {
ident.text.contains("local_inner_macros")
}
_ => false,
})
} else {
false
};
// Case 1: builtin macros
let expander = if attrs.by_key("rustc_builtin_macro").exists() {
// `#[rustc_builtin_macro = "builtin_name"]` overrides the `macro_rules!` name.
let name;
let name = match attrs.by_key("rustc_builtin_macro").string_value() {
Some(it) => {
// FIXME: a hacky way to create a Name from string.
name = tt::Ident { text: it.clone(), id: tt::TokenId::unspecified() }.as_name();
&name
}
None => {
let explicit_name =
attrs.by_key("rustc_builtin_macro").tt_values().next().and_then(|tt| {
match tt.token_trees.first() {
Some(tt::TokenTree::Leaf(tt::Leaf::Ident(name))) => Some(name),
_ => None,
}
});
match explicit_name {
Some(ident) => {
name = ident.as_name();
&name
}
None => &mac.name,
}
}
};
match find_builtin_macro(name) {
Some(Either::Left(it)) => MacroExpander::BuiltIn(it),
Some(Either::Right(it)) => MacroExpander::BuiltInEager(it),
None => {
self.def_collector
.def_map
.diagnostics
.push(DefDiagnostic::unimplemented_builtin_macro(self.module_id, ast_id));
return;
}
}
} else {
// Case 2: normal `macro_rules!` macro
MacroExpander::Declarative
};
let macro_id = MacroRulesLoc {
container: module,
id: ItemTreeId::new(self.tree_id, id),
local_inner,
expander,
}
.intern(self.def_collector.db);
self.def_collector.define_macro_rules(
self.module_id,
mac.name.clone(),
macro_id,
is_export,
);
}
fn collect_macro_def(&mut self, id: FileItemTreeId<MacroDef>, module: ModuleId) {
let krate = self.def_collector.def_map.krate;
let mac = &self.item_tree[id];
let ast_id = InFile::new(self.file_id(), mac.ast_id.upcast());
// Case 1: builtin macros
let mut helpers_opt = None;
let attrs = self.item_tree.attrs(self.def_collector.db, krate, ModItem::from(id).into());
let expander = if attrs.by_key("rustc_builtin_macro").exists() {
if let Some(expander) = find_builtin_macro(&mac.name) {
match expander {
Either::Left(it) => MacroExpander::BuiltIn(it),
Either::Right(it) => MacroExpander::BuiltInEager(it),
}
} else if let Some(expander) = find_builtin_derive(&mac.name) {
if let Some(attr) = attrs.by_key("rustc_builtin_macro").tt_values().next() {
// NOTE: The item *may* have both `#[rustc_builtin_macro]` and `#[proc_macro_derive]`,
// in which case rustc ignores the helper attributes from the latter, but it
// "doesn't make sense in practice" (see rust-lang/rust#87027).
if let Some((name, helpers)) =
parse_macro_name_and_helper_attrs(&attr.token_trees)
{
// NOTE: rustc overrides the name if the macro name if it's different from the
// macro name, but we assume it isn't as there's no such case yet. FIXME if
// the following assertion fails.
stdx::always!(
name == mac.name,
"built-in macro {} has #[rustc_builtin_macro] which declares different name {}",
mac.name,
name
);
helpers_opt = Some(helpers);
}
}
MacroExpander::BuiltInDerive(expander)
} else if let Some(expander) = find_builtin_attr(&mac.name) {
MacroExpander::BuiltInAttr(expander)
} else {
self.def_collector
.def_map
.diagnostics
.push(DefDiagnostic::unimplemented_builtin_macro(self.module_id, ast_id));
return;
}
} else {
// Case 2: normal `macro`
MacroExpander::Declarative
};
let macro_id =
Macro2Loc { container: module, id: ItemTreeId::new(self.tree_id, id), expander }
.intern(self.def_collector.db);
self.def_collector.define_macro_def(
self.module_id,
mac.name.clone(),
macro_id,
&self.item_tree[mac.visibility],
);
if let Some(helpers) = helpers_opt {
self.def_collector
.def_map
.exported_derives
.insert(macro_id_to_def_id(self.def_collector.db, macro_id.into()), helpers);
}
}
fn collect_macro_call(&mut self, mac: &MacroCall, container: ItemContainerId) {
let ast_id = AstIdWithPath::new(self.file_id(), mac.ast_id, ModPath::clone(&mac.path));
// Case 1: try to resolve in legacy scope and expand macro_rules
let mut error = None;
match macro_call_as_call_id(
self.def_collector.db,
&ast_id,
mac.expand_to,
self.def_collector.def_map.krate,
|path| {
path.as_ident().and_then(|name| {
self.def_collector.def_map.with_ancestor_maps(
self.def_collector.db,
self.module_id,
&mut |map, module| {
map[module]
.scope
.get_legacy_macro(name)
.and_then(|it| it.last())
.map(|&it| macro_id_to_def_id(self.def_collector.db, it.into()))
},
)
})
},
&mut |err| {
error.get_or_insert(err);
},
) {
Ok(Ok(macro_call_id)) => {
// Legacy macros need to be expanded immediately, so that any macros they produce
// are in scope.
