rust-analyzer/crates/hir/src/lib.rs
2021-06-21 17:54:05 +01:00

2709 lines
93 KiB
Rust

//! HIR (previously known as descriptors) provides a high-level object oriented
//! access to Rust code.
//!
//! The principal difference between HIR and syntax trees is that HIR is bound
//! to a particular crate instance. That is, it has cfg flags and features
//! applied. So, the relation between syntax and HIR is many-to-one.
//!
//! HIR is the public API of the all of the compiler logic above syntax trees.
//! It is written in "OO" style. Each type is self contained (as in, it knows it's
//! parents and full context). It should be "clean code".
//!
//! `hir_*` crates are the implementation of the compiler logic.
//! They are written in "ECS" style, with relatively little abstractions.
//! Many types are not self-contained, and explicitly use local indexes, arenas, etc.
//!
//! `hir` is what insulates the "we don't know how to actually write an incremental compiler"
//! from the ide with completions, hovers, etc. It is a (soft, internal) boundary:
//! <https://www.tedinski.com/2018/02/06/system-boundaries.html>.
#![recursion_limit = "512"]
mod semantics;
mod source_analyzer;
mod from_id;
mod attrs;
mod has_source;
pub mod diagnostics;
pub mod db;
mod display;
use std::{iter, sync::Arc};
use arrayvec::ArrayVec;
use base_db::{CrateDisplayName, CrateId, Edition, FileId};
use either::Either;
use hir_def::{
adt::{ReprKind, VariantData},
body::{BodyDiagnostic, SyntheticSyntax},
expr::{BindingAnnotation, LabelId, Pat, PatId},
item_tree::ItemTreeNode,
lang_item::LangItemTarget,
nameres,
per_ns::PerNs,
resolver::{HasResolver, Resolver},
src::HasSource as _,
AdtId, AssocContainerId, AssocItemId, AssocItemLoc, AttrDefId, ConstId, ConstParamId,
DefWithBodyId, EnumId, FunctionId, GenericDefId, HasModule, ImplId, LifetimeParamId,
LocalEnumVariantId, LocalFieldId, Lookup, ModuleId, StaticId, StructId, TraitId, TypeAliasId,
TypeParamId, UnionId,
};
use hir_expand::{name::name, MacroCallKind, MacroDefKind};
use hir_ty::{
autoderef,
consteval::ConstExt,
could_unify,
diagnostics::BodyValidationDiagnostic,
method_resolution::{self, TyFingerprint},
primitive::UintTy,
subst_prefix,
traits::FnTrait,
AliasEq, AliasTy, BoundVar, CallableDefId, CallableSig, Canonical, CanonicalVarKinds, Cast,
DebruijnIndex, InEnvironment, Interner, QuantifiedWhereClause, Scalar, Solution, Substitution,
TraitEnvironment, TraitRefExt, Ty, TyBuilder, TyDefId, TyExt, TyKind, TyVariableKind,
WhereClause,
};
use itertools::Itertools;
use nameres::diagnostics::DefDiagnosticKind;
use once_cell::unsync::Lazy;
use rustc_hash::FxHashSet;
use stdx::{format_to, impl_from};
use syntax::{
ast::{self, AttrsOwner, NameOwner},
AstNode, AstPtr, SmolStr, SyntaxKind, SyntaxNodePtr,
};
use tt::{Ident, Leaf, Literal, TokenTree};
use crate::db::{DefDatabase, HirDatabase};
pub use crate::{
attrs::{HasAttrs, Namespace},
diagnostics::{
AnyDiagnostic, BreakOutsideOfLoop, InactiveCode, IncorrectCase, MacroError,
MismatchedArgCount, MissingFields, MissingMatchArms, MissingOkOrSomeInTailExpr,
MissingUnsafe, NoSuchField, RemoveThisSemicolon, ReplaceFilterMapNextWithFindMap,
UnimplementedBuiltinMacro, UnresolvedExternCrate, UnresolvedImport, UnresolvedMacroCall,
UnresolvedModule, UnresolvedProcMacro,
},
has_source::HasSource,
semantics::{PathResolution, Semantics, SemanticsScope},
};
// Be careful with these re-exports.
//
// `hir` is the boundary between the compiler and the IDE. It should try hard to
// isolate the compiler from the ide, to allow the two to be refactored
// independently. Re-exporting something from the compiler is the sure way to
// breach the boundary.
//
// Generally, a refactoring which *removes* a name from this list is a good
// idea!
pub use {
cfg::{CfgAtom, CfgExpr, CfgOptions},
hir_def::{
adt::StructKind,
attr::{Attr, Attrs, AttrsWithOwner, Documentation},
body::scope::ExprScopes,
find_path::PrefixKind,
import_map,
item_scope::ItemInNs,
nameres::ModuleSource,
path::{ModPath, PathKind},
type_ref::{Mutability, TypeRef},
visibility::Visibility,
},
hir_expand::{
name::{known, Name},
ExpandResult, HirFileId, InFile, MacroCallId, MacroCallLoc, /* FIXME */ MacroDefId,
MacroFile, Origin,
},
hir_ty::display::HirDisplay,
};
// These are negative re-exports: pub using these names is forbidden, they
// should remain private to hir internals.
#[allow(unused)]
use {
hir_def::path::Path,
hir_expand::{hygiene::Hygiene, name::AsName},
};
/// hir::Crate describes a single crate. It's the main interface with which
/// a crate's dependencies interact. Mostly, it should be just a proxy for the
/// root module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Crate {
pub(crate) id: CrateId,
}
#[derive(Debug)]
pub struct CrateDependency {
pub krate: Crate,
pub name: Name,
}
impl Crate {
pub fn dependencies(self, db: &dyn HirDatabase) -> Vec<CrateDependency> {
db.crate_graph()[self.id]
.dependencies
.iter()
.map(|dep| {
let krate = Crate { id: dep.crate_id };
let name = dep.as_name();
CrateDependency { krate, name }
})
.collect()
}
pub fn reverse_dependencies(self, db: &dyn HirDatabase) -> Vec<Crate> {
let crate_graph = db.crate_graph();
crate_graph
.iter()
.filter(|&krate| {
crate_graph[krate].dependencies.iter().any(|it| it.crate_id == self.id)
})
.map(|id| Crate { id })
.collect()
}
pub fn transitive_reverse_dependencies(self, db: &dyn HirDatabase) -> Vec<Crate> {
db.crate_graph().transitive_rev_deps(self.id).into_iter().map(|id| Crate { id }).collect()
}
pub fn root_module(self, db: &dyn HirDatabase) -> Module {
let def_map = db.crate_def_map(self.id);
Module { id: def_map.module_id(def_map.root()) }
}
pub fn root_file(self, db: &dyn HirDatabase) -> FileId {
db.crate_graph()[self.id].root_file_id
}
pub fn edition(self, db: &dyn HirDatabase) -> Edition {
db.crate_graph()[self.id].edition
}
pub fn display_name(self, db: &dyn HirDatabase) -> Option<CrateDisplayName> {
db.crate_graph()[self.id].display_name.clone()
}
pub fn query_external_importables(
self,
db: &dyn DefDatabase,
query: import_map::Query,
) -> impl Iterator<Item = Either<ModuleDef, MacroDef>> {
let _p = profile::span("query_external_importables");
import_map::search_dependencies(db, self.into(), query).into_iter().map(|item| match item {
ItemInNs::Types(mod_id) | ItemInNs::Values(mod_id) => Either::Left(mod_id.into()),
ItemInNs::Macros(mac_id) => Either::Right(mac_id.into()),
})
}
pub fn all(db: &dyn HirDatabase) -> Vec<Crate> {
db.crate_graph().iter().map(|id| Crate { id }).collect()
}
/// Try to get the root URL of the documentation of a crate.
pub fn get_html_root_url(self: &Crate, db: &dyn HirDatabase) -> Option<String> {
// Look for #![doc(html_root_url = "...")]
let attrs = db.attrs(AttrDefId::ModuleId(self.root_module(db).into()));
let doc_attr_q = attrs.by_key("doc");
if !doc_attr_q.exists() {
return None;
}
let doc_url = doc_attr_q.tt_values().map(|tt| {
let name = tt.token_trees.iter()
.skip_while(|tt| !matches!(tt, TokenTree::Leaf(Leaf::Ident(Ident{text: ref ident, ..})) if ident == "html_root_url"))
.nth(2);
match name {
Some(TokenTree::Leaf(Leaf::Literal(Literal{ref text, ..}))) => Some(text),
_ => None
}
}).flatten().next();
doc_url.map(|s| s.trim_matches('"').trim_end_matches('/').to_owned() + "/")
}
pub fn cfg(&self, db: &dyn HirDatabase) -> CfgOptions {
db.crate_graph()[self.id].cfg_options.clone()
}
pub fn potential_cfg(&self, db: &dyn HirDatabase) -> CfgOptions {
db.crate_graph()[self.id].potential_cfg_options.clone()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Module {
pub(crate) id: ModuleId,
}
/// The defs which can be visible in the module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ModuleDef {
Module(Module),
Function(Function),
Adt(Adt),
// Can't be directly declared, but can be imported.
