rust-analyzer/crates/ra_hir/src/code_model.rs
2019-09-17 19:47:45 +02:00

1037 lines
32 KiB
Rust

pub(crate) mod src;
pub(crate) mod docs;
use std::sync::Arc;
use ra_db::{CrateId, Edition, FileId, SourceRootId};
use ra_syntax::ast::{self, NameOwner, TypeAscriptionOwner};
use crate::{
adt::{EnumVariantId, StructFieldId, VariantDef},
db::{AstDatabase, DefDatabase, HirDatabase},
diagnostics::DiagnosticSink,
expr::{validation::ExprValidator, Body, BodySourceMap},
generics::HasGenericParams,
ids::{
AstItemDef, ConstId, EnumId, FunctionId, MacroDefId, StaticId, StructId, TraitId,
TypeAliasId,
},
impl_block::ImplBlock,
name::{
BOOL, CHAR, F32, F64, I128, I16, I32, I64, I8, ISIZE, SELF_TYPE, STR, U128, U16, U32, U64,
U8, USIZE,
},
nameres::{CrateModuleId, ImportId, ModuleScope, Namespace},
resolve::{Resolver, TypeNs},
traits::TraitData,
ty::{
primitive::{FloatBitness, FloatTy, IntBitness, IntTy, Signedness},
InferenceResult, TraitRef,
},
type_ref::Mutability,
type_ref::TypeRef,
AsName, AstId, Either, HasSource, Name, Ty,
};
/// hir::Crate describes a single crate. It's the main interface with which
/// a crate's dependencies interact. Mostly, it should be just a proxy for the
/// root module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Crate {
pub(crate) crate_id: CrateId,
}
#[derive(Debug)]
pub struct CrateDependency {
pub krate: Crate,
pub name: Name,
}
impl Crate {
pub fn crate_id(self) -> CrateId {
self.crate_id
}
pub fn dependencies(self, db: &impl DefDatabase) -> Vec<CrateDependency> {
db.crate_graph()
.dependencies(self.crate_id)
.map(|dep| {
let krate = Crate { crate_id: dep.crate_id() };
let name = dep.as_name();
CrateDependency { krate, name }
})
.collect()
}
pub fn root_module(self, db: &impl DefDatabase) -> Option<Module> {
let module_id = db.crate_def_map(self).root();
let module = Module { krate: self, module_id };
Some(module)
}
pub fn edition(self, db: &impl DefDatabase) -> Edition {
let crate_graph = db.crate_graph();
crate_graph.edition(self.crate_id)
}
// FIXME: should this be in source_binder?
pub fn source_root_crates(db: &impl DefDatabase, source_root: SourceRootId) -> Vec<Crate> {
let crate_ids = db.source_root_crates(source_root);
crate_ids.iter().map(|&crate_id| Crate { crate_id }).collect()
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Module {
pub(crate) krate: Crate,
pub(crate) module_id: CrateModuleId,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum BuiltinType {
Char,
Bool,
Str,
Int(IntTy),
Float(FloatTy),
}
impl BuiltinType {
#[rustfmt::skip]
pub(crate) const ALL: &'static [(Name, BuiltinType)] = &[
(CHAR, BuiltinType::Char),
(BOOL, BuiltinType::Bool),
(STR, BuiltinType::Str),
(ISIZE, BuiltinType::Int(IntTy { signedness: Signedness::Signed, bitness: IntBitness::Xsize })),
(I8, BuiltinType::Int(IntTy { signedness: Signedness::Signed, bitness: IntBitness::X8 })),
(I16, BuiltinType::Int(IntTy { signedness: Signedness::Signed, bitness: IntBitness::X16 })),
(I32, BuiltinType::Int(IntTy { signedness: Signedness::Signed, bitness: IntBitness::X32 })),
(I64, BuiltinType::Int(IntTy { signedness: Signedness::Signed, bitness: IntBitness::X64 })),
(I128, BuiltinType::Int(IntTy { signedness: Signedness::Signed, bitness: IntBitness::X128 })),
(USIZE, BuiltinType::Int(IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::Xsize })),
(U8, BuiltinType::Int(IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X8 })),
(U16, BuiltinType::Int(IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X16 })),
(U32, BuiltinType::Int(IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X32 })),
(U64, BuiltinType::Int(IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X64 })),
(U128, BuiltinType::Int(IntTy { signedness: Signedness::Unsigned, bitness: IntBitness::X128 })),
(F32, BuiltinType::Float(FloatTy { bitness: FloatBitness::X32 })),
(F64, BuiltinType::Float(FloatTy { bitness: FloatBitness::X64 })),
];
}
/// The defs which can be visible in the module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ModuleDef {
Module(Module),
Function(Function),
Adt(Adt),
// Can't be directly declared, but can be imported.
