rust-analyzer/crates/ra_hir/src/nameres/collector.rs
2019-03-17 12:53:22 +03:00

551 lines
21 KiB
Rust

use arrayvec::ArrayVec;
use rustc_hash::FxHashMap;
use relative_path::RelativePathBuf;
use test_utils::tested_by;
use ra_db::FileId;
use crate::{
Function, Module, Struct, Enum, Const, Static, Trait, TypeAlias,
PersistentHirDatabase, HirFileId, Name, Path, Problem,
KnownName,
nameres::{Resolution, PerNs, ModuleDef, ReachedFixedPoint, ResolveMode, raw},
ids::{AstItemDef, LocationCtx, MacroCallLoc, SourceItemId, MacroCallId},
};
use super::{CrateDefMap, ModuleId, ModuleData};
pub(super) fn collect_defs(
db: &impl PersistentHirDatabase,
mut def_map: CrateDefMap,
) -> CrateDefMap {
// populate external prelude
for dep in def_map.krate.dependencies(db) {
log::debug!("crate dep {:?} -> {:?}", dep.name, dep.krate);
if let Some(module) = dep.krate.root_module(db) {
def_map.extern_prelude.insert(dep.name.clone(), module.into());
}
// look for the prelude
if def_map.prelude.is_none() {
let map = db.crate_def_map(dep.krate);
if map.prelude.is_some() {
def_map.prelude = map.prelude;
}
}
}
let mut collector = DefCollector {
db,
def_map,
glob_imports: FxHashMap::default(),
unresolved_imports: Vec::new(),
unexpanded_macros: Vec::new(),
global_macro_scope: FxHashMap::default(),
};
collector.collect();
collector.finish()
}
/// Walks the tree of module recursively
struct DefCollector<DB> {
db: DB,
def_map: CrateDefMap,
glob_imports: FxHashMap<ModuleId, Vec<(ModuleId, raw::ImportId)>>,
unresolved_imports: Vec<(ModuleId, raw::ImportId, raw::ImportData)>,
unexpanded_macros: Vec<(ModuleId, MacroCallId, Path, tt::Subtree)>,
global_macro_scope: FxHashMap<Name, mbe::MacroRules>,
}
impl<'a, DB> DefCollector<&'a DB>
where
DB: PersistentHirDatabase,
{
fn collect(&mut self) {
let crate_graph = self.db.crate_graph();
let file_id = crate_graph.crate_root(self.def_map.krate.crate_id());
let raw_items = self.db.raw_items(file_id);
let module_id = self.def_map.root;
self.def_map.modules[module_id].definition = Some(file_id);
ModCollector {
def_collector: &mut *self,
module_id,
file_id: file_id.into(),
raw_items: &raw_items,
}
.collect(raw_items.items());
// main name resolution fixed-point loop.
let mut i = 0;
loop {
match (self.resolve_imports(), self.resolve_macros()) {
(ReachedFixedPoint::Yes, ReachedFixedPoint::Yes) => break,
_ => i += 1,
}
if i == 1000 {
log::error!("diverging name resolution");
break;
}
}
let unresolved_imports = std::mem::replace(&mut self.unresolved_imports, Vec::new());
// show unresolved imports in completion, etc
for (module_id, import, import_data) in unresolved_imports {
self.record_resolved_import(module_id, PerNs::none(), import, &import_data)
}
}
fn define_macro(&mut self, name: Name, tt: &tt::Subtree, export: bool) {
if let Ok(rules) = mbe::MacroRules::parse(tt) {
if export {
self.def_map.public_macros.insert(name.clone(), rules.clone());
}
self.global_macro_scope.insert(name, rules);
}
}
fn resolve_imports(&mut self) -> ReachedFixedPoint {
let mut imports = std::mem::replace(&mut self.unresolved_imports, Vec::new());
let mut resolved = Vec::new();
imports.retain(|(module_id, import, import_data)| {
let (def, fp) = self.resolve_import(*module_id, import_data);
if fp == ReachedFixedPoint::Yes {
resolved.push((*module_id, def, *import, import_data.clone()))
}
fp == ReachedFixedPoint::No
});
self.unresolved_imports = imports;
// Resolves imports, filling-in module scopes
let result =
if resolved.is_empty() { ReachedFixedPoint::Yes } else { ReachedFixedPoint::No };
for (module_id, def, import, import_data) in resolved {
self.record_resolved_import(module_id, def, import, &import_data)
}
result
}
fn resolve_import(
&mut self,
module_id: ModuleId,
import: &raw::ImportData,
) -> (PerNs<ModuleDef>, ReachedFixedPoint) {
log::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition);
if import.is_extern_crate {
let res = self.def_map.resolve_name_in_extern_prelude(
&import
.path
.as_ident()
.expect("extern crate should have been desugared to one-element path"),
);
// FIXME: why do we return No here?