Variant(Variant),
Const(Const),
Static(Static),
Trait(Trait),
TypeAlias(TypeAlias),
BuiltinType(BuiltinType),
}
impl_from!(
Module,
Function,
Adt(Struct, Enum, Union),
Variant,
Const,
Static,
Trait,
TypeAlias,
BuiltinType
for ModuleDef
);
impl From<VariantDef> for ModuleDef {
fn from(var: VariantDef) -> Self {
match var {
VariantDef::Struct(t) => Adt::from(t).into(),
VariantDef::Union(t) => Adt::from(t).into(),
VariantDef::Variant(t) => t.into(),
}
}
}
impl ModuleDef {
pub fn module(self, db: &dyn HirDatabase) -> Option<Module> {
match self {
ModuleDef::Module(it) => it.parent(db),
ModuleDef::Function(it) => Some(it.module(db)),
ModuleDef::Adt(it) => Some(it.module(db)),
ModuleDef::Variant(it) => Some(it.module(db)),
ModuleDef::Const(it) => Some(it.module(db)),
ModuleDef::Static(it) => Some(it.module(db)),
ModuleDef::Trait(it) => Some(it.module(db)),
ModuleDef::TypeAlias(it) => Some(it.module(db)),
ModuleDef::BuiltinType(_) => None,
}
}
pub fn canonical_path(&self, db: &dyn HirDatabase) -> Option<String> {
let mut segments = vec![self.name(db)?.to_string()];
for m in self.module(db)?.path_to_root(db) {
segments.extend(m.name(db).map(|it| it.to_string()))
}
segments.reverse();
Some(segments.join("::"))
}
pub fn definition_visibility(&self, db: &dyn HirDatabase) -> Option<Visibility> {
let module = match self {
ModuleDef::Module(it) => it.parent(db)?,
ModuleDef::Function(it) => return Some(it.visibility(db)),
ModuleDef::Adt(it) => it.module(db),
ModuleDef::Variant(it) => {
let parent = it.parent_enum(db);
let module = it.module(db);
return module.visibility_of(db, &ModuleDef::Adt(Adt::Enum(parent)));
}
ModuleDef::Const(it) => return Some(it.visibility(db)),
ModuleDef::Static(it) => it.module(db),
ModuleDef::Trait(it) => it.module(db),
ModuleDef::TypeAlias(it) => return Some(it.visibility(db)),
ModuleDef::BuiltinType(_) => return None,
};
module.visibility_of(db, self)
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
match self {
ModuleDef::Adt(it) => Some(it.name(db)),
ModuleDef::Trait(it) => Some(it.name(db)),
ModuleDef::Function(it) => Some(it.name(db)),
ModuleDef::Variant(it) => Some(it.name(db)),
ModuleDef::TypeAlias(it) => Some(it.name(db)),
ModuleDef::Module(it) => it.name(db),
ModuleDef::Const(it) => it.name(db),
ModuleDef::Static(it) => it.name(db),
ModuleDef::BuiltinType(it) => Some(it.name()),
}
}
pub fn diagnostics(self, db: &dyn HirDatabase) -> Vec<AnyDiagnostic> {
let id = match self {
ModuleDef::Adt(it) => match it {
Adt::Struct(it) => it.id.into(),
Adt::Enum(it) => it.id.into(),
Adt::Union(it) => it.id.into(),
},
ModuleDef::Trait(it) => it.id.into(),
ModuleDef::Function(it) => it.id.into(),
ModuleDef::TypeAlias(it) => it.id.into(),
ModuleDef::Module(it) => it.id.into(),
ModuleDef::Const(it) => it.id.into(),
ModuleDef::Static(it) => it.id.into(),
_ => return Vec::new(),
};
let module = match self.module(db) {
Some(it) => it,
None => return Vec::new(),
};
let mut acc = Vec::new();
for diag in hir_ty::diagnostics::validate_module_item(db, module.id.krate(), id) {
acc.push(diag.into())
}
acc
}
}
impl Module {
/// Name of this module.
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
let def_map = self.id.def_map(db.upcast());
let parent = def_map[self.id.local_id].parent?;
def_map[parent].children.iter().find_map(|(name, module_id)| {
if *module_id == self.id.local_id {
Some(name.clone())
} else {
None
}
})
}
/// Returns the crate this module is part of.
pub fn krate(self) -> Crate {
Crate { id: self.id.krate() }
}
/// Topmost parent of this module. Every module has a `crate_root`, but some
/// might be missing `krate`. This can happen if a module's file is not included
/// in the module tree of any target in `Cargo.toml`.
pub fn crate_root(self, db: &dyn HirDatabase) -> Module {
let def_map = db.crate_def_map(self.id.krate());
Module { id: def_map.module_id(def_map.root()) }
}
/// Iterates over all child modules.
pub fn children(self, db: &dyn HirDatabase) -> impl Iterator<Item = Module> {
let def_map = self.id.def_map(db.upcast());
let children = def_map[self.id.local_id]
.children
.iter()
.map(|(_, module_id)| Module { id: def_map.module_id(*module_id) })
.collect::<Vec<_>>();
children.into_iter()
}
/// Finds a parent module.
pub fn parent(self, db: &dyn HirDatabase) -> Option<Module> {
// FIXME: handle block expressions as modules (their parent is in a different DefMap)
let def_map = self.id.def_map(db.upcast());
let parent_id = def_map[self.id.local_id].parent?;
Some(Module { id: def_map.module_id(parent_id) })
}
pub fn path_to_root(self, db: &dyn HirDatabase) -> Vec<Module> {
let mut res = vec![self];
let mut curr = self;
while let Some(next) = curr.parent(db) {
res.push(next);
curr = next
}
res
}
/// Returns a `ModuleScope`: a set of items, visible in this module.
pub fn scope(
self,
db: &dyn HirDatabase,
visible_from: Option<Module>,
) -> Vec<(Name, ScopeDef)> {
self.id.def_map(db.upcast())[self.id.local_id]
.scope
.entries()
.filter_map(|(name, def)| {
if let Some(m) = visible_from {
let filtered =
def.filter_visibility(|vis| vis.is_visible_from(db.upcast(), m.id));
if filtered.is_none() && !def.is_none() {
None
} else {
Some((name, filtered))
}
} else {
Some((name, def))
}
})
.flat_map(|(name, def)| {
ScopeDef::all_items(def).into_iter().map(move |item| (name.clone(), item))
})
.collect()
}
pub fn visibility_of(self, db: &dyn HirDatabase, def: &ModuleDef) -> Option<Visibility> {
self.id.def_map(db.upcast())[self.id.local_id].scope.visibility_of((*def).into())
}
pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec<AnyDiagnostic>) {
let _p = profile::span("Module::diagnostics").detail(|| {
format!("{:?}", self.name(db).map_or("<unknown>".into(), |name| name.to_string()))
});
let def_map = self.id.def_map(db.upcast());
for diag in def_map.diagnostics() {
if diag.in_module != self.id.local_id {
// FIXME: This is accidentally quadratic.
continue;
}
match &diag.kind {
DefDiagnosticKind::UnresolvedModule { ast: declaration, candidate } => {
let decl = declaration.to_node(db.upcast());
acc.push(
UnresolvedModule {
decl: InFile::new(declaration.file_id, AstPtr::new(&decl)),
candidate: candidate.clone(),
}
.into(),
)
}
DefDiagnosticKind::UnresolvedExternCrate { ast } => {
let item = ast.to_node(db.upcast());
acc.push(
UnresolvedExternCrate {
decl: InFile::new(ast.file_id, AstPtr::new(&item)),
}
.into(),
);
}
DefDiagnosticKind::UnresolvedImport { id, index } => {
let file_id = id.file_id();
let item_tree = id.item_tree(db.upcast());
let import = &item_tree[id.value];
let use_tree = import.use_tree_to_ast(db.upcast(), file_id, *index);
acc.push(
UnresolvedImport { decl: InFile::new(file_id, AstPtr::new(&use_tree)) }
.into(),
);
}
DefDiagnosticKind::UnconfiguredCode { ast, cfg, opts } => {
let item = ast.to_node(db.upcast());
acc.push(
InactiveCode {
node: ast.with_value(AstPtr::new(&item).into()),
cfg: cfg.clone(),
opts: opts.clone(),
}
.into(),
);
}
DefDiagnosticKind::UnresolvedProcMacro { ast } => {
let mut precise_location = None;
let (node, name) = match ast {
MacroCallKind::FnLike { ast_id, .. } => {
let node = ast_id.to_node(db.upcast());
(ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))), None)
}
MacroCallKind::Derive { ast_id, derive_name, .. } => {
let node = ast_id.to_node(db.upcast());
// Compute the precise location of the macro name's token in the derive
// list.
