rust-analyzer/crates/ra_ide/src/diagnostics.rs
2020-06-23 23:33:41 +02:00

876 lines
26 KiB
Rust

//! Collects diagnostics & fixits for a single file.
//!
//! The tricky bit here is that diagnostics are produced by hir in terms of
//! macro-expanded files, but we need to present them to the users in terms of
//! original files. So we need to map the ranges.
use std::cell::RefCell;
use hir::{
diagnostics::{AstDiagnostic, Diagnostic as _, DiagnosticSink},
HasSource, HirDisplay, Semantics, VariantDef,
};
use itertools::Itertools;
use ra_db::SourceDatabase;
use ra_ide_db::RootDatabase;
use ra_prof::profile;
use ra_syntax::{
algo,
ast::{self, edit::IndentLevel, make, AstNode},
SyntaxNode, TextRange, T,
};
use ra_text_edit::{TextEdit, TextEditBuilder};
use crate::{Diagnostic, FileId, FileSystemEdit, Fix, SourceFileEdit};
#[derive(Debug, Copy, Clone)]
pub enum Severity {
Error,
WeakWarning,
}
pub(crate) fn diagnostics(db: &RootDatabase, file_id: FileId) -> Vec<Diagnostic> {
let _p = profile("diagnostics");
let sema = Semantics::new(db);
let parse = db.parse(file_id);
let mut res = Vec::new();
res.extend(parse.errors().iter().map(|err| Diagnostic {
range: err.range(),
message: format!("Syntax Error: {}", err),
severity: Severity::Error,
fix: None,
}));
for node in parse.tree().syntax().descendants() {
check_unnecessary_braces_in_use_statement(&mut res, file_id, &node);
check_struct_shorthand_initialization(&mut res, file_id, &node);
}
let res = RefCell::new(res);
let mut sink = DiagnosticSink::new(|d| {
res.borrow_mut().push(Diagnostic {
message: d.message(),
range: sema.diagnostics_range(d).range,
severity: Severity::Error,
fix: None,
})
})
.on::<hir::diagnostics::UnresolvedModule, _>(|d| {
let original_file = d.source().file_id.original_file(db);
let fix = Fix::new(
"Create module",
FileSystemEdit::CreateFile { anchor: original_file, dst: d.candidate.clone() }.into(),
);
res.borrow_mut().push(Diagnostic {
range: sema.diagnostics_range(d).range,
message: d.message(),
severity: Severity::Error,
fix: Some(fix),
})
})
.on::<hir::diagnostics::MissingFields, _>(|d| {
// Note that although we could add a diagnostics to
// fill the missing tuple field, e.g :
// `struct A(usize);`
// `let a = A { 0: () }`
// but it is uncommon usage and it should not be encouraged.
let fix = if d.missed_fields.iter().any(|it| it.as_tuple_index().is_some()) {
None
} else {
let mut field_list = d.ast(db);
for f in d.missed_fields.iter() {
let field =
make::record_field(make::name_ref(&f.to_string()), Some(make::expr_unit()));
field_list = field_list.append_field(&field);
}
let edit = {
let mut builder = TextEditBuilder::default();
algo::diff(&d.ast(db).syntax(), &field_list.syntax()).into_text_edit(&mut builder);
builder.finish()
};
Some(Fix::new("Fill struct fields", SourceFileEdit { file_id, edit }.into()))
};
res.borrow_mut().push(Diagnostic {
range: sema.diagnostics_range(d).range,
message: d.message(),
severity: Severity::Error,
fix,
})
})
.on::<hir::diagnostics::MissingMatchArms, _>(|d| {
res.borrow_mut().push(Diagnostic {
range: sema.diagnostics_range(d).range,
message: d.message(),
severity: Severity::Error,
fix: None,
})
})
.on::<hir::diagnostics::MissingOkInTailExpr, _>(|d| {
let node = d.ast(db);
let replacement = format!("Ok({})", node.syntax());
let edit = TextEdit::replace(node.syntax().text_range(), replacement);
let source_change = SourceFileEdit { file_id, edit }.into();
let fix = Fix::new("Wrap with ok", source_change);
res.borrow_mut().push(Diagnostic {
range: sema.diagnostics_range(d).range,
message: d.message(),
severity: Severity::Error,
fix: Some(fix),
})
})
.on::<hir::diagnostics::NoSuchField, _>(|d| {
res.borrow_mut().push(Diagnostic {
range: sema.diagnostics_range(d).range,
message: d.message(),
severity: Severity::Error,
fix: missing_struct_field_fix(&sema, file_id, d),
})
});
if let Some(m) = sema.to_module_def(file_id) {
m.diagnostics(db, &mut sink);
};
drop(sink);
res.into_inner()
}
fn missing_struct_field_fix(
sema: &Semantics<RootDatabase>,
file_id: FileId,
d: &hir::diagnostics::NoSuchField,
) -> Option<Fix> {
let record_expr = sema.ast(d);
let record_lit = ast::RecordLit::cast(record_expr.syntax().parent()?.parent()?)?;
let def_id = sema.resolve_variant(record_lit)?;
let module;
let record_fields = match VariantDef::from(def_id) {
VariantDef::Struct(s) => {
module = s.module(sema.db);
let source = s.source(sema.db);
let fields = source.value.field_def_list()?;
record_field_def_list(fields)?
