rust-analyzer/crates/ra_hir_ty/src/lower.rs
2020-07-19 14:26:24 -04:00

1239 lines
50 KiB
Rust

//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `Ty::from_hir`.
//! - Building the type for an item: This happens through the `type_for_def` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
use std::{iter, sync::Arc};
use hir_def::{
adt::StructKind,
builtin_type::BuiltinType,
generics::{TypeParamProvenance, WherePredicate, WherePredicateTarget},
path::{GenericArg, Path, PathSegment, PathSegments},
resolver::{HasResolver, Resolver, TypeNs},
type_ref::{TypeBound, TypeRef},
AdtId, AssocContainerId, AssocItemId, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId,
HasModule, ImplId, LocalFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, TypeParamId,
UnionId, VariantId,
};
use hir_expand::name::Name;
use ra_arena::map::ArenaMap;
use ra_db::CrateId;
use smallvec::SmallVec;
use stdx::impl_from;
use test_utils::mark;
use crate::{
db::HirDatabase,
primitive::{FloatTy, IntTy},
utils::{
all_super_trait_refs, associated_type_by_name_including_super_traits, generics,
make_mut_slice, variant_data,
},
Binders, BoundVar, DebruijnIndex, FnSig, GenericPredicate, OpaqueTy, OpaqueTyId, PolyFnSig,
ProjectionPredicate, ProjectionTy, ReturnTypeImplTrait, ReturnTypeImplTraits, Substs,
TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk,
};
#[derive(Debug)]
pub struct TyLoweringContext<'a> {
pub db: &'a dyn HirDatabase,
pub resolver: &'a Resolver,
in_binders: DebruijnIndex,
/// Note: Conceptually, it's thinkable that we could be in a location where
/// some type params should be represented as placeholders, and others
/// should be converted to variables. I think in practice, this isn't
/// possible currently, so this should be fine for now.
pub type_param_mode: TypeParamLoweringMode,
pub impl_trait_mode: ImplTraitLoweringMode,
impl_trait_counter: std::cell::Cell<u16>,
/// When turning `impl Trait` into opaque types, we have to collect the
/// bounds at the same time to get the IDs correct (without becoming too
/// complicated). I don't like using interior mutability (as for the
/// counter), but I've tried and failed to make the lifetimes work for
/// passing around a `&mut TyLoweringContext`. The core problem is that
/// we're grouping the mutable data (the counter and this field) together
/// with the immutable context (the references to the DB and resolver).
/// Splitting this up would be a possible fix.
opaque_type_data: std::cell::RefCell<Vec<ReturnTypeImplTrait>>,
}
impl<'a> TyLoweringContext<'a> {
pub fn new(db: &'a dyn HirDatabase, resolver: &'a Resolver) -> Self {
let impl_trait_counter = std::cell::Cell::new(0);
let impl_trait_mode = ImplTraitLoweringMode::Disallowed;
let type_param_mode = TypeParamLoweringMode::Placeholder;
let in_binders = DebruijnIndex::INNERMOST;
let opaque_type_data = std::cell::RefCell::new(Vec::new());
Self {
db,
resolver,
in_binders,
impl_trait_mode,
impl_trait_counter,
type_param_mode,
opaque_type_data,
}
}
pub fn with_debruijn<T>(
&self,
debruijn: DebruijnIndex,
f: impl FnOnce(&TyLoweringContext) -> T,
) -> T {
let opaque_ty_data_vec = self.opaque_type_data.replace(Vec::new());
let new_ctx = Self {
in_binders: debruijn,
impl_trait_counter: std::cell::Cell::new(self.impl_trait_counter.get()),
opaque_type_data: std::cell::RefCell::new(opaque_ty_data_vec),
..*self
};
let result = f(&new_ctx);
self.impl_trait_counter.set(new_ctx.impl_trait_counter.get());
self.opaque_type_data.replace(new_ctx.opaque_type_data.into_inner());
result
}
pub fn with_shifted_in<T>(
&self,
debruijn: DebruijnIndex,
f: impl FnOnce(&TyLoweringContext) -> T,
) -> T {
self.with_debruijn(self.in_binders.shifted_in_from(debruijn), f)
}
pub fn with_impl_trait_mode(self, impl_trait_mode: ImplTraitLoweringMode) -> Self {
Self { impl_trait_mode, ..self }
}
pub fn with_type_param_mode(self, type_param_mode: TypeParamLoweringMode) -> Self {
Self { type_param_mode, ..self }
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ImplTraitLoweringMode {
/// `impl Trait` gets lowered into an opaque type that doesn't unify with
/// anything except itself. This is used in places where values flow 'out',
/// i.e. for arguments of the function we're currently checking, and return
/// types of functions we're calling.
Opaque,
/// `impl Trait` gets lowered into a type variable. Used for argument
/// position impl Trait when inside the respective function, since it allows
/// us to support that without Chalk.
Param,
/// `impl Trait` gets lowered into a variable that can unify with some
/// type. This is used in places where values flow 'in', i.e. for arguments
/// of functions we're calling, and the return type of the function we're
/// currently checking.
Variable,
/// `impl Trait` is disallowed and will be an error.