(res, if res.is_none() { ReachedFixedPoint::No } else { ReachedFixedPoint::Yes })
} else {
let res =
self.def_map.resolve_path_fp(self.db, ResolveMode::Import, module_id, &import.path);
(res.resolved_def, res.reached_fixedpoint)
}
}
fn record_resolved_import(
&mut self,
module_id: ModuleId,
def: PerNs<ModuleDef>,
import_id: raw::ImportId,
import: &raw::ImportData,
) {
if import.is_glob {
log::debug!("glob import: {:?}", import);
match def.take_types() {
Some(ModuleDef::Module(m)) => {
if import.is_prelude {
tested_by!(std_prelude);
self.def_map.prelude = Some(m);
} else if m.krate != self.def_map.krate {
tested_by!(glob_across_crates);
// glob import from other crate => we can just import everything once
let item_map = self.db.crate_def_map(m.krate);
let scope = &item_map[m.module_id].scope;
let items = scope
.items
.iter()
.map(|(name, res)| (name.clone(), res.clone()))
.collect::<Vec<_>>();
self.update(module_id, Some(import_id), &items);
} else {
// glob import from same crate => we do an initial
// import, and then need to propagate any further
// additions
let scope = &self.def_map[m.module_id].scope;
let items = scope
.items
.iter()
.map(|(name, res)| (name.clone(), res.clone()))
.collect::<Vec<_>>();
self.update(module_id, Some(import_id), &items);
// record the glob import in case we add further items
self.glob_imports
.entry(m.module_id)
.or_default()
.push((module_id, import_id));
}
}
Some(ModuleDef::Enum(e)) => {
tested_by!(glob_enum);
// glob import from enum => just import all the variants
let variants = e.variants(self.db);
let resolutions = variants
.into_iter()
.filter_map(|variant| {
let res = Resolution {
def: PerNs::both(variant.into(), variant.into()),
import: Some(import_id),
};
let name = variant.name(self.db)?;
Some((name, res))
})
.collect::<Vec<_>>();
self.update(module_id, Some(import_id), &resolutions);
}
Some(d) => {
log::debug!("glob import {:?} from non-module/enum {:?}", import, d);
}
None => {
log::debug!("glob import {:?} didn't resolve as type", import);
}
}
} else {
match import.path.segments.last() {
Some(last_segment) => {
let name = import.alias.clone().unwrap_or_else(|| last_segment.name.clone());
log::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def);
// extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658
if import.is_extern_crate && module_id == self.def_map.root {
if let Some(def) = def.take_types() {
self.def_map.extern_prelude.insert(name.clone(), def);
}
}
let resolution = Resolution { def, import: Some(import_id) };
self.update(module_id, Some(import_id), &[(name, resolution)]);
}
None => tested_by!(bogus_paths),
}
}
}
fn update(
&mut self,
module_id: ModuleId,
import: Option<raw::ImportId>,
resolutions: &[(Name, Resolution)],
) {
self.update_recursive(module_id, import, resolutions, 0)
}
fn update_recursive(
&mut self,
module_id: ModuleId,
import: Option<raw::ImportId>,
resolutions: &[(Name, Resolution)],
depth: usize,
) {
if depth > 100 {
// prevent stack overflows (but this shouldn't be possible)
panic!("infinite recursion in glob imports!");
}
let module_items = &mut self.def_map.modules[module_id].scope;
let mut changed = false;
for (name, res) in resolutions {
let existing = module_items.items.entry(name.clone()).or_default();
if existing.def.types.is_none() && res.def.types.is_some() {
existing.def.types = res.def.types;
existing.import = import.or(res.import);
changed = true;
}
if existing.def.values.is_none() && res.def.values.is_some() {
existing.def.values = res.def.values;
existing.import = import.or(res.import);
changed = true;
}
if existing.def.is_none()
&& res.def.is_none()
&& existing.import.is_none()
&& res.import.is_some()
{
existing.import = res.import;
}
}
if !changed {
return;
}
let glob_imports = self
.glob_imports
.get(&module_id)
.into_iter()
.flat_map(|v| v.iter())
.cloned()
.collect::<Vec<_>>();
for (glob_importing_module, glob_import) in glob_imports {
// We pass the glob import so that the tracked import in those modules is that glob import
self.update_recursive(glob_importing_module, Some(glob_import), resolutions, depth + 1);
}
}
// XXX: this is just a pile of hacks now, because `PerNs` does not handle
// macro namespace.
