rust-analyzer/crates/ra_hir/src/ty.rs
2018-12-25 15:16:42 +01:00

621 lines
21 KiB
Rust

mod primitive;
#[cfg(test)]
mod tests;
use std::sync::Arc;
use std::fmt;
use log;
use rustc_hash::{FxHashMap};
use ra_db::{LocalSyntaxPtr, Cancelable};
use ra_syntax::{
SmolStr,
ast::{self, AstNode, LoopBodyOwner, ArgListOwner},
SyntaxNodeRef
};
use crate::{Def, DefId, FnScopes, Module, Function, Path, db::HirDatabase};
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Ty {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive signed integer type. For example, `i32`.
Int(primitive::IntTy),
/// A primitive unsigned integer type. For example, `u32`.
Uint(primitive::UintTy),
/// A primitive floating-point type. For example, `f64`.
Float(primitive::FloatTy),
/// Structures, enumerations and unions.
Adt {
/// The DefId of the struct/enum.
def_id: DefId,
/// The name, for displaying.
name: SmolStr,
// later we'll need generic substitutions here
},
/// The pointee of a string slice. Written as `str`.
Str,
// An array with the given length. Written as `[T; n]`.
// Array(Ty, ty::Const),
/// The pointee of an array slice. Written as `[T]`.
Slice(TyRef),
// A raw pointer. Written as `*mut T` or `*const T`
// RawPtr(TypeAndMut<'tcx>),
// A reference; a pointer with an associated lifetime. Written as
// `&'a mut T` or `&'a T`.
// Ref(Ty<'tcx>, hir::Mutability),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(Arc<FnSig>),
// A trait, defined with `dyn trait`.
// Dynamic(),
/// The anonymous type of a closure. Used to represent the type of
/// `|a| a`.
// Closure(DefId, ClosureSubsts<'tcx>),
/// The anonymous type of a generator. Used to represent the type of
/// `|a| yield a`.
// Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),
/// A type representin the types stored inside a generator.
/// This should only appear in GeneratorInteriors.
// GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
/// The never type `!`
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(Vec<Ty>),
// The projection of an associated type. For example,
// `<T as Trait<..>>::N`.
// Projection(ProjectionTy),
// Opaque (`impl Trait`) type found in a return type.
// The `DefId` comes either from
// * the `impl Trait` ast::Ty node,
// * or the `existential type` declaration
// The substitutions are for the generics of the function in question.
// Opaque(DefId, Substs),
// A type parameter; for example, `T` in `fn f<T>(x: T) {}
// Param(ParamTy),
// A placeholder type - universally quantified higher-ranked type.
// Placeholder(ty::PlaceholderType),
// A type variable used during type checking.
// Infer(InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
Unknown,
}
type TyRef = Arc<Ty>;
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct FnSig {
input: Vec<Ty>,
output: Ty,
}
impl Ty {
pub(crate) fn new(
db: &impl HirDatabase,
module: &Module,
node: ast::TypeRef,
) -> Cancelable<Self> {
use ra_syntax::ast::TypeRef::*;
Ok(match node {
ParenType(_inner) => Ty::Unknown, // TODO
TupleType(_inner) => Ty::Unknown, // TODO
NeverType(..) => Ty::Never,
PathType(inner) => {
let path = if let Some(p) = inner.path().and_then(Path::from_ast) {
p
} else {
return Ok(Ty::Unknown);
};
if path.is_ident() {
let name = &path.segments[0];
if let Some(int_ty) = primitive::IntTy::from_string(&name) {
return Ok(Ty::Int(int_ty));