Disallowed,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TypeParamLoweringMode {
Placeholder,
Variable,
}
impl Ty {
pub fn from_hir(ctx: &TyLoweringContext<'_>, type_ref: &TypeRef) -> Self {
Ty::from_hir_ext(ctx, type_ref).0
}
pub fn from_hir_ext(ctx: &TyLoweringContext<'_>, type_ref: &TypeRef) -> (Self, Option<TypeNs>) {
let mut res = None;
let ty = match type_ref {
TypeRef::Never => Ty::simple(TypeCtor::Never),
TypeRef::Tuple(inner) => {
let inner_tys: Arc<[Ty]> = inner.iter().map(|tr| Ty::from_hir(ctx, tr)).collect();
Ty::apply(
TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
Substs(inner_tys),
)
}
TypeRef::Path(path) => {
let (ty, res_) = Ty::from_hir_path(ctx, path);
res = res_;
ty
}
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::Array, inner_ty)
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::Slice, inner_ty)
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params, is_varargs) => {
let sig = Substs(params.iter().map(|tr| Ty::from_hir(ctx, tr)).collect());
Ty::apply(
TypeCtor::FnPtr { num_args: sig.len() as u16 - 1, is_varargs: *is_varargs },
sig,
)
}
TypeRef::DynTrait(bounds) => {
let self_ty = Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, 0));
let predicates = ctx.with_shifted_in(DebruijnIndex::ONE, |ctx| {
bounds
.iter()
.flat_map(|b| GenericPredicate::from_type_bound(ctx, b, self_ty.clone()))
.collect()
});
Ty::Dyn(predicates)
}
TypeRef::ImplTrait(bounds) => {
match ctx.impl_trait_mode {
ImplTraitLoweringMode::Opaque => {
let idx = ctx.impl_trait_counter.get();
ctx.impl_trait_counter.set(idx + 1);
assert!(idx as usize == ctx.opaque_type_data.borrow().len());
// this dance is to make sure the data is in the right
// place even if we encounter more opaque types while
// lowering the bounds
ctx.opaque_type_data
.borrow_mut()
.push(ReturnTypeImplTrait { bounds: Binders::new(1, Vec::new()) });
// We don't want to lower the bounds inside the binders
// we're currently in, because they don't end up inside
// those binders. E.g. when we have `impl Trait<impl
// OtherTrait<T>>`, the `impl OtherTrait<T>` can't refer
// to the self parameter from `impl Trait`, and the
// bounds aren't actually stored nested within each
// other, but separately. So if the `T` refers to a type
// parameter of the outer function, it's just one binder
// away instead of two.
let actual_opaque_type_data = ctx
.with_debruijn(DebruijnIndex::INNERMOST, |ctx| {
ReturnTypeImplTrait::from_hir(ctx, &bounds)
});
ctx.opaque_type_data.borrow_mut()[idx as usize] = actual_opaque_type_data;
let func = match ctx.resolver.generic_def() {
Some(GenericDefId::FunctionId(f)) => f,
_ => panic!("opaque impl trait lowering in non-function"),
};
let impl_trait_id = OpaqueTyId::ReturnTypeImplTrait(func, idx);
let generics = generics(ctx.db.upcast(), func.into());
let parameters = Substs::bound_vars(&generics, ctx.in_binders);
Ty::Opaque(OpaqueTy { opaque_ty_id: impl_trait_id, parameters })
}
ImplTraitLoweringMode::Param => {
let idx = ctx.impl_trait_counter.get();
// FIXME we're probably doing something wrong here
ctx.impl_trait_counter.set(idx + count_impl_traits(type_ref) as u16);
if let Some(def) = ctx.resolver.generic_def() {
let generics = generics(ctx.db.upcast(), def);
let param = generics
.iter()
.filter(|(_, data)| {
data.provenance == TypeParamProvenance::ArgumentImplTrait
})
.nth(idx as usize)
.map_or(Ty::Unknown, |(id, _)| Ty::Placeholder(id));
param
} else {
Ty::Unknown
}
}
ImplTraitLoweringMode::Variable => {
let idx = ctx.impl_trait_counter.get();
// FIXME we're probably doing something wrong here
ctx.impl_trait_counter.set(idx + count_impl_traits(type_ref) as u16);
let (parent_params, self_params, list_params, _impl_trait_params) =
if let Some(def) = ctx.resolver.generic_def() {
let generics = generics(ctx.db.upcast(), def);
generics.provenance_split()
} else {
(0, 0, 0, 0)
};
Ty::Bound(BoundVar::new(
ctx.in_binders,
idx as usize + parent_params + self_params + list_params,
))
}
ImplTraitLoweringMode::Disallowed => {
// FIXME: report error
Ty::Unknown
}
}
}
TypeRef::Error => Ty::Unknown,
};
(ty, res)
}
/// This is only for `generic_predicates_for_param`, where we can't just
/// lower the self types of the predicates since that could lead to cycles.
