rust-analyzer/crates/ra_hir/src/expr.rs
2019-08-19 14:04:51 +03:00

1164 lines
41 KiB
Rust

use std::ops::Index;
use std::sync::Arc;
use rustc_hash::FxHashMap;
use ra_arena::{impl_arena_id, map::ArenaMap, Arena, RawId};
use ra_syntax::{
ast::{
self, ArgListOwner, ArrayExprKind, LiteralKind, LoopBodyOwner, NameOwner,
TryBlockBodyOwner, TypeAscriptionOwner,
},
AstNode, AstPtr, SyntaxNodePtr,
};
use test_utils::tested_by;
use crate::{
name::{AsName, SELF_PARAM},
path::GenericArgs,
ty::primitive::{FloatTy, IntTy, UncertainFloatTy, UncertainIntTy},
type_ref::{Mutability, TypeRef},
DefWithBody, Either, HasSource, HirDatabase, HirFileId, MacroCallLoc, MacroFileKind, Name,
Path, Resolver,
};
pub use self::scope::ExprScopes;
pub(crate) mod scope;
pub(crate) mod validation;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ExprId(RawId);
impl_arena_id!(ExprId);
/// The body of an item (function, const etc.).
#[derive(Debug, Eq, PartialEq)]
pub struct Body {
/// The def of the item this body belongs to
owner: DefWithBody,
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
/// The patterns for the function's parameters. While the parameter types are
/// part of the function signature, the patterns are not (they don't change
/// the external type of the function).
///
/// If this `Body` is for the body of a constant, this will just be
/// empty.
params: Vec<PatId>,
/// The `ExprId` of the actual body expression.
body_expr: ExprId,
}
/// An item body together with the mapping from syntax nodes to HIR expression
/// IDs. This is needed to go from e.g. a position in a file to the HIR
/// expression containing it; but for type inference etc., we want to operate on
/// a structure that is agnostic to the actual positions of expressions in the
/// file, so that we don't recompute types whenever some whitespace is typed.
#[derive(Default, Debug, Eq, PartialEq)]
pub struct BodySourceMap {
expr_map: FxHashMap<SyntaxNodePtr, ExprId>,
expr_map_back: ArenaMap<ExprId, SyntaxNodePtr>,
pat_map: FxHashMap<PatPtr, PatId>,
pat_map_back: ArenaMap<PatId, PatPtr>,
field_map: FxHashMap<(ExprId, usize), AstPtr<ast::NamedField>>,
}
type PatPtr = Either<AstPtr<ast::Pat>, AstPtr<ast::SelfParam>>;
impl Body {
pub fn params(&self) -> &[PatId] {
&self.params
}
pub fn body_expr(&self) -> ExprId {
self.body_expr
}
pub fn owner(&self) -> DefWithBody {
self.owner
}
pub fn exprs(&self) -> impl Iterator<Item = (ExprId, &Expr)> {
self.exprs.iter()
}
pub fn pats(&self) -> impl Iterator<Item = (PatId, &Pat)> {
self.pats.iter()
}
}
// needs arbitrary_self_types to be a method... or maybe move to the def?