} else if let Some(uint_ty) = primitive::UintTy::from_string(&name) {
return Ok(Ty::Uint(uint_ty));
} else if let Some(float_ty) = primitive::FloatTy::from_string(&name) {
return Ok(Ty::Float(float_ty));
}
}
// Resolve in module (in type namespace)
let resolved = if let Some(r) = module.resolve_path(db, path)? {
r
} else {
return Ok(Ty::Unknown);
};
let ty = db.type_for_def(resolved)?;
ty
}
PointerType(_inner) => Ty::Unknown, // TODO
ArrayType(_inner) => Ty::Unknown, // TODO
SliceType(_inner) => Ty::Unknown, // TODO
ReferenceType(_inner) => Ty::Unknown, // TODO
PlaceholderType(_inner) => Ty::Unknown, // TODO
FnPointerType(_inner) => Ty::Unknown, // TODO
ForType(_inner) => Ty::Unknown, // TODO
ImplTraitType(_inner) => Ty::Unknown, // TODO
DynTraitType(_inner) => Ty::Unknown, // TODO
})
}
pub fn unit() -> Self {
Ty::Tuple(Vec::new())
}
}
impl fmt::Display for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Ty::Bool => write!(f, "bool"),
Ty::Char => write!(f, "char"),
Ty::Int(t) => write!(f, "{}", t.ty_to_string()),
Ty::Uint(t) => write!(f, "{}", t.ty_to_string()),
Ty::Float(t) => write!(f, "{}", t.ty_to_string()),
Ty::Str => write!(f, "str"),
Ty::Slice(t) => write!(f, "[{}]", t),
Ty::Never => write!(f, "!"),
Ty::Tuple(ts) => {
write!(f, "(")?;
for t in ts {
write!(f, "{},", t)?;
}
write!(f, ")")
}
Ty::FnPtr(sig) => {
write!(f, "fn(")?;
for t in &sig.input {
write!(f, "{},", t)?;
}
write!(f, ") -> {}", sig.output)
}
Ty::Adt { name, .. } => write!(f, "{}", name),
Ty::Unknown => write!(f, "[unknown]"),
}
}
}
pub fn type_for_fn(db: &impl HirDatabase, f: Function) -> Cancelable<Ty> {
let syntax = f.syntax(db);
let module = f.module(db)?;
let node = syntax.borrowed();
// TODO we ignore type parameters for now
let input = node
.param_list()
.map(|pl| {
pl.params()
.map(|p| {
p.type_ref()
.map(|t| Ty::new(db, &module, t))
.unwrap_or(Ok(Ty::Unknown))
})
.collect()
})
.unwrap_or_else(|| Ok(Vec::new()))?;
let output = node
.ret_type()
.and_then(|rt| rt.type_ref())
.map(|t| Ty::new(db, &module, t))
.unwrap_or(Ok(Ty::Unknown))?;
let sig = FnSig { input, output };
Ok(Ty::FnPtr(Arc::new(sig)))
}
// TODO this should probably be per namespace (i.e. types vs. values), since for
// a tuple struct `struct Foo(Bar)`, Foo has function type as a value, but
// defines the struct type Foo when used in the type namespace. rustc has a
// separate DefId for the constructor, but with the current DefId approach, that
// seems complicated.
pub fn type_for_def(db: &impl HirDatabase, def_id: DefId) -> Cancelable<Ty> {
let def = def_id.resolve(db)?;
match def {
Def::Module(..) => {
log::debug!("trying to get type for module {:?}", def_id);
Ok(Ty::Unknown)
}
Def::Function(f) => type_for_fn(db, f),
Def::Struct(s) => Ok(Ty::Adt {
def_id,
name: s.name(db)?,
}),
Def::Enum(e) => Ok(Ty::Adt {
def_id,
name: e.name(db)?,
}),
Def::Item => {
log::debug!("trying to get type for item of unknown type {:?}", def_id);
Ok(Ty::Unknown)
}
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
type_of: FxHashMap<LocalSyntaxPtr, Ty>,
}
impl InferenceResult {
pub fn type_of_node(&self, node: SyntaxNodeRef) -> Option<Ty> {
self.type_of.get(&LocalSyntaxPtr::new(node)).cloned()
}
}
#[derive(Clone, Debug)]
pub struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
scopes: Arc<FnScopes>,
module: Module,
// TODO unification tables...