/// So we just check here if the `type_ref` resolves to a generic param, and which.
fn from_hir_only_param(ctx: &TyLoweringContext<'_>, type_ref: &TypeRef) -> Option<TypeParamId> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
if path.type_anchor().is_some() {
return None;
}
if path.segments().len() > 1 {
return None;
}
let resolution =
match ctx.resolver.resolve_path_in_type_ns(ctx.db.upcast(), path.mod_path()) {
Some((it, None)) => it,
_ => return None,
};
if let TypeNs::GenericParam(param_id) = resolution {
Some(param_id)
} else {
None
}
}
pub(crate) fn from_type_relative_path(
ctx: &TyLoweringContext<'_>,
ty: Ty,
// We need the original resolution to lower `Self::AssocTy` correctly
res: Option<TypeNs>,
remaining_segments: PathSegments<'_>,
) -> (Ty, Option<TypeNs>) {
if remaining_segments.len() == 1 {
// resolve unselected assoc types
let segment = remaining_segments.first().unwrap();
(Ty::select_associated_type(ctx, res, segment), None)
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
(Ty::Unknown, None)
} else {
(ty, res)
}
}
pub(crate) fn from_partly_resolved_hir_path(
ctx: &TyLoweringContext<'_>,
resolution: TypeNs,
resolved_segment: PathSegment<'_>,
remaining_segments: PathSegments<'_>,
infer_args: bool,
) -> (Ty, Option<TypeNs>) {
let ty = match resolution {
TypeNs::TraitId(trait_) => {
// if this is a bare dyn Trait, we'll directly put the required ^0 for the self type in there
let self_ty = if remaining_segments.len() == 0 {
Some(Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, 0)))
} else {
None
};
let trait_ref =
TraitRef::from_resolved_path(ctx, trait_, resolved_segment, self_ty);
let ty = if remaining_segments.len() == 1 {
let segment = remaining_segments.first().unwrap();
let found = associated_type_by_name_including_super_traits(
ctx.db,
trait_ref,
&segment.name,
);
match found {
Some((super_trait_ref, associated_ty)) => {
// FIXME handle type parameters on the segment
Ty::Projection(ProjectionTy {
associated_ty,
parameters: super_trait_ref.substs,
})
}
None => {
// FIXME: report error (associated type not found)
Ty::Unknown
}
}
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
};
return (ty, None);
}
TypeNs::GenericParam(param_id) => {
let generics = generics(
ctx.db.upcast(),
ctx.resolver.generic_def().expect("generics in scope"),
);
match ctx.type_param_mode {
TypeParamLoweringMode::Placeholder => Ty::Placeholder(param_id),
TypeParamLoweringMode::Variable => {
let idx = generics.param_idx(param_id).expect("matching generics");
Ty::Bound(BoundVar::new(ctx.in_binders, idx))
}
}
}
TypeNs::SelfType(impl_id) => {
let generics = generics(ctx.db.upcast(), impl_id.into());
let substs = match ctx.type_param_mode {
TypeParamLoweringMode::Placeholder => {
Substs::type_params_for_generics(&generics)
}
TypeParamLoweringMode::Variable => {
Substs::bound_vars(&generics, ctx.in_binders)
}
};
ctx.db.impl_self_ty(impl_id).subst(&substs)
}
TypeNs::AdtSelfType(adt) => {
let generics = generics(ctx.db.upcast(), adt.into());
let substs = match ctx.type_param_mode {
TypeParamLoweringMode::Placeholder => {
Substs::type_params_for_generics(&generics)
}
TypeParamLoweringMode::Variable => {
Substs::bound_vars(&generics, ctx.in_binders)
}
};
ctx.db.ty(adt.into()).subst(&substs)
}
TypeNs::AdtId(it) => {
Ty::from_hir_path_inner(ctx, resolved_segment, it.into(), infer_args)
}
TypeNs::BuiltinType(it) => {
Ty::from_hir_path_inner(ctx, resolved_segment, it.into(), infer_args)
}
TypeNs::TypeAliasId(it) => {
Ty::from_hir_path_inner(ctx, resolved_segment, it.into(), infer_args)
}
// FIXME: report error
TypeNs::EnumVariantId(_) => return (Ty::Unknown, None),
};
Ty::from_type_relative_path(ctx, ty, Some(resolution), remaining_segments)
}
pub(crate) fn from_hir_path(ctx: &TyLoweringContext<'_>, path: &Path) -> (Ty, Option<TypeNs>) {
// Resolve the path (in type namespace)
if let Some(type_ref) = path.type_anchor() {
let (ty, res) = Ty::from_hir_ext(ctx, &type_ref);
return Ty::from_type_relative_path(ctx, ty, res, path.segments());
}
let (resolution, remaining_index) =
match ctx.resolver.resolve_path_in_type_ns(ctx.db.upcast(), path.mod_path()) {
Some(it) => it,
None => return (Ty::Unknown, None),
