rust-analyzer/lib/line-index/src/lib.rs
2024-07-25 08:41:30 +03:00

493 lines
17 KiB
Rust

//! See [`LineIndex`].
#![deny(missing_debug_implementations, missing_docs, rust_2018_idioms)]
#[cfg(test)]
mod tests;
use nohash_hasher::IntMap;
pub use text_size::{TextRange, TextSize};
/// `(line, column)` information in the native, UTF-8 encoding.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct LineCol {
/// Zero-based.
pub line: u32,
/// Zero-based UTF-8 offset.
pub col: u32,
}
/// A kind of wide character encoding.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum WideEncoding {
/// UTF-16.
Utf16,
/// UTF-32.
Utf32,
}
impl WideEncoding {
/// Returns the number of code units it takes to encode `text` in this encoding.
pub fn measure(&self, text: &str) -> usize {
match self {
WideEncoding::Utf16 => text.encode_utf16().count(),
WideEncoding::Utf32 => text.chars().count(),
}
}
}
/// `(line, column)` information in wide encodings.
///
/// See [`WideEncoding`] for the kinds of wide encodings available.
//
// Deliberately not a generic type and different from `LineCol`.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct WideLineCol {
/// Zero-based.
pub line: u32,
/// Zero-based.
pub col: u32,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct WideChar {
/// Start offset of a character inside a line, zero-based.
start: TextSize,
/// End offset of a character inside a line, zero-based.
end: TextSize,
}
impl WideChar {
/// Returns the length in 8-bit UTF-8 code units.
fn len(&self) -> TextSize {
self.end - self.start
}
/// Returns the length in UTF-16 or UTF-32 code units.
fn wide_len(&self, enc: WideEncoding) -> u32 {
match enc {
WideEncoding::Utf16 => {
if self.len() == TextSize::from(4) {
2
} else {
1
}
}
WideEncoding::Utf32 => 1,
}
}
}
/// Maps flat [`TextSize`] offsets to/from `(line, column)` representation.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LineIndex {
/// Offset the beginning of each line (except the first, which always has offset 0).
newlines: Box<[TextSize]>,
/// List of non-ASCII characters on each line.
line_wide_chars: IntMap<u32, Box<[WideChar]>>,
/// The length of the entire text.
len: TextSize,
}
impl LineIndex {
/// Returns a `LineIndex` for the `text`.
pub fn new(text: &str) -> LineIndex {
let (newlines, line_wide_chars) = analyze_source_file(text);
LineIndex {
newlines: newlines.into_boxed_slice(),
line_wide_chars,
len: TextSize::of(text),
}
}
/// Transforms the `TextSize` into a `LineCol`.
///
/// # Panics
///
/// If the offset is invalid. See [`Self::try_line_col`].
pub fn line_col(&self, offset: TextSize) -> LineCol {
self.try_line_col(offset).expect("invalid offset")
}
/// Transforms the `TextSize` into a `LineCol`.
///
/// Returns `None` if the `offset` was invalid, e.g. if it extends past the end of the text or
/// points to the middle of a multi-byte character.
pub fn try_line_col(&self, offset: TextSize) -> Option<LineCol> {
if offset > self.len {
return None;
}
let line = self.newlines.partition_point(|&it| it <= offset);
let start = self.start_offset(line)?;
let col = offset - start;
let ret = LineCol { line: line as u32, col: col.into() };
self.line_wide_chars
.get(&ret.line)
.into_iter()
.flat_map(|it| it.iter())
.all(|it| col <= it.start || it.end <= col)
.then_some(ret)
}
/// Transforms the `LineCol` into a `TextSize`.
pub fn offset(&self, line_col: LineCol) -> Option<TextSize> {
self.start_offset(line_col.line as usize).map(|start| start + TextSize::from(line_col.col))
}
fn start_offset(&self, line: usize) -> Option<TextSize> {
match line.checked_sub(1) {
None => Some(TextSize::from(0)),
Some(it) => self.newlines.get(it).copied(),
}
}
/// Transforms the `LineCol` with the given `WideEncoding` into a `WideLineCol`.
