mirror of
https://github.com/rust-lang/rust-analyzer
synced 2024-12-30 15:03:42 +00:00
a2783df3f0
This speeds up inference in analysis-stats by ~30% (even more with the recursive solver).
649 lines
22 KiB
Rust
649 lines
22 KiB
Rust
//! This module is concerned with finding methods that a given type provides.
|
|
//! For details about how this works in rustc, see the method lookup page in the
|
|
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
|
|
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
|
|
use std::sync::Arc;
|
|
|
|
use arrayvec::ArrayVec;
|
|
use hir_def::{
|
|
lang_item::LangItemTarget, type_ref::Mutability, AssocContainerId, AssocItemId, FunctionId,
|
|
HasModule, ImplId, Lookup, TraitId,
|
|
};
|
|
use hir_expand::name::Name;
|
|
use ra_db::CrateId;
|
|
use ra_prof::profile;
|
|
use rustc_hash::{FxHashMap, FxHashSet};
|
|
|
|
use super::Substs;
|
|
use crate::{
|
|
autoderef,
|
|
db::HirDatabase,
|
|
primitive::{FloatBitness, Uncertain},
|
|
utils::all_super_traits,
|
|
ApplicationTy, Canonical, DebruijnIndex, InEnvironment, TraitEnvironment, TraitRef, Ty,
|
|
TypeCtor, TypeWalk,
|
|
};
|
|
|
|
/// This is used as a key for indexing impls.
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub enum TyFingerprint {
|
|
Apply(TypeCtor),
|
|
}
|
|
|
|
impl TyFingerprint {
|
|
/// Creates a TyFingerprint for looking up an impl. Only certain types can
|
|
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
|
|
/// `impl &S`. Hence, this will return `None` for reference types and such.
|
|
pub(crate) fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
|
|
match ty {
|
|
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct CrateImplDefs {
|
|
impls: FxHashMap<TyFingerprint, Vec<ImplId>>,
|
|
impls_by_trait: FxHashMap<TraitId, FxHashMap<Option<TyFingerprint>, Vec<ImplId>>>,
|
|
}
|
|
|
|
impl CrateImplDefs {
|
|
pub(crate) fn impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<CrateImplDefs> {
|
|
let _p = profile("impls_in_crate_query");
|
|
let mut res =
|
|
CrateImplDefs { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
|
|
|
|
let crate_def_map = db.crate_def_map(krate);
|
|
for (_module_id, module_data) in crate_def_map.modules.iter() {
|
|
for impl_id in module_data.scope.impls() {
|
|
match db.impl_trait(impl_id) {
|
|
Some(tr) => {
|
|
let self_ty = db.impl_self_ty(impl_id);
|
|
let self_ty_fp = TyFingerprint::for_impl(&self_ty.value);
|
|
res.impls_by_trait
|
|
.entry(tr.value.trait_)
|
|
.or_default()
|
|
.entry(self_ty_fp)
|
|
.or_default()
|
|
.push(impl_id);
|
|
}
|
|
None => {
|
|
let self_ty = db.impl_self_ty(impl_id);
|
|
if let Some(self_ty_fp) = TyFingerprint::for_impl(&self_ty.value) {
|
|
res.impls.entry(self_ty_fp).or_default().push(impl_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Arc::new(res)
|
|
}
|
|
pub fn lookup_impl_defs(&self, ty: &Ty) -> impl Iterator<Item = ImplId> + '_ {
|
|
let fingerprint = TyFingerprint::for_impl(ty);
|
|
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
|
|
}
|
|
|
|
pub fn lookup_impl_defs_for_trait(&self, tr: TraitId) -> impl Iterator<Item = ImplId> + '_ {
|
|
self.impls_by_trait
|
|
.get(&tr)
|
|
.into_iter()
|
|
.flat_map(|m| m.values().flat_map(|v| v.iter().copied()))
|
|
}
|
|
|
|
pub fn lookup_impl_defs_for_trait_and_ty(
|
|
&self,
|
|
tr: TraitId,
|
|
fp: TyFingerprint,
|
|
) -> impl Iterator<Item = ImplId> + '_ {
|
|
self.impls_by_trait
|
|
.get(&tr)
|
|
.and_then(|m| m.get(&Some(fp)))
|
|
.into_iter()
|
|
.flatten()
|
|
.copied()
|
|
.chain(
|
|
self.impls_by_trait
|
|
.get(&tr)
|
|
.and_then(|m| m.get(&None))
|
|
.into_iter()
|
|
.flatten()
|
|
.copied(),
|
|
)
|
|
}
|
|
|
|
pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplId> + 'a {
|
|
self.impls
|
|
.values()
|
|
.chain(self.impls_by_trait.values().flat_map(|m| m.values()))
|
|
.flatten()
|
|
.copied()
|
|
}
|
|
}
|
|
|
|
impl Ty {
|
|
pub fn def_crates(
|
|
&self,
|
|
db: &dyn HirDatabase,
|
|
cur_crate: CrateId,
|
|
) -> Option<ArrayVec<[CrateId; 2]>> {
|
|
// Types like slice can have inherent impls in several crates, (core and alloc).