pub(crate) fn resolver_for_expr(
body: Arc<Body>,
db: &impl HirDatabase,
expr_id: ExprId,
) -> Resolver {
let scopes = db.expr_scopes(body.owner);
resolver_for_scope(body, db, scopes.scope_for(expr_id))
}
pub(crate) fn resolver_for_scope(
body: Arc<Body>,
db: &impl HirDatabase,
scope_id: Option<scope::ScopeId>,
) -> Resolver {
let mut r = body.owner.resolver(db);
let scopes = db.expr_scopes(body.owner);
let scope_chain = scopes.scope_chain(scope_id).collect::<Vec<_>>();
for scope in scope_chain.into_iter().rev() {
r = r.push_expr_scope(Arc::clone(&scopes), scope);
}
r
}
impl Index<ExprId> for Body {
type Output = Expr;
fn index(&self, expr: ExprId) -> &Expr {
&self.exprs[expr]
}
}
impl Index<PatId> for Body {
type Output = Pat;
fn index(&self, pat: PatId) -> &Pat {
&self.pats[pat]
}
}
impl BodySourceMap {
pub(crate) fn expr_syntax(&self, expr: ExprId) -> Option<SyntaxNodePtr> {
self.expr_map_back.get(expr).cloned()
}
pub(crate) fn syntax_expr(&self, ptr: SyntaxNodePtr) -> Option<ExprId> {
self.expr_map.get(&ptr).cloned()
}
pub(crate) fn node_expr(&self, node: &ast::Expr) -> Option<ExprId> {
self.expr_map.get(&SyntaxNodePtr::new(node.syntax())).cloned()
}
pub(crate) fn pat_syntax(&self, pat: PatId) -> Option<PatPtr> {
self.pat_map_back.get(pat).cloned()
}
pub(crate) fn node_pat(&self, node: &ast::Pat) -> Option<PatId> {
self.pat_map.get(&Either::A(AstPtr::new(node))).cloned()
}
pub(crate) fn field_syntax(&self, expr: ExprId, field: usize) -> AstPtr<ast::NamedField> {
self.field_map[&(expr, field)]
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Literal {
String(String),
ByteString(Vec<u8>),
Char(char),
Bool(bool),
Int(u64, UncertainIntTy),
Float(u64, UncertainFloatTy), // FIXME: f64 is not Eq
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Expr {
/// This is produced if syntax tree does not have a required expression piece.
Missing,
Path(Path),
If {
condition: ExprId,
then_branch: ExprId,
else_branch: Option<ExprId>,
},
Block {
statements: Vec<Statement>,
tail: Option<ExprId>,
},
Loop {
body: ExprId,
},
While {
condition: ExprId,
body: ExprId,
},
For {
iterable: ExprId,
pat: PatId,
body: ExprId,
},
Call {
callee: ExprId,
args: Vec<ExprId>,
},
MethodCall {
receiver: ExprId,
method_name: Name,
args: Vec<ExprId>,
generic_args: Option<GenericArgs>,
},
Match {
expr: ExprId,
arms: Vec<MatchArm>,
},
Continue,
Break {
expr: Option<ExprId>,
},
Return {
expr: Option<ExprId>,
},
StructLit {
path: Option<Path>,
fields: Vec<StructLitField>,
spread: Option<ExprId>,
},
Field {
expr: ExprId,
name: Name,
},
Await {
expr: ExprId,
},
Try {
expr: ExprId,
},
TryBlock {
body: ExprId,
},
Cast {
expr: ExprId,
type_ref: TypeRef,
},
Ref {
expr: ExprId,
mutability: Mutability,
},
UnaryOp {
expr: ExprId,
op: UnaryOp,
},
BinaryOp {
lhs: ExprId,
rhs: ExprId,
op: Option<BinaryOp>,
},
Index {
base: ExprId,
index: ExprId,
},
Lambda {
args: Vec<PatId>,
arg_types: Vec<Option<TypeRef>>,
body: ExprId,
},
Tuple {
exprs: Vec<ExprId>,
},
Array(Array),
Literal(Literal),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum BinaryOp {
LogicOp(LogicOp),
ArithOp(ArithOp),
CmpOp(CmpOp),
Assignment { op: Option<ArithOp> },
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum LogicOp {
And,
Or,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum CmpOp {
Eq { negated: bool },
Ord { ordering: Ordering, strict: bool },