// FIXME: This does not handle paths to the macro, but neither does the
// rest of r-a.
let derive_attrs =
node.attrs().filter_map(|attr| match attr.as_simple_call() {
Some((name, args)) if name == "derive" => Some(args),
_ => None,
});
'outer: for attr in derive_attrs {
let tokens =
attr.syntax().children_with_tokens().filter_map(|elem| {
match elem {
syntax::NodeOrToken::Node(_) => None,
syntax::NodeOrToken::Token(tok) => Some(tok),
}
});
for token in tokens {
if token.kind() == SyntaxKind::IDENT
&& token.text() == derive_name.as_str()
{
precise_location = Some(token.text_range());
break 'outer;
}
}
}
(
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))),
Some(derive_name.clone()),
)
}
MacroCallKind::Attr { ast_id, invoc_attr_index, attr_name, .. } => {
let node = ast_id.to_node(db.upcast());
let attr =
node.attrs().nth((*invoc_attr_index) as usize).unwrap_or_else(
|| panic!("cannot find attribute #{}", invoc_attr_index),
);
(
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&attr))),
Some(attr_name.clone()),
)
}
};
acc.push(
UnresolvedProcMacro { node, precise_location, macro_name: name }.into(),
);
}
DefDiagnosticKind::UnresolvedMacroCall { ast, path } => {
let node = ast.to_node(db.upcast());
acc.push(
UnresolvedMacroCall {
macro_call: InFile::new(ast.file_id, AstPtr::new(&node)),
path: path.clone(),
}
.into(),
);
}
DefDiagnosticKind::MacroError { ast, message } => {
let node = match ast {
MacroCallKind::FnLike { ast_id, .. } => {
let node = ast_id.to_node(db.upcast());
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node)))
}
MacroCallKind::Derive { ast_id, .. }
| MacroCallKind::Attr { ast_id, .. } => {
// FIXME: point to the attribute instead, this creates very large diagnostics
let node = ast_id.to_node(db.upcast());
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node)))
}
};
acc.push(MacroError { node, message: message.clone() }.into());
}
DefDiagnosticKind::UnimplementedBuiltinMacro { ast } => {
let node = ast.to_node(db.upcast());
// Must have a name, otherwise we wouldn't emit it.
let name = node.name().expect("unimplemented builtin macro with no name");
acc.push(
UnimplementedBuiltinMacro {
node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&name))),
}
.into(),
);
}
}
}
for decl in self.declarations(db) {
match decl {
ModuleDef::Function(f) => f.diagnostics(db, acc),
ModuleDef::Module(m) => {
// Only add diagnostics from inline modules
if def_map[m.id.local_id].origin.is_inline() {
m.diagnostics(db, acc)
}
}
_ => acc.extend(decl.diagnostics(db)),
}
}
for impl_def in self.impl_defs(db) {
for item in impl_def.items(db) {
if let AssocItem::Function(f) = item {
f.diagnostics(db, acc);
}
}
}
}
pub fn declarations(self, db: &dyn HirDatabase) -> Vec<ModuleDef> {
let def_map = self.id.def_map(db.upcast());
def_map[self.id.local_id].scope.declarations().map(ModuleDef::from).collect()
}
pub fn impl_defs(self, db: &dyn HirDatabase) -> Vec<Impl> {
let def_map = self.id.def_map(db.upcast());
def_map[self.id.local_id].scope.impls().map(Impl::from).collect()
}
/// Finds a path that can be used to refer to the given item from within
/// this module, if possible.
pub fn find_use_path(self, db: &dyn DefDatabase, item: impl Into<ItemInNs>) -> Option<ModPath> {
hir_def::find_path::find_path(db, item.into(), self.into())
}
/// Finds a path that can be used to refer to the given item from within
/// this module, if possible. This is used for returning import paths for use-statements.
pub fn find_use_path_prefixed(
self,
db: &dyn DefDatabase,
item: impl Into<ItemInNs>,
prefix_kind: PrefixKind,
) -> Option<ModPath> {
hir_def::find_path::find_path_prefixed(db, item.into(), self.into(), prefix_kind)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Field {
pub(crate) parent: VariantDef,
pub(crate) id: LocalFieldId,
}
#[derive(Debug, PartialEq, Eq)]
pub enum FieldSource {
Named(ast::RecordField),
Pos(ast::TupleField),
}
impl Field {
pub fn name(&self, db: &dyn HirDatabase) -> Name {
self.parent.variant_data(db).fields()[self.id].name.clone()
}
/// Returns the type as in the signature of the struct (i.e., with
/// placeholder types for type parameters). Only use this in the context of
/// the field definition.
pub fn ty(&self, db: &dyn HirDatabase) -> Type {
let var_id = self.parent.into();
let generic_def_id: GenericDefId = match self.parent {
VariantDef::Struct(it) => it.id.into(),
VariantDef::Union(it) => it.id.into(),
VariantDef::Variant(it) => it.parent.id.into(),
};
let substs = TyBuilder::type_params_subst(db, generic_def_id);
let ty = db.field_types(var_id)[self.id].clone().substitute(&Interner, &substs);
Type::new(db, self.parent.module(db).id.krate(), var_id, ty)
}
pub fn parent_def(&self, _db: &dyn HirDatabase) -> VariantDef {
self.parent
}
}
impl HasVisibility for Field {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let variant_data = self.parent.variant_data(db);
let visibility = &variant_data.fields()[self.id].visibility;
let parent_id: hir_def::VariantId = self.parent.into();
visibility.resolve(db.upcast(), &parent_id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Struct {
pub(crate) id: StructId,
}
impl Struct {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.struct_data(self.id).name.clone()
}
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
db.struct_data(self.id)
.variant_data
.fields()
.iter()
.map(|(id, _)| Field { parent: self.into(), id })
.collect()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id)
}
pub fn repr(self, db: &dyn HirDatabase) -> Option<ReprKind> {
db.struct_data(self.id).repr.clone()
}
pub fn kind(self, db: &dyn HirDatabase) -> StructKind {
self.variant_data(db).kind()
}
fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
db.struct_data(self.id).variant_data.clone()
}
}
impl HasVisibility for Struct {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.struct_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Union {
pub(crate) id: UnionId,
}
impl Union {
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.union_data(self.id).name.clone()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id)
}
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
db.union_data(self.id)
.variant_data
.fields()
.iter()
.map(|(id, _)| Field { parent: self.into(), id })
.collect()
}
fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
db.union_data(self.id).variant_data.clone()
}
}
impl HasVisibility for Union {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.union_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Enum {
pub(crate) id: EnumId,
}
impl Enum {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.enum_data(self.id).name.clone()
}
pub fn variants(self, db: &dyn HirDatabase) -> Vec<Variant> {
db.enum_data(self.id).variants.iter().map(|(id, _)| Variant { parent: self, id }).collect()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id)
}
}
impl HasVisibility for Enum {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.enum_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Variant {
pub(crate) parent: Enum,
pub(crate) id: LocalEnumVariantId,
}
impl Variant {
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.parent.module(db)
}
pub fn parent_enum(self, _db: &dyn HirDatabase) -> Enum {
self.parent
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.enum_data(self.parent.id).variants[self.id].name.clone()
}
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
self.variant_data(db)
.fields()
.iter()
.map(|(id, _)| Field { parent: self.into(), id })
.collect()
}
pub fn kind(self, db: &dyn HirDatabase) -> StructKind {
self.variant_data(db).kind()
}
pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
db.enum_data(self.parent.id).variants[self.id].variant_data.clone()
}
}
/// A Data Type
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adt {
Struct(Struct),
Union(Union),
Enum(Enum),
}
impl_from!(Struct, Union, Enum for Adt);
impl Adt {
pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool {
let subst = db.generic_defaults(self.into());
subst.iter().any(|ty| ty.skip_binders().is_unknown())
}
/// Turns this ADT into a type. Any type parameters of the ADT will be
/// turned into unknown types, which is good for e.g. finding the most
/// general set of completions, but will not look very nice when printed.
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let id = AdtId::from(self);
Type::from_def(db, id.module(db.upcast()).krate(), id)
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
Adt::Struct(s) => s.module(db),
Adt::Union(s) => s.module(db),
Adt::Enum(e) => e.module(db),
}
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
match self {
Adt::Struct(s) => s.name(db),
Adt::Union(u) => u.name(db),
Adt::Enum(e) => e.name(db),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum VariantDef {
Struct(Struct),
Union(Union),
Variant(Variant),
}
impl_from!(Struct, Union, Variant for VariantDef);
impl VariantDef {
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
match self {
VariantDef::Struct(it) => it.fields(db),
VariantDef::Union(it) => it.fields(db),
VariantDef::Variant(it) => it.fields(db),
}
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
VariantDef::Struct(it) => it.module(db),
VariantDef::Union(it) => it.module(db),
VariantDef::Variant(it) => it.module(db),
}
}
pub fn name(&self, db: &dyn HirDatabase) -> Name {
match self {
VariantDef::Struct(s) => s.name(db),
VariantDef::Union(u) => u.name(db),
VariantDef::Variant(e) => e.name(db),
}
}
pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
match self {
VariantDef::Struct(it) => it.variant_data(db),
VariantDef::Union(it) => it.variant_data(db),
VariantDef::Variant(it) => it.variant_data(db),
}
}
}
/// The defs which have a body.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum DefWithBody {
Function(Function),
Static(Static),
Const(Const),
}
impl_from!(Function, Const, Static for DefWithBody);
impl DefWithBody {
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
DefWithBody::Const(c) => c.module(db),
DefWithBody::Function(f) => f.module(db),
DefWithBody::Static(s) => s.module(db),
}
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
match self {
DefWithBody::Function(f) => Some(f.name(db)),
DefWithBody::Static(s) => s.name(db),
DefWithBody::Const(c) => c.name(db),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Function {
pub(crate) id: FunctionId,
}
impl Function {
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.lookup(db.upcast()).module(db.upcast()).into()
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.function_data(self.id).name.clone()
}
/// Get this function's return type
pub fn ret_type(self, db: &dyn HirDatabase) -> Type {
let resolver = self.id.resolver(db.upcast());
let krate = self.id.lookup(db.upcast()).container.module(db.upcast()).krate();
let ret_type = &db.function_data(self.id).ret_type;
let ctx = hir_ty::TyLoweringContext::new(db, &resolver);
let ty = ctx.lower_ty(ret_type);
Type::new_with_resolver_inner(db, krate, &resolver, ty)
}
pub fn self_param(self, db: &dyn HirDatabase) -> Option<SelfParam> {
if !db.function_data(self.id).has_self_param() {
return None;
}
Some(SelfParam { func: self.id })
}
pub fn assoc_fn_params(self, db: &dyn HirDatabase) -> Vec<Param> {
let resolver = self.id.resolver(db.upcast());
let krate = self.id.lookup(db.upcast()).container.module(db.upcast()).krate();
let ctx = hir_ty::TyLoweringContext::new(db, &resolver);
let environment = db.trait_environment(self.id.into());
db.function_data(self.id)
.params
.iter()
.enumerate()
.map(|(idx, type_ref)| {
let ty = Type { krate, env: environment.clone(), ty: ctx.lower_ty(type_ref) };
Param { func: self, ty, idx }
})
.collect()
}
pub fn method_params(self, db: &dyn HirDatabase) -> Option<Vec<Param>> {
if self.self_param(db).is_none() {
return None;
}
let mut res = self.assoc_fn_params(db);
res.remove(0);
Some(res)
}
pub fn is_unsafe(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).is_unsafe()
}
pub fn is_async(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).is_async()
}
pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec<AnyDiagnostic>) {
let krate = self.module(db).id.krate();
let source_map = db.body_with_source_map(self.id.into()).1;
for diag in source_map.diagnostics() {
match diag {
BodyDiagnostic::InactiveCode { node, cfg, opts } => acc.push(
InactiveCode { node: node.clone(), cfg: cfg.clone(), opts: opts.clone() }
.into(),
),
BodyDiagnostic::MacroError { node, message } => acc.push(
MacroError {
node: node.clone().map(|it| it.into()),
message: message.to_string(),
}
.into(),
),
BodyDiagnostic::UnresolvedProcMacro { node } => acc.push(
UnresolvedProcMacro {
node: node.clone().map(|it| it.into()),
precise_location: None,
macro_name: None,
}
.into(),
),
BodyDiagnostic::UnresolvedMacroCall { node, path } => acc.push(
UnresolvedMacroCall { macro_call: node.clone(), path: path.clone() }.into(),
),
}
}
let infer = db.infer(self.id.into());
let source_map = Lazy::new(|| db.body_with_source_map(self.id.into()).1);
for d in &infer.diagnostics {
match d {
hir_ty::InferenceDiagnostic::NoSuchField { expr } => {
let field = source_map.field_syntax(*expr);
acc.push(NoSuchField { field }.into())
}
hir_ty::InferenceDiagnostic::BreakOutsideOfLoop { expr } => {
let expr = source_map
.expr_syntax(*expr)
.expect("break outside of loop in synthetic syntax");
acc.push(BreakOutsideOfLoop { expr }.into())
}
}
}
for expr in hir_ty::diagnostics::missing_unsafe(db, self.id.into()) {
match source_map.expr_syntax(expr) {
Ok(expr) => acc.push(MissingUnsafe { expr }.into()),
Err(SyntheticSyntax) => {
// FIXME: Here and eslwhere in this file, the `expr` was
// desugared, report or assert that this doesn't happen.