}
VariantDef::Union(u) => {
module = u.module(sema.db);
let source = u.source(sema.db);
source.value.record_field_def_list()?
}
VariantDef::EnumVariant(e) => {
module = e.module(sema.db);
let source = e.source(sema.db);
let fields = source.value.field_def_list()?;
record_field_def_list(fields)?
}
};
let new_field_type = sema.type_of_expr(&record_expr.expr()?)?;
if new_field_type.is_unknown() {
return None;
}
let new_field = make::record_field_def(
record_expr.field_name()?,
make::type_ref(&new_field_type.display_source_code(sema.db, module.into()).ok()?),
);
let last_field = record_fields.fields().last()?;
let last_field_syntax = last_field.syntax();
let indent = IndentLevel::from_node(last_field_syntax);
let mut new_field = format!("\n{}{}", indent, new_field);
let needs_comma = !last_field_syntax.to_string().ends_with(",");
if needs_comma {
new_field = format!(",{}", new_field);
}
let source_change = SourceFileEdit {
file_id,
edit: TextEdit::insert(last_field_syntax.text_range().end(), new_field),
};
let fix = Fix::new("Create field", source_change.into());
return Some(fix);
fn record_field_def_list(field_def_list: ast::FieldDefList) -> Option<ast::RecordFieldDefList> {
match field_def_list {
ast::FieldDefList::RecordFieldDefList(it) => Some(it),
ast::FieldDefList::TupleFieldDefList(_) => None,
}
}
}
fn check_unnecessary_braces_in_use_statement(
acc: &mut Vec<Diagnostic>,
file_id: FileId,
node: &SyntaxNode,
) -> Option<()> {
let use_tree_list = ast::UseTreeList::cast(node.clone())?;
if let Some((single_use_tree,)) = use_tree_list.use_trees().collect_tuple() {
let range = use_tree_list.syntax().text_range();
let edit =
text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(&single_use_tree)
.unwrap_or_else(|| {
let to_replace = single_use_tree.syntax().text().to_string();
let mut edit_builder = TextEditBuilder::default();
edit_builder.delete(range);
edit_builder.insert(range.start(), to_replace);
edit_builder.finish()
});
acc.push(Diagnostic {
range,
message: "Unnecessary braces in use statement".to_string(),
severity: Severity::WeakWarning,
fix: Some(Fix::new(
"Remove unnecessary braces",
SourceFileEdit { file_id, edit }.into(),
)),
});
}
Some(())
}
fn text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(
single_use_tree: &ast::UseTree,
) -> Option<TextEdit> {
let use_tree_list_node = single_use_tree.syntax().parent()?;
if single_use_tree.path()?.segment()?.syntax().first_child_or_token()?.kind() == T![self] {
let start = use_tree_list_node.prev_sibling_or_token()?.text_range().start();
let end = use_tree_list_node.text_range().end();
let range = TextRange::new(start, end);
return Some(TextEdit::delete(range));
}
None
}
fn check_struct_shorthand_initialization(
acc: &mut Vec<Diagnostic>,
file_id: FileId,
node: &SyntaxNode,
) -> Option<()> {
let record_lit = ast::RecordLit::cast(node.clone())?;
let record_field_list = record_lit.record_field_list()?;
for record_field in record_field_list.fields() {
if let (Some(name_ref), Some(expr)) = (record_field.name_ref(), record_field.expr()) {
let field_name = name_ref.syntax().text().to_string();
let field_expr = expr.syntax().text().to_string();
let field_name_is_tup_index = name_ref.as_tuple_field().is_some();
if field_name == field_expr && !field_name_is_tup_index {