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum Ordering {
Less,
Greater,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum ArithOp {
Add,
Mul,
Sub,
Div,
Rem,
Shl,
Shr,
BitXor,
BitOr,
BitAnd,
}
pub use ra_syntax::ast::PrefixOp as UnaryOp;
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Array {
ElementList(Vec<ExprId>),
Repeat { initializer: ExprId, repeat: ExprId },
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MatchArm {
pub pats: Vec<PatId>,
pub guard: Option<ExprId>,
pub expr: ExprId,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct StructLitField {
pub name: Name,
pub expr: ExprId,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Statement {
Let { pat: PatId, type_ref: Option<TypeRef>, initializer: Option<ExprId> },
Expr(ExprId),
}
impl Expr {
pub fn walk_child_exprs(&self, mut f: impl FnMut(ExprId)) {
match self {
Expr::Missing => {}
Expr::Path(_) => {}
Expr::If { condition, then_branch, else_branch } => {
f(*condition);
f(*then_branch);
if let Some(else_branch) = else_branch {
f(*else_branch);
}
}
Expr::Block { statements, tail } => {
for stmt in statements {
match stmt {
Statement::Let { initializer, .. } => {
if let Some(expr) = initializer {
f(*expr);
}
}
Statement::Expr(e) => f(*e),
}
}
if let Some(expr) = tail {
f(*expr);
}
}
Expr::TryBlock { body } => f(*body),
Expr::Loop { body } => f(*body),
Expr::While { condition, body } => {
f(*condition);
f(*body);
}
Expr::For { iterable, body, .. } => {
f(*iterable);
f(*body);
}
Expr::Call { callee, args } => {
f(*callee);
for arg in args {
f(*arg);
}
}
Expr::MethodCall { receiver, args, .. } => {
f(*receiver);
for arg in args {
f(*arg);
}
}
Expr::Match { expr, arms } => {
f(*expr);
for arm in arms {
f(arm.expr);
}
}
Expr::Continue => {}
Expr::Break { expr } | Expr::Return { expr } => {
if let Some(expr) = expr {
f(*expr);
}
}
Expr::StructLit { fields, spread, .. } => {
for field in fields {
f(field.expr);
}
if let Some(expr) = spread {
f(*expr);
}
}
Expr::Lambda { body, .. } => {
f(*body);
}
Expr::BinaryOp { lhs, rhs, .. } => {
f(*lhs);
f(*rhs);
}
Expr::Index { base, index } => {
f(*base);
f(*index);
}
Expr::Field { expr, .. }
| Expr::Await { expr }
| Expr::Try { expr }
| Expr::Cast { expr, .. }
| Expr::Ref { expr, .. }
| Expr::UnaryOp { expr, .. } => {
f(*expr);
}
Expr::Tuple { exprs } => {
for expr in exprs {
f(*expr);
}
}
Expr::Array(a) => match a {
Array::ElementList(exprs) => {
for expr in exprs {
f(*expr);
}
}
Array::Repeat { initializer, repeat } => {
f(*initializer);
f(*repeat)
}
},
Expr::Literal(_) => {}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PatId(RawId);
impl_arena_id!(PatId);
/// Explicit binding annotations given in the HIR for a binding. Note
/// that this is not the final binding *mode* that we infer after type
/// inference.
#[derive(Clone, PartialEq, Eq, Debug, Copy)]
pub enum BindingAnnotation {
/// No binding annotation given: this means that the final binding mode
/// will depend on whether we have skipped through a `&` reference
/// when matching. For example, the `x` in `Some(x)` will have binding
/// mode `None`; if you do `let Some(x) = &Some(22)`, it will
/// ultimately be inferred to be by-reference.
Unannotated,
/// Annotated with `mut x` -- could be either ref or not, similar to `None`.
Mutable,
/// Annotated as `ref`, like `ref x`
Ref,
/// Annotated as `ref mut x`.