pub fn to_wide(&self, enc: WideEncoding, line_col: LineCol) -> Option<WideLineCol> {
let mut col = line_col.col;
if let Some(wide_chars) = self.line_wide_chars.get(&line_col.line) {
for c in wide_chars.iter() {
if u32::from(c.end) <= line_col.col {
col = col.checked_sub(u32::from(c.len()) - c.wide_len(enc))?;
} else {
// From here on, all utf16 characters come *after* the character we are mapping,
// so we don't need to take them into account
break;
}
}
}
Some(WideLineCol { line: line_col.line, col })
}
/// Transforms the `WideLineCol` with the given `WideEncoding` into a `LineCol`.
pub fn to_utf8(&self, enc: WideEncoding, line_col: WideLineCol) -> Option<LineCol> {
let mut col = line_col.col;
if let Some(wide_chars) = self.line_wide_chars.get(&line_col.line) {
for c in wide_chars.iter() {
if col > u32::from(c.start) {
col = col.checked_add(u32::from(c.len()) - c.wide_len(enc))?;
} else {
// From here on, all utf16 characters come *after* the character we are mapping,
// so we don't need to take them into account
break;
}
}
}
Some(LineCol { line: line_col.line, col })
}
/// Given a range [start, end), returns a sorted iterator of non-empty ranges [start, x1), [x1,
/// x2), ..., [xn, end) where all the xi, which are positions of newlines, are inside the range
/// [start, end).
pub fn lines(&self, range: TextRange) -> impl Iterator<Item = TextRange> + '_ {
let lo = self.newlines.partition_point(|&it| it < range.start());
let hi = self.newlines.partition_point(|&it| it <= range.end());
let all = std::iter::once(range.start())
.chain(self.newlines[lo..hi].iter().copied())
.chain(std::iter::once(range.end()));
all.clone()
.zip(all.skip(1))
.map(|(lo, hi)| TextRange::new(lo, hi))
.filter(|it| !it.is_empty())
}
/// Returns the length of the original text.
pub fn len(&self) -> TextSize {
self.len
}
}
/// This is adapted from the rustc_span crate, https://github.com/rust-lang/rust/blob/de59844c98f7925242a798a72c59dc3610dd0e2c/compiler/rustc_span/src/analyze_source_file.rs
fn analyze_source_file(src: &str) -> (Vec<TextSize>, IntMap<u32, Box<[WideChar]>>) {
assert!(src.len() < !0u32 as usize);
let mut lines = vec![];
let mut line_wide_chars = IntMap::<u32, Vec<WideChar>>::default();
// Calls the right implementation, depending on hardware support available.
analyze_source_file_dispatch(src, &mut lines, &mut line_wide_chars);
(lines, line_wide_chars.into_iter().map(|(k, v)| (k, v.into_boxed_slice())).collect())
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn analyze_source_file_dispatch(
src: &str,
lines: &mut Vec<TextSize>,
multi_byte_chars: &mut IntMap<u32, Vec<WideChar>>,
) {
if is_x86_feature_detected!("sse2") {
// SAFETY: SSE2 support was checked
unsafe {
analyze_source_file_sse2(src, lines, multi_byte_chars);
}
} else {
analyze_source_file_generic(src, src.len(), TextSize::from(0), lines, multi_byte_chars);
}
}
#[cfg(target_arch = "aarch64")]
fn analyze_source_file_dispatch(
src: &str,
lines: &mut Vec<TextSize>,
multi_byte_chars: &mut IntMap<u32, Vec<WideChar>>,
) {
if std::arch::is_aarch64_feature_detected!("neon") {
// SAFETY: NEON support was checked
unsafe {
analyze_source_file_neon(src, lines, multi_byte_chars);
}
} else {
analyze_source_file_generic(src, src.len(), TextSize::from(0), lines, multi_byte_chars);
}
}
/// Checks 16 byte chunks of text at a time. If the chunk contains
/// something other than printable ASCII characters and newlines, the
/// function falls back to the generic implementation. Otherwise it uses
/// SSE2 intrinsics to quickly find all newlines.