self.def_collector.collect_macro_expansion(
self.module_id,
macro_call_id,
self.macro_depth + 1,
container,
);
if let Some(err) = error {
self.def_collector.def_map.diagnostics.push(DefDiagnostic::macro_error(
self.module_id,
MacroCallKind::FnLike { ast_id: ast_id.ast_id, expand_to: mac.expand_to },
err.to_string(),
));
}
return;
}
Ok(Err(_)) => {
// Built-in macro failed eager expansion.
self.def_collector.def_map.diagnostics.push(DefDiagnostic::macro_error(
self.module_id,
MacroCallKind::FnLike { ast_id: ast_id.ast_id, expand_to: mac.expand_to },
error.unwrap().to_string(),
));
return;
}
Err(UnresolvedMacro { .. }) => (),
}
// Case 2: resolve in module scope, expand during name resolution.
self.def_collector.unresolved_macros.push(MacroDirective {
module_id: self.module_id,
depth: self.macro_depth + 1,
kind: MacroDirectiveKind::FnLike { ast_id, expand_to: mac.expand_to },
container,
});
}
fn import_all_legacy_macros(&mut self, module_id: LocalModuleId) {
let macros = self.def_collector.def_map[module_id].scope.collect_legacy_macros();
for (name, macs) in macros {
macs.last().map(|&mac| {
self.def_collector.define_legacy_macro(self.module_id, name.clone(), mac)
});
}
}
fn is_cfg_enabled(&self, cfg: &CfgExpr) -> bool {
self.def_collector.cfg_options.check(cfg) != Some(false)
}
fn emit_unconfigured_diagnostic(&mut self, item: ModItem, cfg: &CfgExpr) {
let ast_id = item.ast_id(self.item_tree);
let ast_id = InFile::new(self.file_id(), ast_id.upcast());
self.def_collector.def_map.diagnostics.push(DefDiagnostic::unconfigured_code(
self.module_id,
ast_id,
cfg.clone(),
self.def_collector.cfg_options.clone(),
));
}
fn file_id(&self) -> HirFileId {
self.tree_id.file_id()
}
}
#[cfg(test)]
mod tests {
use crate::{db::DefDatabase, test_db::TestDB};
use base_db::{fixture::WithFixture, SourceDatabase};
use super::*;
fn do_collect_defs(db: &dyn DefDatabase, def_map: DefMap) -> DefMap {
let mut collector = DefCollector {
db,
def_map,
deps: FxHashMap::default(),
glob_imports: FxHashMap::default(),
unresolved_imports: Vec::new(),
indeterminate_imports: Vec::new(),
unresolved_macros: Vec::new(),
mod_dirs: FxHashMap::default(),
cfg_options: &CfgOptions::default(),
proc_macros: Default::default(),
from_glob_import: Default::default(),
skip_attrs: Default::default(),
is_proc_macro: false,
};
collector.seed_with_top_level();
collector.collect();
collector.def_map
}
fn do_resolve(not_ra_fixture: &str) -> DefMap {
let (db, file_id) = TestDB::with_single_file(not_ra_fixture);
let krate = db.test_crate();
let edition = db.crate_graph()[krate].edition;
let module_origin = ModuleOrigin::CrateRoot { definition: file_id };
let def_map =
DefMap::empty(krate, edition, ModuleData::new(module_origin, Visibility::Public));
do_collect_defs(&db, def_map)
}
#[test]
fn test_macro_expand_will_stop_1() {
do_resolve(
r#"
macro_rules! foo {
($($ty:ty)*) => { foo!($($ty)*); }
}
foo!(KABOOM);
"#,
);
do_resolve(
r#"
macro_rules! foo {
($($ty:ty)*) => { foo!(() $($ty)*); }
}
foo!(KABOOM);
"#,
);
}
#[ignore]
#[test]
fn test_macro_expand_will_stop_2() {
// FIXME: this test does succeed, but takes quite a while: 90 seconds in
// the release mode. That's why the argument is not an ra_fixture --
// otherwise injection highlighting gets stuck.
//
// We need to find a way to fail this faster.
do_resolve(
r#"
macro_rules! foo {
($($ty:ty)*) => { foo!($($ty)* $($ty)*); }
}
foo!(KABOOM);
"#,
);
}
}