RefMut,
}
impl BindingAnnotation {
fn new(is_mutable: bool, is_ref: bool) -> Self {
match (is_mutable, is_ref) {
(true, true) => BindingAnnotation::RefMut,
(false, true) => BindingAnnotation::Ref,
(true, false) => BindingAnnotation::Mutable,
(false, false) => BindingAnnotation::Unannotated,
}
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct FieldPat {
pub(crate) name: Name,
pub(crate) pat: PatId,
}
/// Close relative to rustc's hir::PatKind
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Pat {
Missing,
Wild,
Tuple(Vec<PatId>),
Struct {
path: Option<Path>,
args: Vec<FieldPat>,
// FIXME: 'ellipsis' option
},
Range {
start: ExprId,
end: ExprId,
},
Slice {
prefix: Vec<PatId>,
rest: Option<PatId>,
suffix: Vec<PatId>,
},
Path(Path),
Lit(ExprId),
Bind {
mode: BindingAnnotation,
name: Name,
subpat: Option<PatId>,
},
TupleStruct {
path: Option<Path>,
args: Vec<PatId>,
},
Ref {
pat: PatId,
mutability: Mutability,
},
}
impl Pat {
pub fn walk_child_pats(&self, mut f: impl FnMut(PatId)) {
match self {
Pat::Range { .. } | Pat::Lit(..) | Pat::Path(..) | Pat::Wild | Pat::Missing => {}
Pat::Bind { subpat, .. } => {
subpat.iter().copied().for_each(f);
}
Pat::Tuple(args) | Pat::TupleStruct { args, .. } => {
args.iter().copied().for_each(f);
}
Pat::Ref { pat, .. } => f(*pat),
Pat::Slice { prefix, rest, suffix } => {
let total_iter = prefix.iter().chain(rest.iter()).chain(suffix.iter());
total_iter.copied().for_each(f);
}
Pat::Struct { args, .. } => {
args.iter().map(|f| f.pat).for_each(f);
}
}
}
}
// Queries
pub(crate) struct ExprCollector<DB> {
db: DB,
owner: DefWithBody,
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
source_map: BodySourceMap,
params: Vec<PatId>,
body_expr: Option<ExprId>,
resolver: Resolver,
// Expr collector expands macros along the way. original points to the file
// we started with, current points to the current macro expansion. source
// maps don't support macros yet, so we only record info into source map if
// current == original (see #1196)
original_file_id: HirFileId,
current_file_id: HirFileId,
}
impl<'a, DB> ExprCollector<&'a DB>
where
DB: HirDatabase,
{
fn new(owner: DefWithBody, file_id: HirFileId, resolver: Resolver, db: &'a DB) -> Self {
ExprCollector {
owner,
resolver,
db,
exprs: Arena::default(),
pats: Arena::default(),
source_map: BodySourceMap::default(),
params: Vec::new(),
body_expr: None,
original_file_id: file_id,
current_file_id: file_id,
}
}
fn alloc_expr(&mut self, expr: Expr, syntax_ptr: SyntaxNodePtr) -> ExprId {
let id = self.exprs.alloc(expr);
if self.current_file_id == self.original_file_id {
self.source_map.expr_map.insert(syntax_ptr, id);
self.source_map.expr_map_back.insert(id, syntax_ptr);
}
id
}
fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId {
let id = self.pats.alloc(pat);
if self.current_file_id == self.original_file_id {
self.source_map.pat_map.insert(ptr, id);
self.source_map.pat_map_back.insert(id, ptr);
}
id
}
fn empty_block(&mut self) -> ExprId {
let block = Expr::Block { statements: Vec::new(), tail: None };
self.exprs.alloc(block)
}
fn collect_expr(&mut self, expr: ast::Expr) -> ExprId {
let syntax_ptr = SyntaxNodePtr::new(expr.syntax());
match expr {
ast::Expr::IfExpr(e) => {
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|b| match b {
ast::ElseBranch::Block(it) => self.collect_block(it),
ast::ElseBranch::IfExpr(elif) => {
let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap();
self.collect_expr(expr)
}
});
let condition = match e.condition() {
None => self.exprs.alloc(Expr::Missing),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.pats.alloc(Pat::Missing);
let arms = vec![
MatchArm { pats: vec![pat], expr: then_branch, guard: None },
MatchArm {