let mut edit_builder = TextEditBuilder::default();
edit_builder.delete(record_field.syntax().text_range());
edit_builder.insert(record_field.syntax().text_range().start(), field_name);
let edit = edit_builder.finish();
acc.push(Diagnostic {
range: record_field.syntax().text_range(),
message: "Shorthand struct initialization".to_string(),
severity: Severity::WeakWarning,
fix: Some(Fix::new(
"Use struct shorthand initialization",
SourceFileEdit { file_id, edit }.into(),
)),
});
}
}
}
Some(())
}
#[cfg(test)]
mod tests {
use insta::assert_debug_snapshot;
use ra_syntax::SourceFile;
use stdx::trim_indent;
use test_utils::assert_eq_text;
use crate::mock_analysis::{analysis_and_position, single_file};
use super::*;
type DiagnosticChecker = fn(&mut Vec<Diagnostic>, FileId, &SyntaxNode) -> Option<()>;
fn check_not_applicable(code: &str, func: DiagnosticChecker) {
let parse = SourceFile::parse(code);
let mut diagnostics = Vec::new();
for node in parse.tree().syntax().descendants() {
func(&mut diagnostics, FileId(0), &node);
}
assert!(diagnostics.is_empty());
}
fn check_apply(before: &str, after: &str, func: DiagnosticChecker) {
let parse = SourceFile::parse(before);
let mut diagnostics = Vec::new();
for node in parse.tree().syntax().descendants() {
func(&mut diagnostics, FileId(0), &node);
}
let diagnostic =
diagnostics.pop().unwrap_or_else(|| panic!("no diagnostics for:\n{}\n", before));
let mut fix = diagnostic.fix.unwrap();
let edit = fix.source_change.source_file_edits.pop().unwrap().edit;
let actual = {
let mut actual = before.to_string();
edit.apply(&mut actual);
actual
};
assert_eq_text!(after, &actual);
}
/// Takes a multi-file input fixture with annotated cursor positions,
/// and checks that:
/// * a diagnostic is produced
/// * this diagnostic touches the input cursor position
/// * that the contents of the file containing the cursor match `after` after the diagnostic fix is applied
fn check_apply_diagnostic_fix_from_position(fixture: &str, after: &str) {
let after = trim_indent(after);
let (analysis, file_position) = analysis_and_position(fixture);
let diagnostic = analysis.diagnostics(file_position.file_id).unwrap().pop().unwrap();
let mut fix = diagnostic.fix.unwrap();
let edit = fix.source_change.source_file_edits.pop().unwrap().edit;
let target_file_contents = analysis.file_text(file_position.file_id).unwrap();
let actual = {
let mut actual = target_file_contents.to_string();
edit.apply(&mut actual);
actual
};
assert_eq_text!(&after, &actual);
assert!(
diagnostic.range.start() <= file_position.offset
&& diagnostic.range.end() >= file_position.offset,
"diagnostic range {:?} does not touch cursor position {:?}",
diagnostic.range,
file_position.offset
);
}
fn check_apply_diagnostic_fix(before: &str, after: &str) {
let (analysis, file_id) = single_file(before);
let diagnostic = analysis.diagnostics(file_id).unwrap().pop().unwrap();
let mut fix = diagnostic.fix.unwrap();
let edit = fix.source_change.source_file_edits.pop().unwrap().edit;
let actual = {
let mut actual = before.to_string();
edit.apply(&mut actual);
actual
};
assert_eq_text!(after, &actual);
}
/// Takes a multi-file input fixture with annotated cursor position and checks that no diagnostics
/// apply to the file containing the cursor.