};
let (resolved_segment, remaining_segments) = match remaining_index {
None => (
path.segments().last().expect("resolved path has at least one element"),
PathSegments::EMPTY,
),
Some(i) => (path.segments().get(i - 1).unwrap(), path.segments().skip(i)),
};
Ty::from_partly_resolved_hir_path(
ctx,
resolution,
resolved_segment,
remaining_segments,
false,
)
}
fn select_associated_type(
ctx: &TyLoweringContext<'_>,
res: Option<TypeNs>,
segment: PathSegment<'_>,
) -> Ty {
if let Some(res) = res {
let ty =
associated_type_shorthand_candidates(ctx.db, res, move |name, t, associated_ty| {
if name == segment.name {
let substs = match ctx.type_param_mode {
TypeParamLoweringMode::Placeholder => {
// if we're lowering to placeholders, we have to put
// them in now
let s = Substs::type_params(
ctx.db,
ctx.resolver.generic_def().expect(
"there should be generics if there's a generic param",
),
);
t.substs.clone().subst_bound_vars(&s)
}
TypeParamLoweringMode::Variable => t.substs.clone(),
};
// We need to shift in the bound vars, since
// associated_type_shorthand_candidates does not do that
let substs = substs.shift_bound_vars(ctx.in_binders);
// FIXME handle type parameters on the segment
return Some(Ty::Projection(ProjectionTy {
associated_ty,
parameters: substs,
}));
}
None
});
ty.unwrap_or(Ty::Unknown)
} else {
Ty::Unknown
}
}
fn from_hir_path_inner(
ctx: &TyLoweringContext<'_>,
segment: PathSegment<'_>,
typable: TyDefId,
infer_args: bool,
) -> Ty {
let generic_def = match typable {
TyDefId::BuiltinType(_) => None,
TyDefId::AdtId(it) => Some(it.into()),
TyDefId::TypeAliasId(it) => Some(it.into()),
};
let substs = substs_from_path_segment(ctx, segment, generic_def, infer_args);
ctx.db.ty(typable).subst(&substs)
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
pub(super) fn substs_from_path(
ctx: &TyLoweringContext<'_>,
path: &Path,
// Note that we don't call `db.value_type(resolved)` here,
// `ValueTyDefId` is just a convenient way to pass generics and
// special-case enum variants
resolved: ValueTyDefId,
infer_args: bool,
) -> Substs {
let last = path.segments().last().expect("path should have at least one segment");
let (segment, generic_def) = match resolved {
ValueTyDefId::FunctionId(it) => (last, Some(it.into())),
ValueTyDefId::StructId(it) => (last, Some(it.into())),
ValueTyDefId::ConstId(it) => (last, Some(it.into())),
ValueTyDefId::StaticId(_) => (last, None),
ValueTyDefId::EnumVariantId(var) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments().len();
let penultimate = if len >= 2 { path.segments().get(len - 2) } else { None };
let segment = match penultimate {
Some(segment) if segment.args_and_bindings.is_some() => segment,
_ => last,
};
(segment, Some(var.parent.into()))
}
};
substs_from_path_segment(ctx, segment, generic_def, infer_args)
}
}
fn substs_from_path_segment(
ctx: &TyLoweringContext<'_>,
segment: PathSegment<'_>,
def_generic: Option<GenericDefId>,
infer_args: bool,
) -> Substs {
let mut substs = Vec::new();
let def_generics = def_generic.map(|def| generics(ctx.db.upcast(), def));
let (parent_params, self_params, type_params, impl_trait_params) =
def_generics.map_or((0, 0, 0, 0), |g| g.provenance_split());
let total_len = parent_params + self_params + type_params + impl_trait_params;
substs.extend(iter::repeat(Ty::Unknown).take(parent_params));
let mut had_explicit_args = false;
if let Some(generic_args) = &segment.args_and_bindings {
if !generic_args.has_self_type {
substs.extend(iter::repeat(Ty::Unknown).take(self_params));
}
let expected_num =
if generic_args.has_self_type { self_params + type_params } else { type_params };
let skip = if generic_args.has_self_type && self_params == 0 { 1 } else { 0 };
// if args are provided, it should be all of them, but we can't rely on that
for arg in generic_args.args.iter().skip(skip).take(expected_num) {
match arg {
GenericArg::Type(type_ref) => {
had_explicit_args = true;
let ty = Ty::from_hir(ctx, type_ref);
substs.push(ty);
}
}
}
}
// handle defaults. In expression or pattern path segments without
// explicitly specified type arguments, missing type arguments are inferred
// (i.e. defaults aren't used).