}
}
}
for diagnostic in BodyValidationDiagnostic::collect(db, self.id.into()) {
match diagnostic {
BodyValidationDiagnostic::RecordMissingFields {
record,
variant,
missed_fields,
} => {
let variant_data = variant.variant_data(db.upcast());
let missed_fields = missed_fields
.into_iter()
.map(|idx| variant_data.fields()[idx].name.clone())
.collect();
match record {
Either::Left(record_expr) => match source_map.expr_syntax(record_expr) {
Ok(source_ptr) => {
let root = source_ptr.file_syntax(db.upcast());
if let ast::Expr::RecordExpr(record_expr) =
&source_ptr.value.to_node(&root)
{
if let Some(_) = record_expr.record_expr_field_list() {
acc.push(
MissingFields {
file: source_ptr.file_id,
field_list_parent: Either::Left(AstPtr::new(
record_expr,
)),
field_list_parent_path: record_expr
.path()
.map(|path| AstPtr::new(&path)),
missed_fields,
}
.into(),
)
}
}
}
Err(SyntheticSyntax) => (),
},
Either::Right(record_pat) => match source_map.pat_syntax(record_pat) {
Ok(source_ptr) => {
if let Some(expr) = source_ptr.value.as_ref().left() {
let root = source_ptr.file_syntax(db.upcast());
if let ast::Pat::RecordPat(record_pat) = expr.to_node(&root) {
if let Some(_) = record_pat.record_pat_field_list() {
acc.push(
MissingFields {
file: source_ptr.file_id,
field_list_parent: Either::Right(AstPtr::new(
&record_pat,
)),
field_list_parent_path: record_pat
.path()
.map(|path| AstPtr::new(&path)),
missed_fields,
}
.into(),
)
}
}
}
}
Err(SyntheticSyntax) => (),
},
}
}
BodyValidationDiagnostic::ReplaceFilterMapNextWithFindMap { method_call_expr } => {
if let Ok(next_source_ptr) = source_map.expr_syntax(method_call_expr) {
acc.push(
ReplaceFilterMapNextWithFindMap {
file: next_source_ptr.file_id,
next_expr: next_source_ptr.value,
}
.into(),
);
}
}
BodyValidationDiagnostic::MismatchedArgCount { call_expr, expected, found } => {
match source_map.expr_syntax(call_expr) {
Ok(source_ptr) => acc.push(
MismatchedArgCount { call_expr: source_ptr, expected, found }.into(),
),
Err(SyntheticSyntax) => (),
}
}
BodyValidationDiagnostic::RemoveThisSemicolon { expr } => {
match source_map.expr_syntax(expr) {
Ok(expr) => acc.push(RemoveThisSemicolon { expr }.into()),
Err(SyntheticSyntax) => (),
}
}
BodyValidationDiagnostic::MissingOkOrSomeInTailExpr { expr, required } => {
match source_map.expr_syntax(expr) {
Ok(expr) => acc.push(MissingOkOrSomeInTailExpr { expr, required }.into()),
Err(SyntheticSyntax) => (),
}
}
BodyValidationDiagnostic::MissingMatchArms { match_expr } => {
match source_map.expr_syntax(match_expr) {
Ok(source_ptr) => {
let root = source_ptr.file_syntax(db.upcast());
if let ast::Expr::MatchExpr(match_expr) =
&source_ptr.value.to_node(&root)
{
if let (Some(match_expr), Some(arms)) =
(match_expr.expr(), match_expr.match_arm_list())
{
acc.push(
MissingMatchArms {
file: source_ptr.file_id,
match_expr: AstPtr::new(&match_expr),
arms: AstPtr::new(&arms),
}
.into(),
)
}
}
}
Err(SyntheticSyntax) => (),
}
}
}
}
for diag in hir_ty::diagnostics::validate_module_item(db, krate, self.id.into()) {
acc.push(diag.into())
}
}
/// Whether this function declaration has a definition.
///
/// This is false in the case of required (not provided) trait methods.
pub fn has_body(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).has_body()
}
/// A textual representation of the HIR of this function for debugging purposes.
pub fn debug_hir(self, db: &dyn HirDatabase) -> String {
let body = db.body(self.id.into());
let mut result = String::new();
format_to!(result, "HIR expressions in the body of `{}`:\n", self.name(db));
for (id, expr) in body.exprs.iter() {
format_to!(result, "{:?}: {:?}\n", id, expr);
}
result
}
}
// Note: logically, this belongs to `hir_ty`, but we are not using it there yet.
pub enum Access {
Shared,
Exclusive,
Owned,
}
impl From<hir_ty::Mutability> for Access {
fn from(mutability: hir_ty::Mutability) -> Access {
match mutability {
hir_ty::Mutability::Not => Access::Shared,
hir_ty::Mutability::Mut => Access::Exclusive,
}
}
}
#[derive(Clone, Debug)]
pub struct Param {
func: Function,
/// The index in parameter list, including self parameter.
idx: usize,
ty: Type,
}
impl Param {
pub fn ty(&self) -> &Type {
&self.ty
}
pub fn as_local(&self, db: &dyn HirDatabase) -> Local {
let parent = DefWithBodyId::FunctionId(self.func.into());
let body = db.body(parent);
Local { parent, pat_id: body.params[self.idx] }
}
pub fn pattern_source(&self, db: &dyn HirDatabase) -> Option<ast::Pat> {
self.source(db).and_then(|p| p.value.pat())
}
pub fn source(&self, db: &dyn HirDatabase) -> Option<InFile<ast::Param>> {
let InFile { file_id, value } = self.func.source(db)?;
let params = value.param_list()?;
if params.self_param().is_some() {
params.params().nth(self.idx.checked_sub(1)?)