#[target_feature(enable = "sse2")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe fn analyze_source_file_sse2(
src: &str,
lines: &mut Vec<TextSize>,
multi_byte_chars: &mut IntMap<u32, Vec<WideChar>>,
) {
#[cfg(target_arch = "x86")]
use std::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use std::arch::x86_64::*;
const CHUNK_SIZE: usize = 16;
let src_bytes = src.as_bytes();
let chunk_count = src.len() / CHUNK_SIZE;
// This variable keeps track of where we should start decoding a
// chunk. If a multi-byte character spans across chunk boundaries,
// we need to skip that part in the next chunk because we already
// handled it.
let mut intra_chunk_offset = 0;
for chunk_index in 0..chunk_count {
let ptr = src_bytes.as_ptr() as *const __m128i;
// We don't know if the pointer is aligned to 16 bytes, so we
// use `loadu`, which supports unaligned loading.
let chunk = unsafe { _mm_loadu_si128(ptr.add(chunk_index)) };
// For character in the chunk, see if its byte value is < 0, which
// indicates that it's part of a UTF-8 char.
let multibyte_test = unsafe { _mm_cmplt_epi8(chunk, _mm_set1_epi8(0)) };
// Create a bit mask from the comparison results.
let multibyte_mask = unsafe { _mm_movemask_epi8(multibyte_test) };
// If the bit mask is all zero, we only have ASCII chars here:
if multibyte_mask == 0 {
assert!(intra_chunk_offset == 0);
// Check for newlines in the chunk
let newlines_test = unsafe { _mm_cmpeq_epi8(chunk, _mm_set1_epi8(b'\n' as i8)) };
let newlines_mask = unsafe { _mm_movemask_epi8(newlines_test) };
if newlines_mask != 0 {
// All control characters are newlines, record them
let mut newlines_mask = 0xFFFF0000 | newlines_mask as u32;
let output_offset = TextSize::from((chunk_index * CHUNK_SIZE + 1) as u32);
loop {
let index = newlines_mask.trailing_zeros();
if index >= CHUNK_SIZE as u32 {
// We have arrived at the end of the chunk.
break;
}
lines.push(TextSize::from(index) + output_offset);
// Clear the bit, so we can find the next one.
newlines_mask &= (!1) << index;
}
}
continue;
}
// The slow path.
// There are control chars in here, fallback to generic decoding.
let scan_start = chunk_index * CHUNK_SIZE + intra_chunk_offset;
intra_chunk_offset = analyze_source_file_generic(
&src[scan_start..],
CHUNK_SIZE - intra_chunk_offset,
TextSize::from(scan_start as u32),
lines,
multi_byte_chars,
);
}
// There might still be a tail left to analyze
let tail_start = chunk_count * CHUNK_SIZE + intra_chunk_offset;
if tail_start < src.len() {
analyze_source_file_generic(
&src[tail_start..],
src.len() - tail_start,
TextSize::from(tail_start as u32),
lines,
multi_byte_chars,
);
}
}
#[target_feature(enable = "neon")]
#[cfg(target_arch = "aarch64")]
#[inline]
// See https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
//
// The mask is a 64-bit integer, where each 4-bit corresponds to a u8 in the
// input vector. The least significant 4 bits correspond to the first byte in
// the vector.
unsafe fn move_mask(v: std::arch::aarch64::uint8x16_t) -> u64 {
use std::arch::aarch64::*;
let nibble_mask = unsafe { vshrn_n_u16(vreinterpretq_u16_u8(v), 4) };
unsafe { vget_lane_u64(vreinterpret_u64_u8(nibble_mask), 0) }
}
#[target_feature(enable = "neon")]
#[cfg(target_arch = "aarch64")]
unsafe fn analyze_source_file_neon(
src: &str,
lines: &mut Vec<TextSize>,
multi_byte_chars: &mut IntMap<u32, Vec<WideChar>>,
) {
use std::arch::aarch64::*;
const CHUNK_SIZE: usize = 16;
let src_bytes = src.as_bytes();
let chunk_count = src.len() / CHUNK_SIZE;
let newline = unsafe { vdupq_n_s8(b'\n' as i8) };
// This variable keeps track of where we should start decoding a
// chunk. If a multi-byte character spans across chunk boundaries,
// we need to skip that part in the next chunk because we already
// handled it.