if !infer_args || had_explicit_args {
if let Some(def_generic) = def_generic {
let defaults = ctx.db.generic_defaults(def_generic);
assert_eq!(total_len, defaults.len());
for default_ty in defaults.iter().skip(substs.len()) {
// each default can depend on the previous parameters
let substs_so_far = Substs(substs.clone().into());
substs.push(default_ty.clone().subst(&substs_so_far));
}
}
}
// add placeholders for args that were not provided
// FIXME: emit diagnostics in contexts where this is not allowed
for _ in substs.len()..total_len {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), total_len);
Substs(substs.into())
}
impl TraitRef {
fn from_path(
ctx: &TyLoweringContext<'_>,
path: &Path,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let resolved =
match ctx.resolver.resolve_path_in_type_ns_fully(ctx.db.upcast(), path.mod_path())? {
TypeNs::TraitId(tr) => tr,
_ => return None,
};
let segment = path.segments().last().expect("path should have at least one segment");
Some(TraitRef::from_resolved_path(ctx, resolved, segment, explicit_self_ty))
}
pub(crate) fn from_resolved_path(
ctx: &TyLoweringContext<'_>,
resolved: TraitId,
segment: PathSegment<'_>,
explicit_self_ty: Option<Ty>,
) -> Self {
let mut substs = TraitRef::substs_from_path(ctx, segment, resolved);
if let Some(self_ty) = explicit_self_ty {
make_mut_slice(&mut substs.0)[0] = self_ty;
}
TraitRef { trait_: resolved, substs }
}
fn from_hir(
ctx: &TyLoweringContext<'_>,
type_ref: &TypeRef,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
TraitRef::from_path(ctx, path, explicit_self_ty)
}
fn substs_from_path(
ctx: &TyLoweringContext<'_>,
segment: PathSegment<'_>,
resolved: TraitId,
) -> Substs {
substs_from_path_segment(ctx, segment, Some(resolved.into()), false)
}
pub(crate) fn from_type_bound(
ctx: &TyLoweringContext<'_>,
bound: &TypeBound,
self_ty: Ty,
) -> Option<TraitRef> {
match bound {
TypeBound::Path(path) => TraitRef::from_path(ctx, path, Some(self_ty)),
TypeBound::Error => None,
}
}
}
impl GenericPredicate {
pub(crate) fn from_where_predicate<'a>(
ctx: &'a TyLoweringContext<'a>,
where_predicate: &'a WherePredicate,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let self_ty = match &where_predicate.target {
WherePredicateTarget::TypeRef(type_ref) => Ty::from_hir(ctx, type_ref),
WherePredicateTarget::TypeParam(param_id) => {
let generic_def = ctx.resolver.generic_def().expect("generics in scope");
let generics = generics(ctx.db.upcast(), generic_def);
let param_id = hir_def::TypeParamId { parent: generic_def, local_id: *param_id };
match ctx.type_param_mode {
TypeParamLoweringMode::Placeholder => Ty::Placeholder(param_id),
TypeParamLoweringMode::Variable => {
let idx = generics.param_idx(param_id).expect("matching generics");
Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, idx))
}
}
}
};
GenericPredicate::from_type_bound(ctx, &where_predicate.bound, self_ty)
}
pub(crate) fn from_type_bound<'a>(
ctx: &'a TyLoweringContext<'a>,
bound: &'a TypeBound,
self_ty: Ty,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let trait_ref = TraitRef::from_type_bound(ctx, bound, self_ty);
iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
.chain(
trait_ref
.into_iter()
.flat_map(move |tr| assoc_type_bindings_from_type_bound(ctx, bound, tr)),
)
}
}
fn assoc_type_bindings_from_type_bound<'a>(
ctx: &'a TyLoweringContext<'a>,
bound: &'a TypeBound,
trait_ref: TraitRef,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let last_segment = match bound {
TypeBound::Path(path) => path.segments().last(),
TypeBound::Error => None,
};
last_segment
.into_iter()
.flat_map(|segment| segment.args_and_bindings.into_iter())
.flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
.flat_map(move |binding| {
let found = associated_type_by_name_including_super_traits(
ctx.db,
trait_ref.clone(),
&binding.name,
);
let (super_trait_ref, associated_ty) = match found {
None => return SmallVec::<[GenericPredicate; 1]>::new(),
Some(t) => t,
};
let projection_ty = ProjectionTy { associated_ty, parameters: super_trait_ref.substs };
let mut preds = SmallVec::with_capacity(
binding.type_ref.as_ref().map_or(0, |_| 1) + binding.bounds.len(),
);
if let Some(type_ref) = &binding.type_ref {
let ty = Ty::from_hir(ctx, type_ref);
let projection_predicate =
ProjectionPredicate { projection_ty: projection_ty.clone(), ty };
preds.push(GenericPredicate::Projection(projection_predicate));
}
for bound in &binding.bounds {
preds.extend(GenericPredicate::from_type_bound(
ctx,
bound,
Ty::Projection(projection_ty.clone()),
));
}
preds
})
}
impl ReturnTypeImplTrait {
fn from_hir(ctx: &TyLoweringContext, bounds: &[TypeBound]) -> Self {
mark::hit!(lower_rpit);
let self_ty = Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, 0));
let predicates = ctx.with_shifted_in(DebruijnIndex::ONE, |ctx| {
bounds
.iter()
.flat_map(|b| GenericPredicate::from_type_bound(ctx, b, self_ty.clone()))
.collect()
});
ReturnTypeImplTrait { bounds: Binders::new(1, predicates) }
}
}
fn count_impl_traits(type_ref: &TypeRef) -> usize {
let mut count = 0;
type_ref.walk(&mut |type_ref| {
if matches!(type_ref, TypeRef::ImplTrait(_)) {
count += 1;
}
});
count
}
/// Build the signature of a callable item (function, struct or enum variant).