} else {
params.params().nth(self.idx)
}
.map(|value| InFile { file_id, value })
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SelfParam {
func: FunctionId,
}
impl SelfParam {
pub fn access(self, db: &dyn HirDatabase) -> Access {
let func_data = db.function_data(self.func);
func_data
.params
.first()
.map(|param| match &**param {
TypeRef::Reference(.., mutability) => match mutability {
hir_def::type_ref::Mutability::Shared => Access::Shared,
hir_def::type_ref::Mutability::Mut => Access::Exclusive,
},
_ => Access::Owned,
})
.unwrap_or(Access::Owned)
}
pub fn display(self, db: &dyn HirDatabase) -> &'static str {
match self.access(db) {
Access::Shared => "&self",
Access::Exclusive => "&mut self",
Access::Owned => "self",
}
}
pub fn source(&self, db: &dyn HirDatabase) -> Option<InFile<ast::SelfParam>> {
let InFile { file_id, value } = Function::from(self.func).source(db)?;
value
.param_list()
.and_then(|params| params.self_param())
.map(|value| InFile { file_id, value })
}
}
impl HasVisibility for Function {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let function_data = db.function_data(self.id);
let visibility = &function_data.visibility;
visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Const {
pub(crate) id: ConstId,
}
impl Const {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).module(db.upcast()) }
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
db.const_data(self.id).name.clone()
}
pub fn type_ref(self, db: &dyn HirDatabase) -> TypeRef {
db.const_data(self.id).type_ref.as_ref().clone()
}
}
impl HasVisibility for Const {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let function_data = db.const_data(self.id);
let visibility = &function_data.visibility;
visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Static {
pub(crate) id: StaticId,
}
impl Static {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).module(db.upcast()) }
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
db.static_data(self.id).name.clone()
}
pub fn is_mut(self, db: &dyn HirDatabase) -> bool {
db.static_data(self.id).mutable
}
}
impl HasVisibility for Static {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.static_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Trait {
pub(crate) id: TraitId,
}
impl Trait {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.trait_data(self.id).name.clone()
}
pub fn items(self, db: &dyn HirDatabase) -> Vec<AssocItem> {
db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect()
}
pub fn is_auto(self, db: &dyn HirDatabase) -> bool {
db.trait_data(self.id).is_auto
}
pub fn is_unsafe(&self, db: &dyn HirDatabase) -> bool {
db.trait_data(self.id).is_unsafe
}
}
impl HasVisibility for Trait {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.trait_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeAlias {
pub(crate) id: TypeAliasId,
}
impl TypeAlias {
pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool {
let subst = db.generic_defaults(self.id.into());
subst.iter().any(|ty| ty.skip_binders().is_unknown())
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).module(db.upcast()) }
}
pub fn type_ref(self, db: &dyn HirDatabase) -> Option<TypeRef> {
db.type_alias_data(self.id).type_ref.as_deref().cloned()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id.lookup(db.upcast()).module(db.upcast()).krate(), self.id)
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.type_alias_data(self.id).name.clone()
}
}
impl HasVisibility for TypeAlias {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let function_data = db.type_alias_data(self.id);
let visibility = &function_data.visibility;
visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct BuiltinType {
pub(crate) inner: hir_def::builtin_type::BuiltinType,
}
impl BuiltinType {
pub fn ty(self, db: &dyn HirDatabase, module: Module) -> Type {
let resolver = module.id.resolver(db.upcast());
Type::new_with_resolver(db, &resolver, TyBuilder::builtin(self.inner))
.expect("crate not present in resolver")
}
pub fn name(self) -> Name {
self.inner.as_name()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum MacroKind {
/// `macro_rules!` or Macros 2.0 macro.
Declarative,
/// A built-in or custom derive.
Derive,
/// A built-in function-like macro.
BuiltIn,
/// A procedural attribute macro.
Attr,
/// A function-like procedural macro.
ProcMacro,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct MacroDef {
pub(crate) id: MacroDefId,
}
impl MacroDef {
/// FIXME: right now, this just returns the root module of the crate that
/// defines this macro. The reasons for this is that macros are expanded
/// early, in `hir_expand`, where modules simply do not exist yet.
pub fn module(self, db: &dyn HirDatabase) -> Option<Module> {
let krate = self.id.krate;
let def_map = db.crate_def_map(krate);
let module_id = def_map.root();
Some(Module { id: def_map.module_id(module_id) })
}
/// XXX: this parses the file
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
match self.source(db)?.value {
Either::Left(it) => it.name().map(|it| it.as_name()),
Either::Right(it) => it.name().map(|it| it.as_name()),
}
}
pub fn kind(&self) -> MacroKind {
match self.id.kind {
MacroDefKind::Declarative(_) => MacroKind::Declarative,
MacroDefKind::BuiltIn(_, _) | MacroDefKind::BuiltInEager(_, _) => MacroKind::BuiltIn,
MacroDefKind::BuiltInDerive(_, _) => MacroKind::Derive,
MacroDefKind::BuiltInAttr(_, _) => MacroKind::Attr,
MacroDefKind::ProcMacro(_, base_db::ProcMacroKind::CustomDerive, _) => {
MacroKind::Derive
}
MacroDefKind::ProcMacro(_, base_db::ProcMacroKind::Attr, _) => MacroKind::Attr,
MacroDefKind::ProcMacro(_, base_db::ProcMacroKind::FuncLike, _) => MacroKind::ProcMacro,
}
}
pub fn is_fn_like(&self) -> bool {
match self.kind() {
MacroKind::Declarative | MacroKind::BuiltIn | MacroKind::ProcMacro => true,
MacroKind::Attr | MacroKind::Derive => false,
}
}
}
/// Invariant: `inner.as_assoc_item(db).is_some()`
/// We do not actively enforce this invariant.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AssocItem {
Function(Function),
Const(Const),
TypeAlias(TypeAlias),
}
#[derive(Debug)]
pub enum AssocItemContainer {
Trait(Trait),
Impl(Impl),
}
pub trait AsAssocItem {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem>;
}
impl AsAssocItem for Function {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
as_assoc_item(db, AssocItem::Function, self.id)
}
}
impl AsAssocItem for Const {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
as_assoc_item(db, AssocItem::Const, self.id)
}
}
impl AsAssocItem for TypeAlias {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
as_assoc_item(db, AssocItem::TypeAlias, self.id)
}
}
impl AsAssocItem for ModuleDef {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
match self {
ModuleDef::Function(it) => it.as_assoc_item(db),
ModuleDef::Const(it) => it.as_assoc_item(db),
ModuleDef::TypeAlias(it) => it.as_assoc_item(db),
_ => None,
}
}
}
fn as_assoc_item<ID, DEF, CTOR, AST>(db: &dyn HirDatabase, ctor: CTOR, id: ID) -> Option<AssocItem>
where
ID: Lookup<Data = AssocItemLoc<AST>>,
DEF: From<ID>,
CTOR: FnOnce(DEF) -> AssocItem,
AST: ItemTreeNode,
{
match id.lookup(db.upcast()).container {
AssocContainerId::TraitId(_) | AssocContainerId::ImplId(_) => Some(ctor(DEF::from(id))),
AssocContainerId::ModuleId(_) => None,
}
}
impl AssocItem {
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
match self {
AssocItem::Function(it) => Some(it.name(db)),
AssocItem::Const(it) => it.name(db),
AssocItem::TypeAlias(it) => Some(it.name(db)),
}
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
AssocItem::Function(f) => f.module(db),
AssocItem::Const(c) => c.module(db),
AssocItem::TypeAlias(t) => t.module(db),
}
}
pub fn container(self, db: &dyn HirDatabase) -> AssocItemContainer {
let container = match self {
AssocItem::Function(it) => it.id.lookup(db.upcast()).container,
AssocItem::Const(it) => it.id.lookup(db.upcast()).container,
AssocItem::TypeAlias(it) => it.id.lookup(db.upcast()).container,
};
match container {
AssocContainerId::TraitId(id) => AssocItemContainer::Trait(id.into()),
AssocContainerId::ImplId(id) => AssocItemContainer::Impl(id.into()),
AssocContainerId::ModuleId(_) => panic!("invalid AssocItem"),
}
}
pub fn containing_trait(self, db: &dyn HirDatabase) -> Option<Trait> {
match self.container(db) {
AssocItemContainer::Trait(t) => Some(t),
_ => None,
}
}
pub fn containing_trait_impl(self, db: &dyn HirDatabase) -> Option<Trait> {
match self.container(db) {
AssocItemContainer::Impl(i) => i.trait_(db),
_ => None,
}
}
pub fn containing_trait_or_trait_impl(self, db: &dyn HirDatabase) -> Option<Trait> {
match self.container(db) {
AssocItemContainer::Trait(t) => Some(t),
AssocItemContainer::Impl(i) => i.trait_(db),
}
}
}
impl HasVisibility for AssocItem {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
match self {
AssocItem::Function(f) => f.visibility(db),
AssocItem::Const(c) => c.visibility(db),
AssocItem::TypeAlias(t) => t.visibility(db),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum GenericDef {
Function(Function),
Adt(Adt),
Trait(Trait),
TypeAlias(TypeAlias),
Impl(Impl),
// enum variants cannot have generics themselves, but their parent enums
// can, and this makes some code easier to write
Variant(Variant),
// consts can have type parameters from their parents (i.e. associated consts of traits)
Const(Const),
}
impl_from!(
Function,
Adt(Struct, Enum, Union),
Trait,
TypeAlias,
Impl,
Variant,
Const
for GenericDef
);
impl GenericDef {
pub fn params(self, db: &dyn HirDatabase) -> Vec<GenericParam> {
let generics = db.generic_params(self.into());
let ty_params = generics
.types
.iter()
.map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } })
.map(GenericParam::TypeParam);
let lt_params = generics
.lifetimes
.iter()
.map(|(local_id, _)| LifetimeParam {
id: LifetimeParamId { parent: self.into(), local_id },
})
.map(GenericParam::LifetimeParam);
let const_params = generics
.consts
.iter()
.map(|(local_id, _)| ConstParam { id: ConstParamId { parent: self.into(), local_id } })
.map(GenericParam::ConstParam);
ty_params.chain(lt_params).chain(const_params).collect()
}
pub fn type_params(self, db: &dyn HirDatabase) -> Vec<TypeParam> {
let generics = db.generic_params(self.into());
generics
.types
.iter()
.map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } })
.collect()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Local {
pub(crate) parent: DefWithBodyId,
pub(crate) pat_id: PatId,
}
impl Local {
pub fn is_param(self, db: &dyn HirDatabase) -> bool {
let src = self.source(db);
match src.value {
Either::Left(bind_pat) => {
bind_pat.syntax().ancestors().any(|it| ast::Param::can_cast(it.kind()))
}
Either::Right(_self_param) => true,
}
}
pub fn as_self_param(self, db: &dyn HirDatabase) -> Option<SelfParam> {
match self.parent {
DefWithBodyId::FunctionId(func) if self.is_self(db) => Some(SelfParam { func }),
_ => None,
}
}
// FIXME: why is this an option? It shouldn't be?