pats: vec![placeholder_pat],
expr: else_branch.unwrap_or_else(|| self.empty_block()),
guard: None,
},
];
return self
.alloc_expr(Expr::Match { expr: match_expr, arms }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr)
}
ast::Expr::TryBlockExpr(e) => {
let body = self.collect_block_opt(e.try_body());
self.alloc_expr(Expr::TryBlock { body }, syntax_ptr)
}
ast::Expr::BlockExpr(e) => self.collect_block_opt(e.block()),
ast::Expr::LoopExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
}
ast::Expr::WhileExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
let condition = match e.condition() {
None => self.exprs.alloc(Expr::Missing),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
tested_by!(infer_while_let);
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.pats.alloc(Pat::Missing);
let break_ = self.exprs.alloc(Expr::Break { expr: None });
let arms = vec![
MatchArm { pats: vec![pat], expr: body, guard: None },
MatchArm { pats: vec![placeholder_pat], expr: break_, guard: None },
];
let match_expr =
self.exprs.alloc(Expr::Match { expr: match_expr, arms });
return self.alloc_expr(Expr::Loop { body: match_expr }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
}
ast::Expr::ForExpr(e) => {
let iterable = self.collect_expr_opt(e.iterable());
let pat = self.collect_pat_opt(e.pat());
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::For { iterable, pat, body }, syntax_ptr)
}
ast::Expr::CallExpr(e) => {
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
}
ast::Expr::MethodCallExpr(e) => {
let receiver = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let generic_args = e.type_arg_list().and_then(GenericArgs::from_ast);
self.alloc_expr(
Expr::MethodCall { receiver, method_name, args, generic_args },
syntax_ptr,
)
}
ast::Expr::MatchExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.map(|arm| MatchArm {
pats: arm.pats().map(|p| self.collect_pat(p)).collect(),
expr: self.collect_expr_opt(arm.expr()),
guard: arm
.guard()
.and_then(|guard| guard.expr())
.map(|e| self.collect_expr(e)),
})
.collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
ast::Expr::PathExpr(e) => {
let path =
e.path().and_then(Path::from_ast).map(Expr::Path).unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
ast::Expr::ContinueExpr(_e) => {
// FIXME: labels
self.alloc_expr(Expr::Continue, syntax_ptr)
}
ast::Expr::BreakExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
}
ast::Expr::ParenExpr(e) => {
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
self.source_map.expr_map.insert(syntax_ptr, inner);
inner
}
ast::Expr::ReturnExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
ast::Expr::StructLit(e) => {
let path = e.path().and_then(Path::from_ast);
let mut field_ptrs = Vec::new();
let struct_lit = if let Some(nfl) = e.named_field_list() {
let fields = nfl
.fields()
.inspect(|field| field_ptrs.push(AstPtr::new(field)))
.map(|field| StructLitField {
name: field
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing),
expr: if let Some(e) = field.expr() {
self.collect_expr(e)
} else if let Some(nr) = field.name_ref() {
// field shorthand
let id = self.exprs.alloc(Expr::Path(Path::from_name_ref(&nr)));
self.source_map
.expr_map
.insert(SyntaxNodePtr::new(nr.syntax()), id);
self.source_map
.expr_map_back
.insert(id, SyntaxNodePtr::new(nr.syntax()));
id
} else {
self.exprs.alloc(Expr::Missing)
},
})
.collect();
let spread = nfl.spread().map(|s| self.collect_expr(s));
Expr::StructLit { path, fields, spread }
} else {
Expr::StructLit { path, fields: Vec::new(), spread: None }
};
let res = self.alloc_expr(struct_lit, syntax_ptr);
for (i, ptr) in field_ptrs.into_iter().enumerate() {
self.source_map.field_map.insert((res, i), ptr);