|
|
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
|
|
macro_rules! lang_item_crate {
|
|
($($name:expr),+ $(,)?) => {{
|
|
let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
|
|
$(
|
|
v.extend(db.lang_item(cur_crate, $name.into()));
|
|
)+
|
|
v
|
|
}};
|
|
}
|
|
|
|
let lang_item_targets = match self {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::Adt(def_id) => {
|
|
return Some(std::iter::once(def_id.module(db.upcast()).krate).collect())
|
|
}
|
|
TypeCtor::Bool => lang_item_crate!("bool"),
|
|
TypeCtor::Char => lang_item_crate!("char"),
|
|
TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
|
|
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
|
|
FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
|
|
FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
|
|
},
|
|
TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
|
|
TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
|
|
TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
|
|
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
|
|
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
|
|
_ => return None,
|
|
},
|
|
_ => return None,
|
|
};
|
|
let res = lang_item_targets
|
|
.into_iter()
|
|
.filter_map(|it| match it {
|
|
LangItemTarget::ImplDefId(it) => Some(it),
|
|
_ => None,
|
|
})
|
|
.map(|it| it.lookup(db.upcast()).container.module(db.upcast()).krate)
|
|
.collect();
|
|
Some(res)
|
|
}
|
|
}
|
|
/// Look up the method with the given name, returning the actual autoderefed
|
|
/// receiver type (but without autoref applied yet).
|
|
pub(crate) fn lookup_method(
|
|
ty: &Canonical<Ty>,
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: &Name,
|
|
) -> Option<(Ty, FunctionId)> {
|
|
iterate_method_candidates(
|
|
ty,
|
|
db,
|
|
env,
|
|
krate,
|
|
&traits_in_scope,
|
|
Some(name),
|
|
LookupMode::MethodCall,
|
|
|ty, f| match f {
|
|
AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
|
|
_ => None,
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Whether we're looking up a dotted method call (like `v.len()`) or a path
|
|
/// (like `Vec::new`).
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
pub enum LookupMode {
|
|
/// Looking up a method call like `v.len()`: We only consider candidates
|
|
/// that have a `self` parameter, and do autoderef.
|
|
MethodCall,
|
|
/// Looking up a path like `Vec::new` or `Vec::default`: We consider all
|
|
/// candidates including associated constants, but don't do autoderef.
|
|
Path,
|
|
}
|
|
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
|
|
// FIXME add a context type here?
|
|
pub fn iterate_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mode: LookupMode,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
match mode {
|
|
LookupMode::MethodCall => {
|
|
// For method calls, rust first does any number of autoderef, and then one
|
|
// autoref (i.e. when the method takes &self or &mut self). We just ignore
|
|
// the autoref currently -- when we find a method matching the given name,
|
|
// we assume it fits.
|
|
|
|
// Also note that when we've got a receiver like &S, even if the method we
|
|
// find in the end takes &self, we still do the autoderef step (just as
|
|
// rustc does an autoderef and then autoref again).