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
let body = db.body(self.parent);
match &body[self.pat_id] {
Pat::Bind { name, .. } => Some(name.clone()),
_ => None,
}
}
pub fn is_self(self, db: &dyn HirDatabase) -> bool {
self.name(db) == Some(name![self])
}
pub fn is_mut(self, db: &dyn HirDatabase) -> bool {
let body = db.body(self.parent);
matches!(&body[self.pat_id], Pat::Bind { mode: BindingAnnotation::Mutable, .. })
}
pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody {
self.parent.into()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.parent(db).module(db)
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let def = self.parent;
let infer = db.infer(def);
let ty = infer[self.pat_id].clone();
let krate = def.module(db.upcast()).krate();
Type::new(db, krate, def, ty)
}
pub fn source(self, db: &dyn HirDatabase) -> InFile<Either<ast::IdentPat, ast::SelfParam>> {
let (_body, source_map) = db.body_with_source_map(self.parent);
let src = source_map.pat_syntax(self.pat_id).unwrap(); // Hmm...
let root = src.file_syntax(db.upcast());
src.map(|ast| {
ast.map_left(|it| it.cast().unwrap().to_node(&root)).map_right(|it| it.to_node(&root))
})
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Label {
pub(crate) parent: DefWithBodyId,
pub(crate) label_id: LabelId,
}
impl Label {
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.parent(db).module(db)
}
pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody {
self.parent.into()
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
let body = db.body(self.parent);
body[self.label_id].name.clone()
}
pub fn source(self, db: &dyn HirDatabase) -> InFile<ast::Label> {
let (_body, source_map) = db.body_with_source_map(self.parent);
let src = source_map.label_syntax(self.label_id);
let root = src.file_syntax(db.upcast());
src.map(|ast| ast.to_node(&root))
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum GenericParam {
TypeParam(TypeParam),
LifetimeParam(LifetimeParam),
ConstParam(ConstParam),
}
impl_from!(TypeParam, LifetimeParam, ConstParam for GenericParam);
impl GenericParam {
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
GenericParam::TypeParam(it) => it.module(db),
GenericParam::LifetimeParam(it) => it.module(db),
GenericParam::ConstParam(it) => it.module(db),
}
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
match self {
GenericParam::TypeParam(it) => it.name(db),
GenericParam::LifetimeParam(it) => it.name(db),
GenericParam::ConstParam(it) => it.name(db),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TypeParam {
pub(crate) id: TypeParamId,
}
impl TypeParam {
pub fn name(self, db: &dyn HirDatabase) -> Name {
let params = db.generic_params(self.id.parent);
params.types[self.id.local_id].name.clone().unwrap_or_else(Name::missing)
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent.module(db.upcast()).into()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let resolver = self.id.parent.resolver(db.upcast());
let krate = self.id.parent.module(db.upcast()).krate();
let ty = TyKind::Placeholder(hir_ty::to_placeholder_idx(db, self.id)).intern(&Interner);
Type::new_with_resolver_inner(db, krate, &resolver, ty)
}
pub fn trait_bounds(self, db: &dyn HirDatabase) -> Vec<Trait> {
db.generic_predicates_for_param(self.id)
.iter()
.filter_map(|pred| match &pred.skip_binders().skip_binders() {
hir_ty::WhereClause::Implemented(trait_ref) => {
Some(Trait::from(trait_ref.hir_trait_id()))
}
_ => None,
})
.collect()
}
pub fn default(self, db: &dyn HirDatabase) -> Option<Type> {
let params = db.generic_defaults(self.id.parent);
let local_idx = hir_ty::param_idx(db, self.id)?;
let resolver = self.id.parent.resolver(db.upcast());
let krate = self.id.parent.module(db.upcast()).krate();
let ty = params.get(local_idx)?.clone();
let subst = TyBuilder::type_params_subst(db, self.id.parent);
let ty = ty.substitute(&Interner, &subst_prefix(&subst, local_idx));
Some(Type::new_with_resolver_inner(db, krate, &resolver, ty))
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct LifetimeParam {
pub(crate) id: LifetimeParamId,
}
impl LifetimeParam {
pub fn name(self, db: &dyn HirDatabase) -> Name {
let params = db.generic_params(self.id.parent);
params.lifetimes[self.id.local_id].name.clone()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent.module(db.upcast()).into()
}
pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef {
self.id.parent.into()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ConstParam {
pub(crate) id: ConstParamId,
}
impl ConstParam {
pub fn name(self, db: &dyn HirDatabase) -> Name {
let params = db.generic_params(self.id.parent);
params.consts[self.id.local_id].name.clone()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent.module(db.upcast()).into()
}
pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef {
self.id.parent.into()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let def = self.id.parent;
let krate = def.module(db.upcast()).krate();
Type::new(db, krate, def, db.const_param_ty(self.id))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Impl {
pub(crate) id: ImplId,
}
impl Impl {
pub fn all_in_crate(db: &dyn HirDatabase, krate: Crate) -> Vec<Impl> {
let inherent = db.inherent_impls_in_crate(krate.id);
let trait_ = db.trait_impls_in_crate(krate.id);
inherent.all_impls().chain(trait_.all_impls()).map(Self::from).collect()
}
pub fn all_for_type(db: &dyn HirDatabase, Type { krate, ty, .. }: Type) -> Vec<Impl> {
let def_crates = match method_resolution::def_crates(db, &ty, krate) {
Some(def_crates) => def_crates,
None => return Vec::new(),
};
let filter = |impl_def: &Impl| {
let self_ty = impl_def.self_ty(db);
let rref = self_ty.remove_ref();
ty.equals_ctor(rref.as_ref().map_or(&self_ty.ty, |it| &it.ty))
};
let fp = TyFingerprint::for_inherent_impl(&ty);
let fp = if let Some(fp) = fp {
fp
} else {
return Vec::new();
};
let mut all = Vec::new();
def_crates.iter().for_each(|&id| {
all.extend(
db.inherent_impls_in_crate(id)
.for_self_ty(&ty)
.iter()
.cloned()
.map(Self::from)
.filter(filter),
)
});
for id in def_crates
.iter()
.flat_map(|&id| Crate { id }.transitive_reverse_dependencies(db))
.map(|Crate { id }| id)
.chain(def_crates.iter().copied())
.unique()
{
all.extend(
db.trait_impls_in_crate(id)
.for_self_ty_without_blanket_impls(fp)
.map(Self::from)
.filter(filter),
);
}
all
}
pub fn all_for_trait(db: &dyn HirDatabase, trait_: Trait) -> Vec<Impl> {
let krate = trait_.module(db).krate();
let mut all = Vec::new();
for Crate { id } in krate.transitive_reverse_dependencies(db).into_iter() {
let impls = db.trait_impls_in_crate(id);
all.extend(impls.for_trait(trait_.id).map(Self::from))
}
all
}
// FIXME: the return type is wrong. This should be a hir version of
// `TraitRef` (to account for parameters and qualifiers)
pub fn trait_(self, db: &dyn HirDatabase) -> Option<Trait> {
let trait_ref = db.impl_trait(self.id)?.skip_binders().clone();
let id = hir_ty::from_chalk_trait_id(trait_ref.trait_id);
Some(Trait { id })
}
pub fn self_ty(self, db: &dyn HirDatabase) -> Type {
let impl_data = db.impl_data(self.id);
let resolver = self.id.resolver(db.upcast());
let krate = self.id.lookup(db.upcast()).container.krate();
let ctx = hir_ty::TyLoweringContext::new(db, &resolver);
let ty = ctx.lower_ty(&impl_data.self_ty);
Type::new_with_resolver_inner(db, krate, &resolver, ty)
}
pub fn items(self, db: &dyn HirDatabase) -> Vec<AssocItem> {
db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect()
}
pub fn is_negative(self, db: &dyn HirDatabase) -> bool {
db.impl_data(self.id).is_negative
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.lookup(db.upcast()).container.into()
}
pub fn is_builtin_derive(self, db: &dyn HirDatabase) -> Option<InFile<ast::Attr>> {
let src = self.source(db)?;
let item = src.file_id.is_builtin_derive(db.upcast())?;
let hygenic = hir_expand::hygiene::Hygiene::new(db.upcast(), item.file_id);
// FIXME: handle `cfg_attr`
let attr = item
.value
.attrs()
.filter_map(|it| {
let path = ModPath::from_src(db.upcast(), it.path()?, &hygenic)?;
if path.as_ident()?.to_string() == "derive" {
Some(it)
} else {
None
}
})
.last()?;
Some(item.with_value(attr))
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Type {
krate: CrateId,
env: Arc<TraitEnvironment>,
ty: Ty,
}
impl Type {
pub(crate) fn new_with_resolver(
db: &dyn HirDatabase,
resolver: &Resolver,
ty: Ty,
) -> Option<Type> {
let krate = resolver.krate()?;
Some(Type::new_with_resolver_inner(db, krate, resolver, ty))
}
pub(crate) fn new_with_resolver_inner(
db: &dyn HirDatabase,
krate: CrateId,
resolver: &Resolver,
ty: Ty,
) -> Type {
let environment = resolver
.generic_def()
.map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
Type { krate, env: environment, ty }
}
fn new(db: &dyn HirDatabase, krate: CrateId, lexical_env: impl HasResolver, ty: Ty) -> Type {
let resolver = lexical_env.resolver(db.upcast());
let environment = resolver
.generic_def()
.map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
Type { krate, env: environment, ty }
}
fn from_def(
db: &dyn HirDatabase,
krate: CrateId,
def: impl HasResolver + Into<TyDefId>,
) -> Type {
let ty = TyBuilder::def_ty(db, def.into()).fill_with_unknown().build();
Type::new(db, krate, def, ty)
}
pub fn is_unit(&self) -> bool {
matches!(self.ty.kind(&Interner), TyKind::Tuple(0, ..))