type_of: FxHashMap<LocalSyntaxPtr, Ty>,
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(db: &'a D, scopes: Arc<FnScopes>, module: Module) -> Self {
InferenceContext {
type_of: FxHashMap::default(),
db,
scopes,
module,
}
}
fn write_ty(&mut self, node: SyntaxNodeRef, ty: Ty) {
self.type_of.insert(LocalSyntaxPtr::new(node), ty);
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> Option<Ty> {
if *ty1 == Ty::Unknown {
return Some(ty2.clone());
}
if *ty2 == Ty::Unknown {
return Some(ty1.clone());
}
if ty1 == ty2 {
return Some(ty1.clone());
}
// TODO implement actual unification
return None;
}
fn unify_with_coercion(&mut self, ty1: &Ty, ty2: &Ty) -> Option<Ty> {
// TODO implement coercion
self.unify(ty1, ty2)
}
fn infer_path_expr(&mut self, expr: ast::PathExpr) -> Cancelable<Option<Ty>> {
let ast_path = ctry!(expr.path());
let path = ctry!(Path::from_ast(ast_path));
if path.is_ident() {
// resolve locally
let name = ctry!(ast_path.segment().and_then(|s| s.name_ref()));
if let Some(scope_entry) = self.scopes.resolve_local_name(name) {
let ty = ctry!(self.type_of.get(&scope_entry.ptr()));
return Ok(Some(ty.clone()));
};
};
// resolve in module
let resolved = ctry!(self.module.resolve_path(self.db, path)?);
let ty = self.db.type_for_def(resolved)?;
// TODO we will need to add type variables for type parameters etc. here
Ok(Some(ty))
}
fn infer_expr(&mut self, expr: ast::Expr) -> Cancelable<Ty> {
let ty = match expr {
ast::Expr::IfExpr(e) => {
if let Some(condition) = e.condition() {
if let Some(e) = condition.expr() {
// TODO if no pat, this should be bool
self.infer_expr(e)?;
}
// TODO write type for pat
};
let if_ty = if let Some(block) = e.then_branch() {
self.infer_block(block)?
} else {
Ty::Unknown
};
let else_ty = if let Some(block) = e.else_branch() {
self.infer_block(block)?
} else {
Ty::Unknown
};
if let Some(ty) = self.unify(&if_ty, &else_ty) {
ty
} else {
// TODO report diagnostic
Ty::Unknown
}
}
ast::Expr::BlockExpr(e) => {
if let Some(block) = e.block() {
self.infer_block(block)?
} else {
Ty::Unknown
}
}
ast::Expr::LoopExpr(e) => {
if let Some(block) = e.loop_body() {
self.infer_block(block)?;
};
// TODO never, or the type of the break param
Ty::Unknown
}
ast::Expr::WhileExpr(e) => {
if let Some(condition) = e.condition() {
if let Some(e) = condition.expr() {
// TODO if no pat, this should be bool
self.infer_expr(e)?;
}
// TODO write type for pat
};
if let Some(block) = e.loop_body() {
// TODO
self.infer_block(block)?;
};
// TODO always unit?
Ty::Unknown
}
ast::Expr::ForExpr(e) => {
if let Some(expr) = e.iterable() {
self.infer_expr(expr)?;
}
if let Some(_pat) = e.pat() {
// TODO write type for pat
}
if let Some(block) = e.loop_body() {
self.infer_block(block)?;
}
// TODO always unit?
Ty::Unknown
}
ast::Expr::LambdaExpr(e) => {
let _body_ty = if let Some(body) = e.body() {
self.infer_expr(body)?
} else {
Ty::Unknown
};
Ty::Unknown
}
ast::Expr::CallExpr(e) => {
let callee_ty = if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
if let Some(arg_list) = e.arg_list() {
for arg in arg_list.args() {
// TODO unify / expect argument type
self.infer_expr(arg)?;
}
}
match callee_ty {
Ty::FnPtr(sig) => sig.output.clone(),
_ => {
// not callable
// TODO report an error?
Ty::Unknown
}
}
}
ast::Expr::MethodCallExpr(e) => {
let _receiver_ty = if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
if let Some(arg_list) = e.arg_list() {
for arg in arg_list.args() {
// TODO unify / expect argument type
self.infer_expr(arg)?;
}
}
Ty::Unknown
}
ast::Expr::MatchExpr(e) => {
let _ty = if let Some(match_expr) = e.expr() {
self.infer_expr(match_expr)?