|
|
let ty = InEnvironment { value: ty.clone(), environment: env.clone() };
|
|
|
|
// We have to be careful about the order we're looking at candidates
|
|
// in here. Consider the case where we're resolving `x.clone()`
|
|
// where `x: &Vec<_>`. This resolves to the clone method with self
|
|
// type `Vec<_>`, *not* `&_`. I.e. we need to consider methods where
|
|
// the receiver type exactly matches before cases where we have to
|
|
// do autoref. But in the autoderef steps, the `&_` self type comes
|
|
// up *before* the `Vec<_>` self type.
|
|
//
|
|
// On the other hand, we don't want to just pick any by-value method
|
|
// before any by-autoref method; it's just that we need to consider
|
|
// the methods by autoderef order of *receiver types*, not *self
|
|
// types*.
|
|
|
|
let deref_chain = autoderef_method_receiver(db, krate, ty);
|
|
for i in 0..deref_chain.len() {
|
|
if let Some(result) = iterate_method_candidates_with_autoref(
|
|
&deref_chain[i..],
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
LookupMode::Path => {
|
|
// No autoderef for path lookups
|
|
iterate_method_candidates_for_self_ty(
|
|
&ty,
|
|
db,
|
|
env,
|
|
krate,
|
|
traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn iterate_method_candidates_with_autoref<T>(
|
|
deref_chain: &[Canonical<Ty>],
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&deref_chain[0],
|
|
&deref_chain[1..],
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
let refed = Canonical {
|
|
num_vars: deref_chain[0].num_vars,
|
|
value: Ty::apply_one(TypeCtor::Ref(Mutability::Shared), deref_chain[0].value.clone()),
|
|
};
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&refed,
|
|
deref_chain,
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
let ref_muted = Canonical {
|
|
num_vars: deref_chain[0].num_vars,
|
|
value: Ty::apply_one(TypeCtor::Ref(Mutability::Mut), deref_chain[0].value.clone()),
|
|
};
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&ref_muted,
|
|
deref_chain,
|
|
db,
|
|
env,
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_method_candidates_by_receiver<T>(
|
|
receiver_ty: &Canonical<Ty>,
|
|
rest_of_deref_chain: &[Canonical<Ty>],
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
// We're looking for methods with *receiver* type receiver_ty. These could
|
|
// be found in any of the derefs of receiver_ty, so we have to go through
|
|
// that.
|
|
for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
|
|
if let Some(result) =
|
|
iterate_inherent_methods(self_ty, db, name, Some(receiver_ty), krate, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
}
|
|
for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
|
|
if let Some(result) = iterate_trait_method_candidates(
|
|
self_ty,
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
Some(receiver_ty),
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_method_candidates_for_self_ty<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
if let Some(result) = iterate_inherent_methods(self_ty, db, name, None, krate, &mut callback) {
|
|
return Some(result);
|
|
}
|
|
if let Some(result) = iterate_trait_method_candidates(
|
|
self_ty,
|
|
db,
|
|
env,
|
|
krate,
|
|
traits_in_scope,
|
|
name,
|
|
None,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_trait_method_candidates<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
// if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
|
|
let inherent_trait = self_ty.value.inherent_trait().into_iter();
|
|
let env_traits = if let Ty::Placeholder(_) = self_ty.value {
|
|
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
|
|
env.trait_predicates_for_self_ty(&self_ty.value)
|
|
.map(|tr| tr.trait_)
|
|
.flat_map(|t| all_super_traits(db.upcast(), t))
|
|
.collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
let traits =
|
|
inherent_trait.chain(env_traits.into_iter()).chain(traits_in_scope.iter().copied());
|
|
'traits: for t in traits {
|
|
let data = db.trait_data(t);
|
|
|
|
// we'll be lazy about checking whether the type implements the
|
|