fn resolve_macros(&mut self) -> ReachedFixedPoint {
let mut macros = std::mem::replace(&mut self.unexpanded_macros, Vec::new());
let mut resolved = Vec::new();
macros.retain(|(module_id, call_id, path, tt)| {
if path.segments.len() != 2 {
return true;
}
let crate_name = &path.segments[0].name;
let krate = match self.def_map.resolve_name_in_extern_prelude(crate_name).take_types() {
Some(ModuleDef::Module(m)) => m.krate(self.db),
_ => return true,
};
let krate = match krate {
Some(it) => it,
_ => return true,
};
let def_map = self.db.crate_def_map(krate);
let rules = def_map.public_macros.get(&path.segments[1].name).cloned();
resolved.push((*module_id, *call_id, rules, tt.clone()));
false
});
let res = if resolved.is_empty() { ReachedFixedPoint::Yes } else { ReachedFixedPoint::No };
for (module_id, macro_call_id, rules, arg) in resolved {
if let Some(rules) = rules {
if let Ok(tt) = rules.expand(&arg) {
self.collect_macro_expansion(module_id, macro_call_id, tt);
}
}
}
res
}
fn collect_macro_expansion(
&mut self,
module_id: ModuleId,
macro_call_id: MacroCallId,
expansion: tt::Subtree,
) {
// XXX: this **does not** go through a database, because we can't
// identify macro_call without adding the whole state of name resolution
// as a parameter to the query.
//
// So, we run the queries "manually" and we must ensure that
// `db.hir_parse(macro_call_id)` returns the same source_file.
let file_id: HirFileId = macro_call_id.into();
let source_file = mbe::token_tree_to_ast_item_list(&expansion);
let raw_items = raw::RawItems::from_source_file(&source_file, file_id);
ModCollector { def_collector: &mut *self, file_id, module_id, raw_items: &raw_items }
.collect(raw_items.items())
}
fn finish(self) -> CrateDefMap {
self.def_map
}
}
/// Walks a single module, populating defs, imports and macros
struct ModCollector<'a, D> {
def_collector: D,
module_id: ModuleId,
file_id: HirFileId,
raw_items: &'a raw::RawItems,
}
impl<DB> ModCollector<'_, &'_ mut DefCollector<&'_ DB>>
where
DB: PersistentHirDatabase,
{
fn collect(&mut self, items: &[raw::RawItem]) {
for item in items {
match *item {
raw::RawItem::Module(m) => self.collect_module(&self.raw_items[m]),
raw::RawItem::Import(import) => self.def_collector.unresolved_imports.push((
self.module_id,
import,
self.raw_items[import].clone(),
)),
raw::RawItem::Def(def) => self.define_def(&self.raw_items[def]),
raw::RawItem::Macro(mac) => self.collect_macro(&self.raw_items[mac]),
}
}
}
fn collect_module(&mut self, module: &raw::ModuleData) {
match module {
// inline module, just recurse
raw::ModuleData::Definition { name, items, source_item_id } => {
let module_id = self.push_child_module(
name.clone(),
source_item_id.with_file_id(self.file_id),
None,
);
ModCollector {
def_collector: &mut *self.def_collector,
module_id,
file_id: self.file_id,
raw_items: self.raw_items,
}
.collect(&*items);
}
// out of line module, resovle, parse and recurse
raw::ModuleData::Declaration { name, source_item_id } => {
let source_item_id = source_item_id.with_file_id(self.file_id);
let is_root = self.def_collector.def_map.modules[self.module_id].parent.is_none();
let (file_ids, problem) =
resolve_submodule(self.def_collector.db, self.file_id, name, is_root);
if let Some(problem) = problem {
self.def_collector.def_map.problems.add(source_item_id, problem)
}
if let Some(&file_id) = file_ids.first() {
let module_id =
self.push_child_module(name.clone(), source_item_id, Some(file_id));
let raw_items = self.def_collector.db.raw_items(file_id);
ModCollector {
def_collector: &mut *self.def_collector,
module_id,
file_id: file_id.into(),
raw_items: &raw_items,
}
.collect(raw_items.items())
}
}
}
}
fn push_child_module(
&mut self,
name: Name,
declaration: SourceItemId,
definition: Option<FileId>,
) -> ModuleId {
let modules = &mut self.def_collector.def_map.modules;