fn check_no_diagnostic_for_target_file(fixture: &str) {
let (analysis, file_position) = analysis_and_position(fixture);
let diagnostics = analysis.diagnostics(file_position.file_id).unwrap();
assert_eq!(diagnostics.len(), 0);
}
fn check_no_diagnostic(content: &str) {
let (analysis, file_id) = single_file(content);
let diagnostics = analysis.diagnostics(file_id).unwrap();
assert_eq!(diagnostics.len(), 0, "expected no diagnostic, found one");
}
#[test]
fn test_wrap_return_type() {
let before = r#"
//- /main.rs
use core::result::Result::{self, Ok, Err};
fn div(x: i32, y: i32) -> Result<i32, ()> {
if y == 0 {
return Err(());
}
x / y<|>
}
//- /core/lib.rs
pub mod result {
pub enum Result<T, E> { Ok(T), Err(E) }
}
"#;
let after = r#"
use core::result::Result::{self, Ok, Err};
fn div(x: i32, y: i32) -> Result<i32, ()> {
if y == 0 {
return Err(());
}
Ok(x / y)
}
"#;
check_apply_diagnostic_fix_from_position(before, after);
}
#[test]
fn test_wrap_return_type_handles_generic_functions() {
let before = r#"
//- /main.rs
use core::result::Result::{self, Ok, Err};
fn div<T>(x: T) -> Result<T, i32> {
if x == 0 {
return Err(7);
}
<|>x
}
//- /core/lib.rs
pub mod result {
pub enum Result<T, E> { Ok(T), Err(E) }
}
"#;
let after = r#"
use core::result::Result::{self, Ok, Err};
fn div<T>(x: T) -> Result<T, i32> {
if x == 0 {
return Err(7);
}
Ok(x)
}
"#;
check_apply_diagnostic_fix_from_position(before, after);
}
#[test]
fn test_wrap_return_type_handles_type_aliases() {
let before = r#"
//- /main.rs
use core::result::Result::{self, Ok, Err};
type MyResult<T> = Result<T, ()>;
fn div(x: i32, y: i32) -> MyResult<i32> {
if y == 0 {
return Err(());
}
x <|>/ y
}
//- /core/lib.rs
pub mod result {
pub enum Result<T, E> { Ok(T), Err(E) }
}
"#;
let after = r#"
use core::result::Result::{self, Ok, Err};
type MyResult<T> = Result<T, ()>;
fn div(x: i32, y: i32) -> MyResult<i32> {
if y == 0 {
return Err(());
}
Ok(x / y)
}
"#;
check_apply_diagnostic_fix_from_position(before, after);
}
#[test]
fn test_wrap_return_type_not_applicable_when_expr_type_does_not_match_ok_type() {
let content = r#"
//- /main.rs
use core::result::Result::{self, Ok, Err};
fn foo() -> Result<(), i32> {
0<|>
}
//- /core/lib.rs
pub mod result {
pub enum Result<T, E> { Ok(T), Err(E) }
}
"#;
check_no_diagnostic_for_target_file(content);
}
#[test]
fn test_wrap_return_type_not_applicable_when_return_type_is_not_result() {
let content = r#"
//- /main.rs
use core::result::Result::{self, Ok, Err};
enum SomeOtherEnum {
Ok(i32),
Err(String),
}
fn foo() -> SomeOtherEnum {
0<|>
}
//- /core/lib.rs
pub mod result {
pub enum Result<T, E> { Ok(T), Err(E) }
}
"#;
check_no_diagnostic_for_target_file(content);
}
#[test]
fn test_fill_struct_fields_empty() {
let before = r"
struct TestStruct {
one: i32,
two: i64,
}
fn test_fn() {
let s = TestStruct{};
}
";
let after = r"
struct TestStruct {
one: i32,
two: i64,
}
fn test_fn() {
let s = TestStruct{ one: (), two: ()};
}
";
check_apply_diagnostic_fix(before, after);
}
#[test]
fn test_fill_struct_fields_self() {
let before = r"
struct TestStruct {
one: i32,
}
impl TestStruct {
fn test_fn() {
let s = Self {};
}
}
";
let after = r"
struct TestStruct {
one: i32,
}
impl TestStruct {
fn test_fn() {
let s = Self { one: ()};
}
}
";
check_apply_diagnostic_fix(before, after);
}
#[test]
fn test_fill_struct_fields_enum() {
let before = r"
enum Expr {
Bin { lhs: Box<Expr>, rhs: Box<Expr> }
}
impl Expr {
fn new_bin(lhs: Box<Expr>, rhs: Box<Expr>) -> Expr {
Expr::Bin { <|> }
}
}
";
let after = r"
enum Expr {
Bin { lhs: Box<Expr>, rhs: Box<Expr> }
}
impl Expr {
fn new_bin(lhs: Box<Expr>, rhs: Box<Expr>) -> Expr {