let mut intra_chunk_offset = 0;
for chunk_index in 0..chunk_count {
let ptr = src_bytes.as_ptr() as *const i8;
let chunk = unsafe { vld1q_s8(ptr.add(chunk_index * CHUNK_SIZE)) };
// For character in the chunk, see if its byte value is < 0, which
// indicates that it's part of a UTF-8 char.
let multibyte_test = unsafe { vcltzq_s8(chunk) };
// Create a bit mask from the comparison results.
let multibyte_mask = unsafe { move_mask(multibyte_test) };
// If the bit mask is all zero, we only have ASCII chars here:
if multibyte_mask == 0 {
assert!(intra_chunk_offset == 0);
// Check for newlines in the chunk
let newlines_test = unsafe { vceqq_s8(chunk, newline) };
let mut newlines_mask = unsafe { move_mask(newlines_test) };
// If the bit mask is not all zero, there are newlines in this chunk.
if newlines_mask != 0 {
let output_offset = TextSize::from((chunk_index * CHUNK_SIZE + 1) as u32);
while newlines_mask != 0 {
let trailing_zeros = newlines_mask.trailing_zeros();
let index = trailing_zeros / 4;
lines.push(TextSize::from(index) + output_offset);
// Clear the current 4-bit, so we can find the next one.
newlines_mask &= (!0xF) << trailing_zeros;
}
}
continue;
}
let scan_start = chunk_index * CHUNK_SIZE + intra_chunk_offset;
intra_chunk_offset = analyze_source_file_generic(
&src[scan_start..],
CHUNK_SIZE - intra_chunk_offset,
TextSize::from(scan_start as u32),
lines,
multi_byte_chars,
);
}
let tail_start = chunk_count * CHUNK_SIZE + intra_chunk_offset;
if tail_start < src.len() {
analyze_source_file_generic(
&src[tail_start..],
src.len() - tail_start,
TextSize::from(tail_start as u32),
lines,
multi_byte_chars,
);
}
}
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64", target_arch = "aarch64")))]
// The target (or compiler version) does not support SSE2 ...
fn analyze_source_file_dispatch(
src: &str,
lines: &mut Vec<TextSize>,
multi_byte_chars: &mut IntMap<u32, Vec<WideChar>>,
) {
analyze_source_file_generic(src, src.len(), TextSize::from(0), lines, multi_byte_chars);
}
// `scan_len` determines the number of bytes in `src` to scan. Note that the
// function can read past `scan_len` if a multi-byte character start within the
// range but extends past it. The overflow is returned by the function.
fn analyze_source_file_generic(
src: &str,
scan_len: usize,
output_offset: TextSize,
lines: &mut Vec<TextSize>,
multi_byte_chars: &mut IntMap<u32, Vec<WideChar>>,
) -> usize {
assert!(src.len() >= scan_len);
let mut i = 0;
let src_bytes = src.as_bytes();
while i < scan_len {
let byte = unsafe {
// We verified that i < scan_len <= src.len()
*src_bytes.get_unchecked(i)
};
// How much to advance in order to get to the next UTF-8 char in the
// string.
let mut char_len = 1;
if byte == b'\n' {
lines.push(TextSize::from(i as u32 + 1) + output_offset);
} else if byte >= 127 {
// The slow path: Just decode to `char`.
let c = src[i..].chars().next().unwrap();
char_len = c.len_utf8();
// The last element of `lines` represents the offset of the start of
// current line. To get the offset inside the line, we subtract it.
let pos = TextSize::from(i as u32) + output_offset
- lines.last().unwrap_or(&TextSize::default());
if char_len > 1 {
assert!((2..=4).contains(&char_len));
let mbc = WideChar { start: pos, end: pos + TextSize::from(char_len as u32) };
multi_byte_chars.entry(lines.len() as u32).or_default().push(mbc);
}
}
i += char_len;
}
i - scan_len
}