EnumVariant(EnumVariant),
Const(Const),
Static(Static),
Trait(Trait),
TypeAlias(TypeAlias),
BuiltinType(BuiltinType),
}
impl_froms!(
ModuleDef: Module,
Function,
Adt(Struct, Enum, Union),
EnumVariant,
Const,
Static,
Trait,
TypeAlias,
BuiltinType
);
pub enum ModuleSource {
SourceFile(ast::SourceFile),
Module(ast::Module),
}
impl ModuleSource {
pub(crate) fn new(
db: &(impl DefDatabase + AstDatabase),
file_id: Option<FileId>,
decl_id: Option<AstId<ast::Module>>,
) -> ModuleSource {
match (file_id, decl_id) {
(Some(file_id), _) => {
let source_file = db.parse(file_id).tree().to_owned();
ModuleSource::SourceFile(source_file)
}
(None, Some(item_id)) => {
let module = item_id.to_node(db);
assert!(module.item_list().is_some(), "expected inline module");
ModuleSource::Module(module)
}
(None, None) => panic!(),
}
}
}
impl Module {
/// Name of this module.
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
let def_map = db.crate_def_map(self.krate);
let parent = def_map[self.module_id].parent?;
def_map[parent].children.iter().find_map(|(name, module_id)| {
if *module_id == self.module_id {
Some(name.clone())
} else {
None
}
})
}
/// Returns the syntax of the last path segment corresponding to this import
pub fn import_source(
self,
db: &impl HirDatabase,
import: ImportId,
) -> Either<ast::UseTree, ast::ExternCrateItem> {
let src = self.definition_source(db);
let (_, source_map) = db.raw_items_with_source_map(src.file_id);
source_map.get(&src.ast, import)
}
/// Returns the crate this module is part of.
pub fn krate(self, _db: &impl DefDatabase) -> Option<Crate> {
Some(self.krate)
}
/// Topmost parent of this module. Every module has a `crate_root`, but some
/// might be missing `krate`. This can happen if a module's file is not included
/// in the module tree of any target in `Cargo.toml`.
pub fn crate_root(self, db: &impl DefDatabase) -> Module {
let def_map = db.crate_def_map(self.krate);
self.with_module_id(def_map.root())
}
/// Finds a child module with the specified name.
pub fn child(self, db: &impl HirDatabase, name: &Name) -> Option<Module> {
let def_map = db.crate_def_map(self.krate);
let child_id = def_map[self.module_id].children.get(name)?;
Some(self.with_module_id(*child_id))
}
/// Iterates over all child modules.
pub fn children(self, db: &impl DefDatabase) -> impl Iterator<Item = Module> {
let def_map = db.crate_def_map(self.krate);
let children = def_map[self.module_id]
.children
.iter()
.map(|(_, module_id)| self.with_module_id(*module_id))
.collect::<Vec<_>>();
children.into_iter()
}
/// Finds a parent module.
pub fn parent(self, db: &impl DefDatabase) -> Option<Module> {
let def_map = db.crate_def_map(self.krate);
let parent_id = def_map[self.module_id].parent?;
Some(self.with_module_id(parent_id))
}
pub fn path_to_root(self, db: &impl HirDatabase) -> Vec<Module> {
let mut res = vec![self];
let mut curr = self;
while let Some(next) = curr.parent(db) {
res.push(next);
curr = next
}
res
}
/// Returns a `ModuleScope`: a set of items, visible in this module.