// trait, but if we find out it doesn't, we'll skip the rest of the
|
|
// iteration
|
|
let mut known_implemented = false;
|
|
for (_name, item) in data.items.iter() {
|
|
if !is_valid_candidate(db, name, receiver_ty, *item, self_ty) {
|
|
continue;
|
|
}
|
|
if !known_implemented {
|
|
let goal = generic_implements_goal(db, env.clone(), t, self_ty.clone());
|
|
if db.trait_solve(krate, goal).is_none() {
|
|
continue 'traits;
|
|
}
|
|
}
|
|
known_implemented = true;
|
|
if let Some(result) = callback(&self_ty.value, *item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_inherent_methods<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &dyn HirDatabase,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
krate: CrateId,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
for krate in self_ty.value.def_crates(db, krate)? {
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_def in impls.lookup_impl_defs(&self_ty.value) {
|
|
for &item in db.impl_data(impl_def).items.iter() {
|
|
if !is_valid_candidate(db, name, receiver_ty, item, self_ty) {
|
|
continue;
|
|
}
|
|
// we have to check whether the self type unifies with the type
|
|
// that the impl is for. If we have a receiver type, this
|
|
// already happens in `is_valid_candidate` above; if not, we
|
|
// check it here
|
|
if receiver_ty.is_none() && inherent_impl_substs(db, impl_def, self_ty).is_none() {
|
|
test_utils::tested_by!(impl_self_type_match_without_receiver);
|
|
continue;
|
|
}
|
|
if let Some(result) = callback(&self_ty.value, item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Returns the self type for the index trait call.
|
|
pub fn resolve_indexing_op(
|
|
db: &dyn HirDatabase,
|
|
ty: &Canonical<Ty>,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
index_trait: TraitId,
|
|
) -> Option<Canonical<Ty>> {
|
|
let ty = InEnvironment { value: ty.clone(), environment: env.clone() };
|
|
let deref_chain = autoderef_method_receiver(db, krate, ty);
|
|
for ty in deref_chain {
|
|
let goal = generic_implements_goal(db, env.clone(), index_trait, ty.clone());
|
|
if db.trait_solve(krate, goal).is_some() {
|
|
return Some(ty);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn is_valid_candidate(
|
|
db: &dyn HirDatabase,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
item: AssocItemId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> bool {
|
|
match item {
|
|
AssocItemId::FunctionId(m) => {
|
|
let data = db.function_data(m);
|
|
if let Some(name) = name {
|
|
if &data.name != name {
|
|
return false;
|
|
}
|
|
}
|
|
if let Some(receiver_ty) = receiver_ty {
|
|
if !data.has_self_param {
|
|
return false;
|
|
}
|
|
let transformed_receiver_ty = match transform_receiver_ty(db, m, self_ty) {
|
|
Some(ty) => ty,
|
|
None => return false,
|
|
};
|
|
if transformed_receiver_ty != receiver_ty.value {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
AssocItemId::ConstId(c) => {
|
|
let data = db.const_data(c);
|
|
name.map_or(true, |name| data.name.as_ref() == Some(name)) && receiver_ty.is_none()
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn inherent_impl_substs(
|
|
db: &dyn HirDatabase,
|
|
impl_id: ImplId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> Option<Substs> {
|
|
// we create a var for each type parameter of the impl; we need to keep in
|
|
// mind here that `self_ty` might have vars of its own
|
|
let vars = Substs::build_for_def(db, impl_id)
|
|
.fill_with_bound_vars(DebruijnIndex::INNERMOST, self_ty.num_vars)
|
|
.build();
|
|
let self_ty_with_vars = db.impl_self_ty(impl_id).subst(&vars);
|
|
let self_ty_with_vars =
|
|
Canonical { num_vars: vars.len() + self_ty.num_vars, value: self_ty_with_vars };
|
|
let substs = super::infer::unify(&self_ty_with_vars, self_ty);
|
|
// We only want the substs for the vars we added, not the ones from self_ty.
|
|
// Also, if any of the vars we added are still in there, we replace them by
|
|
// Unknown. I think this can only really happen if self_ty contained
|
|
// Unknown, and in that case we want the result to contain Unknown in those
|
|
// places again.