pub fn callable_item_sig(db: &dyn HirDatabase, def: CallableDefId) -> PolyFnSig {
match def {
CallableDefId::FunctionId(f) => fn_sig_for_fn(db, f),
CallableDefId::StructId(s) => fn_sig_for_struct_constructor(db, s),
CallableDefId::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
}
}
pub fn associated_type_shorthand_candidates<R>(
db: &dyn HirDatabase,
res: TypeNs,
mut cb: impl FnMut(&Name, &TraitRef, TypeAliasId) -> Option<R>,
) -> Option<R> {
let traits_from_env: Vec<_> = match res {
TypeNs::SelfType(impl_id) => match db.impl_trait(impl_id) {
None => vec![],
Some(trait_ref) => vec![trait_ref.value],
},
TypeNs::GenericParam(param_id) => {
let predicates = db.generic_predicates_for_param(param_id);
let mut traits_: Vec<_> = predicates
.iter()
.filter_map(|pred| match &pred.value {
GenericPredicate::Implemented(tr) => Some(tr.clone()),
_ => None,
})
.collect();
// Handle `Self::Type` referring to own associated type in trait definitions
if let GenericDefId::TraitId(trait_id) = param_id.parent {
let generics = generics(db.upcast(), trait_id.into());
if generics.params.types[param_id.local_id].provenance
== TypeParamProvenance::TraitSelf
{
let trait_ref = TraitRef {
trait_: trait_id,
substs: Substs::bound_vars(&generics, DebruijnIndex::INNERMOST),
};
traits_.push(trait_ref);
}
}
traits_
}
_ => vec![],
};
for t in traits_from_env.into_iter().flat_map(move |t| all_super_trait_refs(db, t)) {
let data = db.trait_data(t.trait_);
for (name, assoc_id) in &data.items {
match assoc_id {
AssocItemId::TypeAliasId(alias) => {
if let Some(result) = cb(name, &t, *alias) {
return Some(result);
}
}
AssocItemId::FunctionId(_) | AssocItemId::ConstId(_) => {}
}
}
}
None
}
/// Build the type of all specific fields of a struct or enum variant.
pub(crate) fn field_types_query(
db: &dyn HirDatabase,
variant_id: VariantId,
) -> Arc<ArenaMap<LocalFieldId, Binders<Ty>>> {
let var_data = variant_data(db.upcast(), variant_id);
let (resolver, def): (_, GenericDefId) = match variant_id {
VariantId::StructId(it) => (it.resolver(db.upcast()), it.into()),
VariantId::UnionId(it) => (it.resolver(db.upcast()), it.into()),
VariantId::EnumVariantId(it) => (it.parent.resolver(db.upcast()), it.parent.into()),
};
let generics = generics(db.upcast(), def);
let mut res = ArenaMap::default();
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
for (field_id, field_data) in var_data.fields().iter() {
res.insert(field_id, Binders::new(generics.len(), Ty::from_hir(&ctx, &field_data.type_ref)))
}
Arc::new(res)
}
/// This query exists only to be used when resolving short-hand associated types
/// like `T::Item`.
///
/// See the analogous query in rustc and its comment:
/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
pub(crate) fn generic_predicates_for_param_query(
db: &dyn HirDatabase,
param_id: TypeParamId,
) -> Arc<[Binders<GenericPredicate>]> {
let resolver = param_id.parent.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let generics = generics(db.upcast(), param_id.parent);
resolver
.where_predicates_in_scope()
// we have to filter out all other predicates *first*, before attempting to lower them
.filter(|pred| match &pred.target {
WherePredicateTarget::TypeRef(type_ref) => {
Ty::from_hir_only_param(&ctx, type_ref) == Some(param_id)
}
WherePredicateTarget::TypeParam(local_id) => *local_id == param_id.local_id,
})
.flat_map(|pred| {
GenericPredicate::from_where_predicate(&ctx, pred)
.map(|p| Binders::new(generics.len(), p))
})
.collect()
}
pub(crate) fn generic_predicates_for_param_recover(
_db: &dyn HirDatabase,
_cycle: &[String],
_param_id: &TypeParamId,
) -> Arc<[Binders<GenericPredicate>]> {
Arc::new([])
}
impl TraitEnvironment {
pub fn lower(db: &dyn HirDatabase, resolver: &Resolver) -> Arc<TraitEnvironment> {
let ctx = TyLoweringContext::new(db, &resolver)
.with_type_param_mode(TypeParamLoweringMode::Placeholder);
let mut predicates = resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(&ctx, pred))
.collect::<Vec<_>>();
if let Some(def) = resolver.generic_def() {
let container: Option<AssocContainerId> = match def {
// FIXME: is there a function for this?
GenericDefId::FunctionId(f) => Some(f.lookup(db.upcast()).container),
GenericDefId::AdtId(_) => None,
GenericDefId::TraitId(_) => None,
GenericDefId::TypeAliasId(t) => Some(t.lookup(db.upcast()).container),
GenericDefId::ImplId(_) => None,
GenericDefId::EnumVariantId(_) => None,
GenericDefId::ConstId(c) => Some(c.lookup(db.upcast()).container),
};
if let Some(AssocContainerId::TraitId(trait_id)) = container {
// add `Self: Trait<T1, T2, ...>` to the environment in trait
// function default implementations (and hypothetical code
// inside consts or type aliases)
test_utils::mark::hit!(trait_self_implements_self);
let substs = Substs::type_params(db, trait_id);
let trait_ref = TraitRef { trait_: trait_id, substs };
let pred = GenericPredicate::Implemented(trait_ref);
predicates.push(pred);
}
}
Arc::new(TraitEnvironment { predicates })
}
}
/// Resolve the where clause(s) of an item with generics.