}
res
}
ast::Expr::FieldExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let name = match e.field_access() {
Some(kind) => kind.as_name(),
_ => Name::missing(),
};
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
ast::Expr::AwaitExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Await { expr }, syntax_ptr)
}
ast::Expr::TryExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
}
ast::Expr::CastExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let type_ref = TypeRef::from_ast_opt(e.type_ref());
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
ast::Expr::RefExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let mutability = Mutability::from_mutable(e.is_mut());
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
}
ast::Expr::PrefixExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
if let Some(op) = e.op_kind() {
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
} else {
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
ast::Expr::LambdaExpr(e) => {
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = self.collect_pat_opt(param.pat());
let type_ref = param.ascribed_type().map(TypeRef::from_ast);
args.push(pat);
arg_types.push(type_ref);
}
}
let body = self.collect_expr_opt(e.body());
self.alloc_expr(Expr::Lambda { args, arg_types, body }, syntax_ptr)
}
ast::Expr::BinExpr(e) => {
let lhs = self.collect_expr_opt(e.lhs());
let rhs = self.collect_expr_opt(e.rhs());
let op = e.op_kind().map(BinaryOp::from);
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
ast::Expr::TupleExpr(e) => {
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
}
ast::Expr::ArrayExpr(e) => {
let kind = e.kind();
match kind {
ArrayExprKind::ElementList(e) => {
let exprs = e.map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Array(Array::ElementList(exprs)), syntax_ptr)
}
ArrayExprKind::Repeat { initializer, repeat } => {
let initializer = self.collect_expr_opt(initializer);
let repeat = self.collect_expr_opt(repeat);
self.alloc_expr(
Expr::Array(Array::Repeat { initializer, repeat }),
syntax_ptr,
)
}
}
}
ast::Expr::Literal(e) => {
let lit = match e.kind() {
LiteralKind::IntNumber { suffix } => {
let known_name = suffix
.and_then(|it| IntTy::from_suffix(&it).map(UncertainIntTy::Known));
Literal::Int(
Default::default(),
known_name.unwrap_or(UncertainIntTy::Unknown),
)
}
LiteralKind::FloatNumber { suffix } => {
let known_name = suffix
.and_then(|it| FloatTy::from_suffix(&it).map(UncertainFloatTy::Known));
Literal::Float(
Default::default(),
known_name.unwrap_or(UncertainFloatTy::Unknown),
)
}
LiteralKind::ByteString => Literal::ByteString(Default::default()),
LiteralKind::String => Literal::String(Default::default()),
LiteralKind::Byte => {
Literal::Int(Default::default(), UncertainIntTy::Known(IntTy::u8()))
}
LiteralKind::Bool => Literal::Bool(Default::default()),
LiteralKind::Char => Literal::Char(Default::default()),
};
self.alloc_expr(Expr::Literal(lit), syntax_ptr)
}
ast::Expr::IndexExpr(e) => {
let base = self.collect_expr_opt(e.base());
let index = self.collect_expr_opt(e.index());
self.alloc_expr(Expr::Index { base, index }, syntax_ptr)
}
// FIXME implement HIR for these:
ast::Expr::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::Expr::RangeExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::Expr::MacroCall(e) => {
let ast_id = self
.db
.ast_id_map(self.current_file_id)
.ast_id(&e)
.with_file_id(self.current_file_id);
if let Some(path) = e.path().and_then(Path::from_ast) {
if let Some(def) = self.resolver.resolve_path_as_macro(self.db, &path) {
let call_id = MacroCallLoc { def: def.id, ast_id }.id(self.db);
let file_id = call_id.as_file(MacroFileKind::Expr);