|
|
substs.map(|s| fallback_bound_vars(s.suffix(vars.len()), self_ty.num_vars))
|
|
}
|
|
|
|
/// This replaces any 'free' Bound vars in `s` (i.e. those with indices past
|
|
/// num_vars_to_keep) by `Ty::Unknown`.
|
|
fn fallback_bound_vars(s: Substs, num_vars_to_keep: usize) -> Substs {
|
|
s.fold_binders(
|
|
&mut |ty, binders| {
|
|
if let Ty::Bound(bound) = &ty {
|
|
if bound.index >= num_vars_to_keep && bound.debruijn >= binders {
|
|
Ty::Unknown
|
|
} else {
|
|
ty
|
|
}
|
|
} else {
|
|
ty
|
|
}
|
|
},
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
}
|
|
|
|
fn transform_receiver_ty(
|
|
db: &dyn HirDatabase,
|
|
function_id: FunctionId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> Option<Ty> {
|
|
let substs = match function_id.lookup(db.upcast()).container {
|
|
AssocContainerId::TraitId(_) => Substs::build_for_def(db, function_id)
|
|
.push(self_ty.value.clone())
|
|
.fill_with_unknown()
|
|
.build(),
|
|
AssocContainerId::ImplId(impl_id) => inherent_impl_substs(db, impl_id, &self_ty)?,
|
|
AssocContainerId::ContainerId(_) => unreachable!(),
|
|
};
|
|
let sig = db.callable_item_signature(function_id.into());
|
|
Some(sig.value.params()[0].clone().subst_bound_vars(&substs))
|
|
}
|
|
|
|
pub fn implements_trait(
|
|
ty: &Canonical<Ty>,
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
trait_: TraitId,
|
|
) -> bool {
|
|
if ty.value.inherent_trait() == Some(trait_) {
|
|
// FIXME this is a bit of a hack, since Chalk should say the same thing
|
|
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
|
|
return true;
|
|
}
|
|
let goal = generic_implements_goal(db, env, trait_, ty.clone());
|
|
let solution = db.trait_solve(krate, goal);
|
|
|
|
solution.is_some()
|
|
}
|
|
|
|
/// This creates Substs for a trait with the given Self type and type variables
|
|
/// for all other parameters, to query Chalk with it.
|
|
fn generic_implements_goal(
|
|
db: &dyn HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
trait_: TraitId,
|
|
self_ty: Canonical<Ty>,
|
|
) -> Canonical<InEnvironment<super::Obligation>> {
|
|
let num_vars = self_ty.num_vars;
|
|
let substs = super::Substs::build_for_def(db, trait_)
|
|
.push(self_ty.value)
|
|
.fill_with_bound_vars(DebruijnIndex::INNERMOST, num_vars)
|
|
.build();
|
|
let num_vars = substs.len() - 1 + self_ty.num_vars;
|
|
let trait_ref = TraitRef { trait_, substs };
|
|
let obligation = super::Obligation::Trait(trait_ref);
|
|
Canonical { num_vars, value: InEnvironment::new(env, obligation) }
|
|
}
|
|
|
|
fn autoderef_method_receiver(
|
|
db: &dyn HirDatabase,
|
|
krate: CrateId,
|
|
ty: InEnvironment<Canonical<Ty>>,
|
|
) -> Vec<Canonical<Ty>> {
|
|
let mut deref_chain: Vec<_> = autoderef::autoderef(db, Some(krate), ty).collect();
|
|
// As a last step, we can do array unsizing (that's the only unsizing that rustc does for method receivers!)
|
|
if let Some(Ty::Apply(ApplicationTy { ctor: TypeCtor::Array, parameters })) =
|
|
deref_chain.last().map(|ty| &ty.value)
|
|
{
|
|
let num_vars = deref_chain.last().unwrap().num_vars;
|
|
let unsized_ty = Ty::apply(TypeCtor::Slice, parameters.clone());
|
|
deref_chain.push(Canonical { value: unsized_ty, num_vars })
|
|
}
|
|
deref_chain
|
|
}
|