} else {
Ty::Unknown
};
if let Some(match_arm_list) = e.match_arm_list() {
for arm in match_arm_list.arms() {
// TODO type the bindings in pat
// TODO type the guard
let _ty = if let Some(e) = arm.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
}
// TODO unify all the match arm types
Ty::Unknown
} else {
Ty::Unknown
}
}
ast::Expr::TupleExpr(_e) => Ty::Unknown,
ast::Expr::ArrayExpr(_e) => Ty::Unknown,
ast::Expr::PathExpr(e) => self.infer_path_expr(e)?.unwrap_or(Ty::Unknown),
ast::Expr::ContinueExpr(_e) => Ty::Never,
ast::Expr::BreakExpr(_e) => Ty::Never,
ast::Expr::ParenExpr(e) => {
if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
}
}
ast::Expr::Label(_e) => Ty::Unknown,
ast::Expr::ReturnExpr(e) => {
if let Some(e) = e.expr() {
// TODO unify with return type
self.infer_expr(e)?;
};
Ty::Never
}
ast::Expr::MatchArmList(_) | ast::Expr::MatchArm(_) | ast::Expr::MatchGuard(_) => {
// Can this even occur outside of a match expression?
Ty::Unknown
}
ast::Expr::StructLit(_e) => Ty::Unknown,
ast::Expr::NamedFieldList(_) | ast::Expr::NamedField(_) => {
// Can this even occur outside of a struct literal?
Ty::Unknown
}
ast::Expr::IndexExpr(_e) => Ty::Unknown,
ast::Expr::FieldExpr(_e) => Ty::Unknown,
ast::Expr::TryExpr(e) => {
let _inner_ty = if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
Ty::Unknown
}
ast::Expr::CastExpr(e) => {
let _inner_ty = if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
let cast_ty = e
.type_ref()
.map(|t| Ty::new(self.db, &self.module, t))
.unwrap_or(Ok(Ty::Unknown))?;
// TODO do the coercion...
cast_ty
}
ast::Expr::RefExpr(e) => {
let _inner_ty = if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
Ty::Unknown
}
ast::Expr::PrefixExpr(e) => {
let _inner_ty = if let Some(e) = e.expr() {
self.infer_expr(e)?
} else {
Ty::Unknown
};
Ty::Unknown
}
ast::Expr::RangeExpr(_e) => Ty::Unknown,
ast::Expr::BinExpr(_e) => Ty::Unknown,
ast::Expr::Literal(_e) => Ty::Unknown,
};
self.write_ty(expr.syntax(), ty.clone());
Ok(ty)
}
fn infer_block(&mut self, node: ast::Block) -> Cancelable<Ty> {
for stmt in node.statements() {
match stmt {
ast::Stmt::LetStmt(stmt) => {
let decl_ty = if let Some(type_ref) = stmt.type_ref() {
Ty::new(self.db, &self.module, type_ref)?
} else {
Ty::Unknown
};
let ty = if let Some(expr) = stmt.initializer() {
// TODO pass expectation
let expr_ty = self.infer_expr(expr)?;
self.unify_with_coercion(&expr_ty, &decl_ty)
.unwrap_or(decl_ty)
} else {
decl_ty
};
if let Some(pat) = stmt.pat() {
self.write_ty(pat.syntax(), ty);
};
}
ast::Stmt::ExprStmt(expr_stmt) => {
if let Some(expr) = expr_stmt.expr() {
self.infer_expr(expr)?;
}
}
}
}
let ty = if let Some(expr) = node.expr() {
self.infer_expr(expr)?
} else {
Ty::unit()
};
self.write_ty(node.syntax(), ty.clone());
Ok(ty)
}
}
pub fn infer(db: &impl HirDatabase, function: Function) -> Cancelable<InferenceResult> {
let scopes = function.scopes(db);
let module = function.module(db)?;
let mut ctx = InferenceContext::new(db, scopes, module);
let syntax = function.syntax(db);
let node = syntax.borrowed();
if let Some(param_list) = node.param_list() {
for param in param_list.params() {
let pat = if let Some(pat) = param.pat() {
pat
} else {
continue;
};
if let Some(type_ref) = param.type_ref() {
let ty = Ty::new(db, &ctx.module, type_ref)?;
ctx.type_of.insert(LocalSyntaxPtr::new(pat.syntax()), ty);
} else {
// TODO self param
ctx.type_of
.insert(LocalSyntaxPtr::new(pat.syntax()), Ty::Unknown);
};
}
}
// TODO get Ty for node.ret_type() and pass that to infer_block as expectation
// (see Expectation in rustc_typeck)
if let Some(block) = node.body() {
ctx.infer_block(block)?;
}
// TODO 'resolve' the types: replace inference variables by their inferred results
Ok(InferenceResult {
type_of: ctx.type_of,
})
}