Expr::Bin { lhs: (), rhs: () <|> }
}
}
";
check_apply_diagnostic_fix(before, after);
}
#[test]
fn test_fill_struct_fields_partial() {
let before = r"
struct TestStruct {
one: i32,
two: i64,
}
fn test_fn() {
let s = TestStruct{ two: 2 };
}
";
let after = r"
struct TestStruct {
one: i32,
two: i64,
}
fn test_fn() {
let s = TestStruct{ two: 2, one: () };
}
";
check_apply_diagnostic_fix(before, after);
}
#[test]
fn test_fill_struct_fields_no_diagnostic() {
let content = r"
struct TestStruct {
one: i32,
two: i64,
}
fn test_fn() {
let one = 1;
let s = TestStruct{ one, two: 2 };
}
";
check_no_diagnostic(content);
}
#[test]
fn test_fill_struct_fields_no_diagnostic_on_spread() {
let content = r"
struct TestStruct {
one: i32,
two: i64,
}
fn test_fn() {
let one = 1;
let s = TestStruct{ ..a };
}
";
check_no_diagnostic(content);
}
#[test]
fn test_unresolved_module_diagnostic() {
let (analysis, file_id) = single_file("mod foo;");
let diagnostics = analysis.diagnostics(file_id).unwrap();
assert_debug_snapshot!(diagnostics, @r###"
[
Diagnostic {
message: "unresolved module",
range: 0..8,
severity: Error,
fix: Some(
Fix {
label: "Create module",
source_change: SourceChange {
source_file_edits: [],
file_system_edits: [
CreateFile {
anchor: FileId(
1,
),
dst: "foo.rs",
},
],
is_snippet: false,
},
},
),
},
]
"###);
}
#[test]
fn range_mapping_out_of_macros() {
let (analysis, file_id) = single_file(
r"
fn some() {}
fn items() {}
fn here() {}
macro_rules! id {
($($tt:tt)*) => { $($tt)*};
}
fn main() {
let _x = id![Foo { a: 42 }];
}
pub struct Foo {
pub a: i32,
pub b: i32,
}
",
);
let diagnostics = analysis.diagnostics(file_id).unwrap();
assert_debug_snapshot!(diagnostics, @r###"
[
Diagnostic {
message: "Missing structure fields:\n- b\n",
range: 224..233,
severity: Error,
fix: Some(
Fix {
label: "Fill struct fields",
source_change: SourceChange {
source_file_edits: [
SourceFileEdit {
file_id: FileId(
1,
),
edit: TextEdit {
indels: [
Indel {
insert: "{a:42, b: ()}",
delete: 3..9,
},
],
},
},
],
file_system_edits: [],
is_snippet: false,
},
},
),
},
]
"###);
}
#[test]
fn test_check_unnecessary_braces_in_use_statement() {
check_not_applicable(
"
use a;
use a::{c, d::e};
",
check_unnecessary_braces_in_use_statement,
);
check_apply("use {b};", "use b;", check_unnecessary_braces_in_use_statement);
check_apply("use a::{c};", "use a::c;", check_unnecessary_braces_in_use_statement);
check_apply("use a::{self};", "use a;", check_unnecessary_braces_in_use_statement);
check_apply(
"use a::{c, d::{e}};",
"use a::{c, d::e};",
check_unnecessary_braces_in_use_statement,
);
}
#[test]
fn test_check_struct_shorthand_initialization() {
check_not_applicable(
r#"
struct A {
a: &'static str
}
fn main() {
A {
a: "hello"
}
}
"#,
check_struct_shorthand_initialization,
);
check_not_applicable(
r#"
struct A(usize);
fn main() {
A {
0: 0
}
}
"#,
check_struct_shorthand_initialization,
);
check_apply(
r#"
struct A {
a: &'static str
}
fn main() {
let a = "haha";
A {
a: a
}
}
"#,
r#"
struct A {
a: &'static str
}
fn main() {
let a = "haha";
A {
a
}
}
"#,
check_struct_shorthand_initialization,
);
check_apply(
r#"
struct A {
a: &'static str,
b: &'static str
}
fn main() {
let a = "haha";
let b = "bb";
A {
a: a,
b
}
}
"#,
r#"
struct A {
a: &'static str,
b: &'static str
}
fn main() {
let a = "haha";
let b = "bb";
A {
a,
b
}
}
"#,
check_struct_shorthand_initialization,
);
}
#[test]
fn test_add_field_from_usage() {
check_apply_diagnostic_fix(
r"
fn main() {
Foo { bar: 3, baz: false};
}
struct Foo {
bar: i32
}
",
r"
fn main() {
Foo { bar: 3, baz: false};
}
struct Foo {
bar: i32,
baz: bool
}
",
)
}
}