}
pub fn is_bool(&self) -> bool {
matches!(self.ty.kind(&Interner), TyKind::Scalar(Scalar::Bool))
}
pub fn is_mutable_reference(&self) -> bool {
matches!(self.ty.kind(&Interner), TyKind::Ref(hir_ty::Mutability::Mut, ..))
}
pub fn is_usize(&self) -> bool {
matches!(self.ty.kind(&Interner), TyKind::Scalar(Scalar::Uint(UintTy::Usize)))
}
pub fn remove_ref(&self) -> Option<Type> {
match &self.ty.kind(&Interner) {
TyKind::Ref(.., ty) => Some(self.derived(ty.clone())),
_ => None,
}
}
pub fn strip_references(&self) -> Type {
self.derived(self.ty.strip_references().clone())
}
pub fn is_unknown(&self) -> bool {
self.ty.is_unknown()
}
/// Checks that particular type `ty` implements `std::future::Future`.
/// This function is used in `.await` syntax completion.
pub fn impls_future(&self, db: &dyn HirDatabase) -> bool {
// No special case for the type of async block, since Chalk can figure it out.
let krate = self.krate;
let std_future_trait =
db.lang_item(krate, "future_trait".into()).and_then(|it| it.as_trait());
let std_future_trait = match std_future_trait {
Some(it) => it,
None => return false,
};
let canonical_ty =
Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(&Interner) };
method_resolution::implements_trait(
&canonical_ty,
db,
self.env.clone(),
krate,
std_future_trait,
)
}
/// Checks that particular type `ty` implements `std::ops::FnOnce`.
///
/// This function can be used to check if a particular type is callable, since FnOnce is a
/// supertrait of Fn and FnMut, so all callable types implements at least FnOnce.
pub fn impls_fnonce(&self, db: &dyn HirDatabase) -> bool {
let krate = self.krate;
let fnonce_trait = match FnTrait::FnOnce.get_id(db, krate) {
Some(it) => it,
None => return false,
};
let canonical_ty =
Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(&Interner) };
method_resolution::implements_trait_unique(
&canonical_ty,
db,
self.env.clone(),
krate,
fnonce_trait,
)
}
pub fn impls_trait(&self, db: &dyn HirDatabase, trait_: Trait, args: &[Type]) -> bool {
let trait_ref = TyBuilder::trait_ref(db, trait_.id)
.push(self.ty.clone())
.fill(args.iter().map(|t| t.ty.clone()))
.build();
let goal = Canonical {
value: hir_ty::InEnvironment::new(&self.env.env, trait_ref.cast(&Interner)),
binders: CanonicalVarKinds::empty(&Interner),
};
db.trait_solve(self.krate, goal).is_some()
}
pub fn normalize_trait_assoc_type(
&self,
db: &dyn HirDatabase,
args: &[Type],
alias: TypeAlias,
) -> Option<Type> {
let projection = TyBuilder::assoc_type_projection(db, alias.id)
.push(self.ty.clone())
.fill(args.iter().map(|t| t.ty.clone()))
.build();
let goal = hir_ty::make_canonical(
InEnvironment::new(
&self.env.env,
AliasEq {
alias: AliasTy::Projection(projection),
ty: TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0))
.intern(&Interner),
}
.cast(&Interner),
),
[TyVariableKind::General].iter().copied(),
);
match db.trait_solve(self.krate, goal)? {
Solution::Unique(s) => s
.value
.subst
.as_slice(&Interner)
.first()
.map(|ty| self.derived(ty.assert_ty_ref(&Interner).clone())),
Solution::Ambig(_) => None,
}
}
pub fn is_copy(&self, db: &dyn HirDatabase) -> bool {
let lang_item = db.lang_item(self.krate, SmolStr::new("copy"));
let copy_trait = match lang_item {
Some(LangItemTarget::TraitId(it)) => it,
_ => return false,
};
self.impls_trait(db, copy_trait.into(), &[])
}
pub fn as_callable(&self, db: &dyn HirDatabase) -> Option<Callable> {
let def = self.ty.callable_def(db);
let sig = self.ty.callable_sig(db)?;
Some(Callable { ty: self.clone(), sig, def, is_bound_method: false })
}
pub fn is_closure(&self) -> bool {
matches!(&self.ty.kind(&Interner), TyKind::Closure { .. })
}
pub fn is_fn(&self) -> bool {
matches!(&self.ty.kind(&Interner), TyKind::FnDef(..) | TyKind::Function { .. })
}
pub fn is_packed(&self, db: &dyn HirDatabase) -> bool {
let adt_id = match *self.ty.kind(&Interner) {
TyKind::Adt(hir_ty::AdtId(adt_id), ..) => adt_id,
_ => return false,
};
let adt = adt_id.into();
match adt {
Adt::Struct(s) => matches!(s.repr(db), Some(ReprKind::Packed)),
_ => false,
}
}
pub fn is_raw_ptr(&self) -> bool {
matches!(&self.ty.kind(&Interner), TyKind::Raw(..))
}
pub fn contains_unknown(&self) -> bool {
return go(&self.ty);
fn go(ty: &Ty) -> bool {
match ty.kind(&Interner) {
TyKind::Error => true,
TyKind::Adt(_, substs)
| TyKind::AssociatedType(_, substs)
| TyKind::Tuple(_, substs)
| TyKind::OpaqueType(_, substs)
| TyKind::FnDef(_, substs)
| TyKind::Closure(_, substs) => {
substs.iter(&Interner).filter_map(|a| a.ty(&Interner)).any(go)
}
TyKind::Array(_ty, len) if len.is_unknown() => true,
TyKind::Array(ty, _)
| TyKind::Slice(ty)
| TyKind::Raw(_, ty)
| TyKind::Ref(_, _, ty) => go(ty),
TyKind::Scalar(_)
| TyKind::Str
| TyKind::Never
| TyKind::Placeholder(_)
| TyKind::BoundVar(_)
| TyKind::InferenceVar(_, _)
| TyKind::Dyn(_)
| TyKind::Function(_)
| TyKind::Alias(_)
| TyKind::Foreign(_)
| TyKind::Generator(..)
| TyKind::GeneratorWitness(..) => false,
}
}
}
pub fn fields(&self, db: &dyn HirDatabase) -> Vec<(Field, Type)> {
let (variant_id, substs) = match *self.ty.kind(&Interner) {
TyKind::Adt(hir_ty::AdtId(AdtId::StructId(s)), ref substs) => (s.into(), substs),
TyKind::Adt(hir_ty::AdtId(AdtId::UnionId(u)), ref substs) => (u.into(), substs),
_ => return Vec::new(),
};
db.field_types(variant_id)
.iter()
.map(|(local_id, ty)| {
let def = Field { parent: variant_id.into(), id: local_id };
let ty = ty.clone().substitute(&Interner, substs);
(def, self.derived(ty))
})
.collect()
}
pub fn tuple_fields(&self, _db: &dyn HirDatabase) -> Vec<Type> {
if let TyKind::Tuple(_, substs) = &self.ty.kind(&Interner) {
substs
.iter(&Interner)
.map(|ty| self.derived(ty.assert_ty_ref(&Interner).clone()))
.collect()
} else {
Vec::new()
}
}
pub fn autoderef<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator<Item = Type> + 'a {
// There should be no inference vars in types passed here
// FIXME check that?
let canonical =
Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(&Interner) };
let environment = self.env.env.clone();
let ty = InEnvironment { goal: canonical, environment };
autoderef(db, Some(self.krate), ty)
.map(|canonical| canonical.value)
.map(move |ty| self.derived(ty))
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
pub fn iterate_assoc_items<T>(
self,
db: &dyn HirDatabase,
krate: Crate,
mut callback: impl FnMut(AssocItem) -> Option<T>,
) -> Option<T> {
for krate in method_resolution::def_crates(db, &self.ty, krate.id)? {
let impls = db.inherent_impls_in_crate(krate);
for impl_def in impls.for_self_ty(&self.ty) {
for &item in db.impl_data(*impl_def).items.iter() {
if let Some(result) = callback(item.into()) {
return Some(result);
}
}
}
}
None
}
pub fn type_arguments(&self) -> impl Iterator<Item = Type> + '_ {
self.ty
.strip_references()
.as_adt()
.into_iter()
.flat_map(|(_, substs)| substs.iter(&Interner))
.filter_map(|arg| arg.ty(&Interner).cloned())
.map(move |ty| self.derived(ty))
}
pub fn iterate_method_candidates<T>(
&self,
db: &dyn HirDatabase,
krate: Crate,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let _p = profile::span("iterate_method_candidates");
// There should be no inference vars in types passed here
// FIXME check that?