if let Some(node) = self.db.parse_or_expand(file_id) {
if let Some(expr) = ast::Expr::cast(node) {
log::debug!("macro expansion {:#?}", expr.syntax());
let old_file_id =
std::mem::replace(&mut self.current_file_id, file_id);
let id = self.collect_expr(expr);
self.current_file_id = old_file_id;
return id;
}
}
}
}
// FIXME: Instead of just dropping the error from expansion
// report it
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
}
fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId {
if let Some(expr) = expr {
self.collect_expr(expr)
} else {
self.exprs.alloc(Expr::Missing)
}
}
fn collect_block(&mut self, block: ast::Block) -> ExprId {
let statements = block
.statements()
.map(|s| match s {
ast::Stmt::LetStmt(stmt) => {
let pat = self.collect_pat_opt(stmt.pat());
let type_ref = stmt.ascribed_type().map(TypeRef::from_ast);
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
Statement::Let { pat, type_ref, initializer }
}
ast::Stmt::ExprStmt(stmt) => Statement::Expr(self.collect_expr_opt(stmt.expr())),
})
.collect();
let tail = block.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Block { statements, tail }, SyntaxNodePtr::new(block.syntax()))
}
fn collect_block_opt(&mut self, block: Option<ast::Block>) -> ExprId {
if let Some(block) = block {
self.collect_block(block)
} else {
self.exprs.alloc(Expr::Missing)
}
}
fn collect_pat(&mut self, pat: ast::Pat) -> PatId {
let pattern = match &pat {
ast::Pat::BindPat(bp) => {
let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let annotation = BindingAnnotation::new(bp.is_mutable(), bp.is_ref());
let subpat = bp.pat().map(|subpat| self.collect_pat(subpat));
Pat::Bind { name, mode: annotation, subpat }
}
ast::Pat::TupleStructPat(p) => {
let path = p.path().and_then(Path::from_ast);
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::TupleStruct { path, args }
}
ast::Pat::RefPat(p) => {
let pat = self.collect_pat_opt(p.pat());
let mutability = Mutability::from_mutable(p.is_mut());
Pat::Ref { pat, mutability }
}
ast::Pat::PathPat(p) => {
let path = p.path().and_then(Path::from_ast);
path.map(Pat::Path).unwrap_or(Pat::Missing)
}
ast::Pat::TuplePat(p) => {
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::Tuple(args)
}
ast::Pat::PlaceholderPat(_) => Pat::Wild,
ast::Pat::StructPat(p) => {
let path = p.path().and_then(Path::from_ast);
let field_pat_list =
p.field_pat_list().expect("every struct should have a field list");
let mut fields: Vec<_> = field_pat_list
.bind_pats()
.filter_map(|bind_pat| {
let ast_pat =
ast::Pat::cast(bind_pat.syntax().clone()).expect("bind pat is a pat");
let pat = self.collect_pat(ast_pat);
let name = bind_pat.name()?.as_name();
Some(FieldPat { name, pat })
})
.collect();
let iter = field_pat_list.field_pats().filter_map(|f| {
let ast_pat = f.pat()?;
let pat = self.collect_pat(ast_pat);
let name = f.name()?.as_name();
Some(FieldPat { name, pat })
});
fields.extend(iter);
Pat::Struct { path, args: fields }
}
// FIXME: implement
ast::Pat::LiteralPat(_) => Pat::Missing,
ast::Pat::SlicePat(_) | ast::Pat::RangePat(_) => Pat::Missing,
};
let ptr = AstPtr::new(&pat);
self.alloc_pat(pattern, Either::A(ptr))
}
fn collect_pat_opt(&mut self, pat: Option<ast::Pat>) -> PatId {
if let Some(pat) = pat {
self.collect_pat(pat)
} else {
self.pats.alloc(Pat::Missing)
}
}
fn collect_const_body(&mut self, node: ast::ConstDef) {
let body = self.collect_expr_opt(node.body());
self.body_expr = Some(body);
}
fn collect_static_body(&mut self, node: ast::StaticDef) {
let body = self.collect_expr_opt(node.body());
self.body_expr = Some(body);
}
fn collect_fn_body(&mut self, node: ast::FnDef) {
if let Some(param_list) = node.param_list() {
if let Some(self_param) = param_list.self_param() {