pub(crate) fn generic_predicates_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> Arc<[Binders<GenericPredicate>]> {
let resolver = def.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let generics = generics(db.upcast(), def);
resolver
.where_predicates_in_scope()
.flat_map(|pred| {
GenericPredicate::from_where_predicate(&ctx, pred)
.map(|p| Binders::new(generics.len(), p))
})
.collect()
}
/// Resolve the default type params from generics
pub(crate) fn generic_defaults_query(
db: &dyn HirDatabase,
def: GenericDefId,
) -> Arc<[Binders<Ty>]> {
let resolver = def.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let generic_params = generics(db.upcast(), def);
let defaults = generic_params
.iter()
.enumerate()
.map(|(idx, (_, p))| {
let mut ty = p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(&ctx, t));
// Each default can only refer to previous parameters.
ty.walk_mut_binders(
&mut |ty, binders| match ty {
Ty::Bound(BoundVar { debruijn, index }) if *debruijn == binders => {
if *index >= idx {
// type variable default referring to parameter coming
// after it. This is forbidden (FIXME: report
// diagnostic)
*ty = Ty::Unknown;
}
}
_ => {}
},
DebruijnIndex::INNERMOST,
);
Binders::new(idx, ty)
})
.collect();
defaults
}
fn fn_sig_for_fn(db: &dyn HirDatabase, def: FunctionId) -> PolyFnSig {
let data = db.function_data(def);
let resolver = def.resolver(db.upcast());
let ctx_params = TyLoweringContext::new(db, &resolver)
.with_impl_trait_mode(ImplTraitLoweringMode::Variable)
.with_type_param_mode(TypeParamLoweringMode::Variable);
let params = data.params.iter().map(|tr| Ty::from_hir(&ctx_params, tr)).collect::<Vec<_>>();
let ctx_ret = TyLoweringContext::new(db, &resolver)
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque)
.with_type_param_mode(TypeParamLoweringMode::Variable);
let ret = Ty::from_hir(&ctx_ret, &data.ret_type);
let generics = generics(db.upcast(), def.into());
let num_binders = generics.len();
Binders::new(num_binders, FnSig::from_params_and_return(params, ret, data.is_varargs))
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &dyn HirDatabase, def: FunctionId) -> Binders<Ty> {
let generics = generics(db.upcast(), def.into());
let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST);
Binders::new(substs.len(), Ty::apply(TypeCtor::FnDef(def.into()), substs))
}
/// Build the declared type of a const.
fn type_for_const(db: &dyn HirDatabase, def: ConstId) -> Binders<Ty> {
let data = db.const_data(def);
let generics = generics(db.upcast(), def.into());
let resolver = def.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
Binders::new(generics.len(), Ty::from_hir(&ctx, &data.type_ref))
}
/// Build the declared type of a static.
fn type_for_static(db: &dyn HirDatabase, def: StaticId) -> Binders<Ty> {
let data = db.static_data(def);
let resolver = def.resolver(db.upcast());
let ctx = TyLoweringContext::new(db, &resolver);
Binders::new(0, Ty::from_hir(&ctx, &data.type_ref))
}
/// Build the declared type of a static.
fn type_for_builtin(def: BuiltinType) -> Ty {
Ty::simple(match def {
BuiltinType::Char => TypeCtor::Char,
BuiltinType::Bool => TypeCtor::Bool,
BuiltinType::Str => TypeCtor::Str,
BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
})
}
fn fn_sig_for_struct_constructor(db: &dyn HirDatabase, def: StructId) -> PolyFnSig {
let struct_data = db.struct_data(def);
let fields = struct_data.variant_data.fields();
let resolver = def.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let params =
fields.iter().map(|(_, field)| Ty::from_hir(&ctx, &field.type_ref)).collect::<Vec<_>>();
let ret = type_for_adt(db, def.into());
Binders::new(ret.num_binders, FnSig::from_params_and_return(params, ret.value, false))
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &dyn HirDatabase, def: StructId) -> Binders<Ty> {
let struct_data = db.struct_data(def);
if let StructKind::Unit = struct_data.variant_data.kind() {
return type_for_adt(db, def.into());
}
let generics = generics(db.upcast(), def.into());
let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST);
Binders::new(substs.len(), Ty::apply(TypeCtor::FnDef(def.into()), substs))
}
fn fn_sig_for_enum_variant_constructor(db: &dyn HirDatabase, def: EnumVariantId) -> PolyFnSig {
let enum_data = db.enum_data(def.parent);
let var_data = &enum_data.variants[def.local_id];
let fields = var_data.variant_data.fields();
let resolver = def.parent.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let params =
fields.iter().map(|(_, field)| Ty::from_hir(&ctx, &field.type_ref)).collect::<Vec<_>>();
let ret = type_for_adt(db, def.parent.into());
Binders::new(ret.num_binders, FnSig::from_params_and_return(params, ret.value, false))
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(db: &dyn HirDatabase, def: EnumVariantId) -> Binders<Ty> {
let enum_data = db.enum_data(def.parent);
let var_data = &enum_data.variants[def.local_id].variant_data;
if let StructKind::Unit = var_data.kind() {
return type_for_adt(db, def.parent.into());