// FIXME replace Unknown by bound vars here
let canonical =
Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(&Interner) };
let env = self.env.clone();
let krate = krate.id;
method_resolution::iterate_method_candidates(
&canonical,
db,
env,
krate,
traits_in_scope,
None,
name,
method_resolution::LookupMode::MethodCall,
|ty, it| match it {
AssocItemId::FunctionId(f) => callback(ty, f.into()),
_ => None,
},
)
}
pub fn iterate_path_candidates<T>(
&self,
db: &dyn HirDatabase,
krate: Crate,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, AssocItem) -> Option<T>,
) -> Option<T> {
let _p = profile::span("iterate_path_candidates");
let canonical = hir_ty::replace_errors_with_variables(&self.ty);
let env = self.env.clone();
let krate = krate.id;
method_resolution::iterate_method_candidates(
&canonical,
db,
env,
krate,
traits_in_scope,
None,
name,
method_resolution::LookupMode::Path,
|ty, it| callback(ty, it.into()),
)
}
pub fn as_adt(&self) -> Option<Adt> {
let (adt, _subst) = self.ty.as_adt()?;
Some(adt.into())
}
pub fn as_builtin(&self) -> Option<BuiltinType> {
self.ty.as_builtin().map(|inner| BuiltinType { inner })
}
pub fn as_dyn_trait(&self) -> Option<Trait> {
self.ty.dyn_trait().map(Into::into)
}
/// If a type can be represented as `dyn Trait`, returns all traits accessible via this type,
/// or an empty iterator otherwise.
pub fn applicable_inherent_traits<'a>(
&'a self,
db: &'a dyn HirDatabase,
) -> impl Iterator<Item = Trait> + 'a {
let _p = profile::span("applicable_inherent_traits");
self.autoderef(db)
.filter_map(|derefed_type| derefed_type.ty.dyn_trait())
.flat_map(move |dyn_trait_id| hir_ty::all_super_traits(db.upcast(), dyn_trait_id))
.map(Trait::from)
}
pub fn as_impl_traits(&self, db: &dyn HirDatabase) -> Option<Vec<Trait>> {
self.ty.impl_trait_bounds(db).map(|it| {
it.into_iter()
.filter_map(|pred| match pred.skip_binders() {
hir_ty::WhereClause::Implemented(trait_ref) => {
Some(Trait::from(trait_ref.hir_trait_id()))
}
_ => None,
})
.collect()
})
}
pub fn as_associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option<Trait> {
self.ty.associated_type_parent_trait(db).map(Into::into)
}
fn derived(&self, ty: Ty) -> Type {
Type { krate: self.krate, env: self.env.clone(), ty }
}
pub fn walk(&self, db: &dyn HirDatabase, mut cb: impl FnMut(Type)) {
// TypeWalk::walk for a Ty at first visits parameters and only after that the Ty itself.
// We need a different order here.
fn walk_substs(
db: &dyn HirDatabase,
type_: &Type,
substs: &Substitution,
cb: &mut impl FnMut(Type),
) {
for ty in substs.iter(&Interner).filter_map(|a| a.ty(&Interner)) {
walk_type(db, &type_.derived(ty.clone()), cb);
}
}
fn walk_bounds(
db: &dyn HirDatabase,
type_: &Type,
bounds: &[QuantifiedWhereClause],
cb: &mut impl FnMut(Type),
) {
for pred in bounds {
if let WhereClause::Implemented(trait_ref) = pred.skip_binders() {
cb(type_.clone());
// skip the self type. it's likely the type we just got the bounds from
for ty in trait_ref
.substitution
.iter(&Interner)
.skip(1)
.filter_map(|a| a.ty(&Interner))
{
walk_type(db, &type_.derived(ty.clone()), cb);
}
}
}
}
fn walk_type(db: &dyn HirDatabase, type_: &Type, cb: &mut impl FnMut(Type)) {
let ty = type_.ty.strip_references();
match ty.kind(&Interner) {
TyKind::Adt(_, substs) => {
cb(type_.derived(ty.clone()));
walk_substs(db, type_, substs, cb);
}
TyKind::AssociatedType(_, substs) => {
if ty.associated_type_parent_trait(db).is_some() {
cb(type_.derived(ty.clone()));
}
walk_substs(db, type_, substs, cb);
}
TyKind::OpaqueType(_, subst) => {
if let Some(bounds) = ty.impl_trait_bounds(db) {
walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb);
}
walk_substs(db, type_, subst, cb);
}
TyKind::Alias(AliasTy::Opaque(opaque_ty)) => {
if let Some(bounds) = ty.impl_trait_bounds(db) {
walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb);
}
walk_substs(db, type_, &opaque_ty.substitution, cb);
}
TyKind::Placeholder(_) => {
if let Some(bounds) = ty.impl_trait_bounds(db) {
walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb);
}
}
TyKind::Dyn(bounds) => {
walk_bounds(
db,
&type_.derived(ty.clone()),
bounds.bounds.skip_binders().interned(),
cb,
);
}
TyKind::Ref(_, _, ty)
| TyKind::Raw(_, ty)
| TyKind::Array(ty, _)
| TyKind::Slice(ty) => {
walk_type(db, &type_.derived(ty.clone()), cb);
}
TyKind::FnDef(_, substs)
| TyKind::Tuple(_, substs)
| TyKind::Closure(.., substs) => {
walk_substs(db, type_, substs, cb);
}
TyKind::Function(hir_ty::FnPointer { substitution, .. }) => {
walk_substs(db, type_, &substitution.0, cb);
}
_ => {}
}
}
walk_type(db, self, &mut cb);
}
pub fn could_unify_with(&self, db: &dyn HirDatabase, other: &Type) -> bool {
let tys = hir_ty::replace_errors_with_variables(&(self.ty.clone(), other.ty.clone()));
could_unify(db, self.env.clone(), &tys)
}
}
// FIXME: closures
#[derive(Debug)]
pub struct Callable {
ty: Type,
sig: CallableSig,
def: Option<CallableDefId>,
pub(crate) is_bound_method: bool,
}
pub enum CallableKind {
Function(Function),
TupleStruct(Struct),
TupleEnumVariant(Variant),
Closure,
}
impl Callable {
pub fn kind(&self) -> CallableKind {
match self.def {
Some(CallableDefId::FunctionId(it)) => CallableKind::Function(it.into()),
Some(CallableDefId::StructId(it)) => CallableKind::TupleStruct(it.into()),
Some(CallableDefId::EnumVariantId(it)) => CallableKind::TupleEnumVariant(it.into()),
None => CallableKind::Closure,
}
}
pub fn receiver_param(&self, db: &dyn HirDatabase) -> Option<ast::SelfParam> {
let func = match self.def {
Some(CallableDefId::FunctionId(it)) if self.is_bound_method => it,
_ => return None,
};
let src = func.lookup(db.upcast()).source(db.upcast());
let param_list = src.value.param_list()?;
param_list.self_param()
}
pub fn n_params(&self) -> usize {
self.sig.params().len() - if self.is_bound_method { 1 } else { 0 }
}
pub fn params(
&self,
db: &dyn HirDatabase,
) -> Vec<(Option<Either<ast::SelfParam, ast::Pat>>, Type)> {
let types = self
.sig
.params()
.iter()
.skip(if self.is_bound_method { 1 } else { 0 })
.map(|ty| self.ty.derived(ty.clone()));
let patterns = match self.def {
Some(CallableDefId::FunctionId(func)) => {
let src = func.lookup(db.upcast()).source(db.upcast());
src.value.param_list().map(|param_list| {
param_list
.self_param()
.map(|it| Some(Either::Left(it)))
.filter(|_| !self.is_bound_method)
.into_iter()
.chain(param_list.params().map(|it| it.pat().map(Either::Right)))
})
}
_ => None,
};
patterns.into_iter().flatten().chain(iter::repeat(None)).zip(types).collect()
}
pub fn return_type(&self) -> Type {
self.ty.derived(self.sig.ret().clone())
}
}
/// For IDE only
#[derive(Debug, PartialEq, Eq, Hash)]
pub enum ScopeDef {
ModuleDef(ModuleDef),
MacroDef(MacroDef),
GenericParam(GenericParam),
ImplSelfType(Impl),
AdtSelfType(Adt),
Local(Local),
Label(Label),
Unknown,
}
impl ScopeDef {
pub fn all_items(def: PerNs) -> ArrayVec<Self, 3> {
let mut items = ArrayVec::new();
match (def.take_types(), def.take_values()) {
(Some(m1), None) => items.push(ScopeDef::ModuleDef(m1.into())),
(None, Some(m2)) => items.push(ScopeDef::ModuleDef(m2.into())),
(Some(m1), Some(m2)) => {
// Some items, like unit structs and enum variants, are
// returned as both a type and a value. Here we want
// to de-duplicate them.
if m1 != m2 {
items.push(ScopeDef::ModuleDef(m1.into()));
items.push(ScopeDef::ModuleDef(m2.into()));
} else {
items.push(ScopeDef::ModuleDef(m1.into()));
}
}
(None, None) => {}
};
if let Some(macro_def_id) = def.take_macros() {
items.push(ScopeDef::MacroDef(macro_def_id.into()));
}
if items.is_empty() {
items.push(ScopeDef::Unknown);
}
items
}
}
impl From<ItemInNs> for ScopeDef {
fn from(item: ItemInNs) -> Self {
match item {
ItemInNs::Types(id) => ScopeDef::ModuleDef(id.into()),
ItemInNs::Values(id) => ScopeDef::ModuleDef(id.into()),
ItemInNs::Macros(id) => ScopeDef::MacroDef(id.into()),
}
}
}
pub trait HasVisibility {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility;
fn is_visible_from(&self, db: &dyn HirDatabase, module: Module) -> bool {
let vis = self.visibility(db);
vis.is_visible_from(db.upcast(), module.id)
}
}