let res = modules.alloc(ModuleData::default());
modules[res].parent = Some(self.module_id);
modules[res].declaration = Some(declaration);
modules[res].definition = definition;
modules[self.module_id].children.insert(name.clone(), res);
let resolution = Resolution {
def: PerNs::types(
Module { krate: self.def_collector.def_map.krate, module_id: res }.into(),
),
import: None,
};
self.def_collector.update(self.module_id, None, &[(name, resolution)]);
res
}
fn define_def(&mut self, def: &raw::DefData) {
let module = Module { krate: self.def_collector.def_map.krate, module_id: self.module_id };
let ctx = LocationCtx::new(self.def_collector.db, module, self.file_id.into());
macro_rules! id {
() => {
AstItemDef::from_source_item_id_unchecked(ctx, def.source_item_id)
};
}
let name = def.name.clone();
let def: PerNs<ModuleDef> = match def.kind {
raw::DefKind::Function => PerNs::values(Function { id: id!() }.into()),
raw::DefKind::Struct => {
let s = Struct { id: id!() }.into();
PerNs::both(s, s)
}
raw::DefKind::Enum => PerNs::types(Enum { id: id!() }.into()),
raw::DefKind::Const => PerNs::values(Const { id: id!() }.into()),
raw::DefKind::Static => PerNs::values(Static { id: id!() }.into()),
raw::DefKind::Trait => PerNs::types(Trait { id: id!() }.into()),
raw::DefKind::TypeAlias => PerNs::types(TypeAlias { id: id!() }.into()),
};
let resolution = Resolution { def, import: None };
self.def_collector.update(self.module_id, None, &[(name, resolution)])
}
fn collect_macro(&mut self, mac: &raw::MacroData) {
// Case 1: macro rules, define a macro in crate-global mutable scope
if is_macro_rules(&mac.path) {
if let Some(name) = &mac.name {
self.def_collector.define_macro(name.clone(), &mac.arg, mac.export)
}
return;
}
let source_item_id = SourceItemId { file_id: self.file_id, item_id: mac.source_item_id };
let macro_call_id = MacroCallLoc {
module: Module { krate: self.def_collector.def_map.krate, module_id: self.module_id },
source_item_id,
}
.id(self.def_collector.db);
// Case 2: try to expand macro_rules from this crate, triggering
// recursive item collection.
if let Some(rules) =
mac.path.as_ident().and_then(|name| self.def_collector.global_macro_scope.get(name))
{
if let Ok(tt) = rules.expand(&mac.arg) {
self.def_collector.collect_macro_expansion(self.module_id, macro_call_id, tt);
}
return;
}
// Case 3: path to a macro from another crate, expand during name resolution
self.def_collector.unexpanded_macros.push((
self.module_id,
macro_call_id,
mac.path.clone(),
mac.arg.clone(),
))
}
}
fn is_macro_rules(path: &Path) -> bool {
path.as_ident().and_then(Name::as_known_name) == Some(KnownName::MacroRules)
}
fn resolve_submodule(
db: &impl PersistentHirDatabase,
file_id: HirFileId,
name: &Name,
is_root: bool,
) -> (Vec<FileId>, Option<Problem>) {
// FIXME: handle submodules of inline modules properly
let file_id = file_id.original_file(db);
let source_root_id = db.file_source_root(file_id);
let path = db.file_relative_path(file_id);
let root = RelativePathBuf::default();
let dir_path = path.parent().unwrap_or(&root);
let mod_name = path.file_stem().unwrap_or("unknown");
let is_dir_owner = is_root || mod_name == "mod";
let file_mod = dir_path.join(format!("{}.rs", name));
let dir_mod = dir_path.join(format!("{}/mod.rs", name));
let file_dir_mod = dir_path.join(format!("{}/{}.rs", mod_name, name));
let mut candidates = ArrayVec::<[_; 2]>::new();
if is_dir_owner {
candidates.push(file_mod.clone());
candidates.push(dir_mod);
} else {
candidates.push(file_dir_mod.clone());
};
let sr = db.source_root(source_root_id);
let points_to = candidates
.into_iter()
.filter_map(|path| sr.files.get(&path))
.map(|&it| it)
.collect::<Vec<_>>();
let problem = if points_to.is_empty() {
Some(Problem::UnresolvedModule {
candidate: if is_dir_owner { file_mod } else { file_dir_mod },
})
} else {
None
};
(points_to, problem)
}