}
let generics = generics(db.upcast(), def.parent.into());
let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST);
Binders::new(substs.len(), Ty::apply(TypeCtor::FnDef(def.into()), substs))
}
fn type_for_adt(db: &dyn HirDatabase, adt: AdtId) -> Binders<Ty> {
let generics = generics(db.upcast(), adt.into());
let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST);
Binders::new(substs.len(), Ty::apply(TypeCtor::Adt(adt), substs))
}
fn type_for_type_alias(db: &dyn HirDatabase, t: TypeAliasId) -> Binders<Ty> {
let generics = generics(db.upcast(), t.into());
let resolver = t.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let type_ref = &db.type_alias_data(t).type_ref;
let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST);
let inner = Ty::from_hir(&ctx, type_ref.as_ref().unwrap_or(&TypeRef::Error));
Binders::new(substs.len(), inner)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CallableDefId {
FunctionId(FunctionId),
StructId(StructId),
EnumVariantId(EnumVariantId),
}
impl_from!(FunctionId, StructId, EnumVariantId for CallableDefId);
impl CallableDefId {
pub fn krate(self, db: &dyn HirDatabase) -> CrateId {
let db = db.upcast();
match self {
CallableDefId::FunctionId(f) => f.lookup(db).module(db),
CallableDefId::StructId(s) => s.lookup(db).container.module(db),
CallableDefId::EnumVariantId(e) => e.parent.lookup(db).container.module(db),
}
.krate
}
}
impl From<CallableDefId> for GenericDefId {
fn from(def: CallableDefId) -> GenericDefId {
match def {
CallableDefId::FunctionId(f) => f.into(),
CallableDefId::StructId(s) => s.into(),
CallableDefId::EnumVariantId(e) => e.into(),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum TyDefId {
BuiltinType(BuiltinType),
AdtId(AdtId),
TypeAliasId(TypeAliasId),
}
impl_from!(BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId for TyDefId);
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ValueTyDefId {
FunctionId(FunctionId),
StructId(StructId),
EnumVariantId(EnumVariantId),
ConstId(ConstId),
StaticId(StaticId),
}
impl_from!(FunctionId, StructId, EnumVariantId, ConstId, StaticId for ValueTyDefId);
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn ty_query(db: &dyn HirDatabase, def: TyDefId) -> Binders<Ty> {
match def {
TyDefId::BuiltinType(it) => Binders::new(0, type_for_builtin(it)),
TyDefId::AdtId(it) => type_for_adt(db, it),
TyDefId::TypeAliasId(it) => type_for_type_alias(db, it),
}
}
pub(crate) fn ty_recover(db: &dyn HirDatabase, _cycle: &[String], def: &TyDefId) -> Binders<Ty> {
let num_binders = match *def {
TyDefId::BuiltinType(_) => 0,
TyDefId::AdtId(it) => generics(db.upcast(), it.into()).len(),
TyDefId::TypeAliasId(it) => generics(db.upcast(), it.into()).len(),
};
Binders::new(num_binders, Ty::Unknown)
}
pub(crate) fn value_ty_query(db: &dyn HirDatabase, def: ValueTyDefId) -> Binders<Ty> {
match def {
ValueTyDefId::FunctionId(it) => type_for_fn(db, it),
ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it),
ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it),
ValueTyDefId::ConstId(it) => type_for_const(db, it),
ValueTyDefId::StaticId(it) => type_for_static(db, it),
}
}
pub(crate) fn impl_self_ty_query(db: &dyn HirDatabase, impl_id: ImplId) -> Binders<Ty> {
let impl_data = db.impl_data(impl_id);
let resolver = impl_id.resolver(db.upcast());
let generics = generics(db.upcast(), impl_id.into());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
Binders::new(generics.len(), Ty::from_hir(&ctx, &impl_data.target_type))
}
pub(crate) fn impl_self_ty_recover(
db: &dyn HirDatabase,
_cycle: &[String],
impl_id: &ImplId,
) -> Binders<Ty> {
let generics = generics(db.upcast(), (*impl_id).into());
Binders::new(generics.len(), Ty::Unknown)
}
pub(crate) fn impl_trait_query(db: &dyn HirDatabase, impl_id: ImplId) -> Option<Binders<TraitRef>> {
let impl_data = db.impl_data(impl_id);
let resolver = impl_id.resolver(db.upcast());
let ctx =
TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable);
let self_ty = db.impl_self_ty(impl_id);
let target_trait = impl_data.target_trait.as_ref()?;
Some(Binders::new(
self_ty.num_binders,
TraitRef::from_hir(&ctx, target_trait, Some(self_ty.value))?,
))
}
pub(crate) fn return_type_impl_traits(
db: &dyn HirDatabase,
def: hir_def::FunctionId,
) -> Option<Arc<Binders<ReturnTypeImplTraits>>> {
// FIXME unify with fn_sig_for_fn instead of doing lowering twice, maybe
let data = db.function_data(def);
let resolver = def.resolver(db.upcast());
let ctx_ret = TyLoweringContext::new(db, &resolver)
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque)
.with_type_param_mode(TypeParamLoweringMode::Variable);
let _ret = Ty::from_hir(&ctx_ret, &data.ret_type);
let generics = generics(db.upcast(), def.into());
let num_binders = generics.len();
let return_type_impl_traits =
ReturnTypeImplTraits { impl_traits: ctx_ret.opaque_type_data.into_inner() };
if return_type_impl_traits.impl_traits.is_empty() {
None
} else {
Some(Arc::new(Binders::new(num_binders, return_type_impl_traits)))
}
}