let ptr = AstPtr::new(&self_param);
let param_pat = self.alloc_pat(
Pat::Bind {
name: SELF_PARAM,
mode: BindingAnnotation::Unannotated,
subpat: None,
},
Either::B(ptr),
);
self.params.push(param_pat);
}
for param in param_list.params() {
let pat = if let Some(pat) = param.pat() {
pat
} else {
continue;
};
let param_pat = self.collect_pat(pat);
self.params.push(param_pat);
}
};
let body = self.collect_block_opt(node.body());
self.body_expr = Some(body);
}
fn finish(self) -> (Body, BodySourceMap) {
let body = Body {
owner: self.owner,
exprs: self.exprs,
pats: self.pats,
params: self.params,
body_expr: self.body_expr.expect("A body should have been collected"),
};
(body, self.source_map)
}
}
impl From<ast::BinOp> for BinaryOp {
fn from(ast_op: ast::BinOp) -> Self {
match ast_op {
ast::BinOp::BooleanOr => BinaryOp::LogicOp(LogicOp::Or),
ast::BinOp::BooleanAnd => BinaryOp::LogicOp(LogicOp::And),
ast::BinOp::EqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: false }),
ast::BinOp::NegatedEqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: true }),
ast::BinOp::LesserEqualTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: false })
}
ast::BinOp::GreaterEqualTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: false })
}
ast::BinOp::LesserTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: true })
}
ast::BinOp::GreaterTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: true })
}
ast::BinOp::Addition => BinaryOp::ArithOp(ArithOp::Add),
ast::BinOp::Multiplication => BinaryOp::ArithOp(ArithOp::Mul),
ast::BinOp::Subtraction => BinaryOp::ArithOp(ArithOp::Sub),
ast::BinOp::Division => BinaryOp::ArithOp(ArithOp::Div),
ast::BinOp::Remainder => BinaryOp::ArithOp(ArithOp::Rem),
ast::BinOp::LeftShift => BinaryOp::ArithOp(ArithOp::Shl),
ast::BinOp::RightShift => BinaryOp::ArithOp(ArithOp::Shr),
ast::BinOp::BitwiseXor => BinaryOp::ArithOp(ArithOp::BitXor),
ast::BinOp::BitwiseOr => BinaryOp::ArithOp(ArithOp::BitOr),
ast::BinOp::BitwiseAnd => BinaryOp::ArithOp(ArithOp::BitAnd),
ast::BinOp::Assignment => BinaryOp::Assignment { op: None },
ast::BinOp::AddAssign => BinaryOp::Assignment { op: Some(ArithOp::Add) },
ast::BinOp::DivAssign => BinaryOp::Assignment { op: Some(ArithOp::Div) },
ast::BinOp::MulAssign => BinaryOp::Assignment { op: Some(ArithOp::Mul) },
ast::BinOp::RemAssign => BinaryOp::Assignment { op: Some(ArithOp::Rem) },
ast::BinOp::ShlAssign => BinaryOp::Assignment { op: Some(ArithOp::Shl) },
ast::BinOp::ShrAssign => BinaryOp::Assignment { op: Some(ArithOp::Shr) },
ast::BinOp::SubAssign => BinaryOp::Assignment { op: Some(ArithOp::Sub) },
ast::BinOp::BitOrAssign => BinaryOp::Assignment { op: Some(ArithOp::BitOr) },
ast::BinOp::BitAndAssign => BinaryOp::Assignment { op: Some(ArithOp::BitAnd) },
ast::BinOp::BitXorAssign => BinaryOp::Assignment { op: Some(ArithOp::BitXor) },
}
}
}
pub(crate) fn body_with_source_map_query(
db: &impl HirDatabase,
def: DefWithBody,
) -> (Arc<Body>, Arc<BodySourceMap>) {
let mut collector;
match def {
DefWithBody::Const(ref c) => {
let src = c.source(db);
collector = ExprCollector::new(def, src.file_id, def.resolver(db), db);
collector.collect_const_body(src.ast)
}
DefWithBody::Function(ref f) => {
let src = f.source(db);
collector = ExprCollector::new(def, src.file_id, def.resolver(db), db);
collector.collect_fn_body(src.ast)
}
DefWithBody::Static(ref s) => {
let src = s.source(db);
collector = ExprCollector::new(def, src.file_id, def.resolver(db), db);
collector.collect_static_body(src.ast)
}
}
let (body, source_map) = collector.finish();
(Arc::new(body), Arc::new(source_map))
}
pub(crate) fn body_hir_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<Body> {
db.body_with_source_map(def).0
}