pub fn scope(self, db: &impl HirDatabase) -> ModuleScope {
db.crate_def_map(self.krate)[self.module_id].scope.clone()
}
pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
db.crate_def_map(self.krate).add_diagnostics(db, self.module_id, sink);
for decl in self.declarations(db) {
match decl {
crate::ModuleDef::Function(f) => f.diagnostics(db, sink),
crate::ModuleDef::Module(m) => {
// Only add diagnostics from inline modules
if let ModuleSource::Module(_) = m.definition_source(db).ast {
m.diagnostics(db, sink)
}
}
_ => (),
}
}
for impl_block in self.impl_blocks(db) {
for item in impl_block.items(db) {
if let AssocItem::Function(f) = item {
f.diagnostics(db, sink);
}
}
}
}
pub(crate) fn resolver(self, db: &impl DefDatabase) -> Resolver {
let def_map = db.crate_def_map(self.krate);
Resolver::default().push_module_scope(def_map, self.module_id)
}
pub fn declarations(self, db: &impl DefDatabase) -> Vec<ModuleDef> {
let def_map = db.crate_def_map(self.krate);
def_map[self.module_id]
.scope
.entries()
.filter_map(|(_name, res)| if res.import.is_none() { Some(res.def) } else { None })
.flat_map(|per_ns| {
per_ns.take_types().into_iter().chain(per_ns.take_values().into_iter())
})
.collect()
}
pub fn impl_blocks(self, db: &impl DefDatabase) -> Vec<ImplBlock> {
let module_impl_blocks = db.impls_in_module(self);
module_impl_blocks
.impls
.iter()
.map(|(impl_id, _)| ImplBlock::from_id(self, impl_id))
.collect()
}
fn with_module_id(self, module_id: CrateModuleId) -> Module {
Module { module_id, krate: self.krate }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct StructField {
pub(crate) parent: VariantDef,
pub(crate) id: StructFieldId,
}
#[derive(Debug)]
pub enum FieldSource {
Named(ast::RecordFieldDef),
Pos(ast::TupleFieldDef),
}
impl StructField {
pub fn name(&self, db: &impl HirDatabase) -> Name {
self.parent.variant_data(db).fields().unwrap()[self.id].name.clone()
}
pub fn ty(&self, db: &impl HirDatabase) -> Ty {
db.type_for_field(*self)
}
pub fn parent_def(&self, _db: &impl HirDatabase) -> VariantDef {
self.parent
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Struct {
pub(crate) id: StructId,
}
impl Struct {
pub fn module(self, db: &impl HirDatabase) -> Module {
self.id.module(db)
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.struct_data(self).name.clone()
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
db.struct_data(self)
.variant_data
.fields()
.into_iter()
.flat_map(|it| it.iter())
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
pub fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
db.struct_data(self)
.variant_data
.fields()
.into_iter()
.flat_map(|it| it.iter())
.find(|(_id, data)| data.name == *name)
.map(|(id, _)| StructField { parent: self.into(), id })
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
pub fn constructor_ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Values)
}
// FIXME move to a more general type
/// Builds a resolver for type references inside this struct.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
let r = self.module(db).resolver(db);
// ...and add generic params, if present
let p = self.generic_params(db);
let r = if !p.params.is_empty() { r.push_generic_params_scope(p) } else { r };
r
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Union {
pub(crate) id: StructId,
}
impl Union {
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.struct_data(Struct { id: self.id }).name.clone()
}
pub fn module(self, db: &impl HirDatabase) -> Module {
self.id.module(db)
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
// FIXME move to a more general type
/// Builds a resolver for type references inside this union.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
let r = self.module(db).resolver(db);
// ...and add generic params, if present
let p = self.generic_params(db);
let r = if !p.params.is_empty() { r.push_generic_params_scope(p) } else { r };
r
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Enum {
pub(crate) id: EnumId,
}
impl Enum {
pub fn module(self, db: &impl HirDatabase) -> Module {
self.id.module(db)
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.enum_data(self).name.clone()
}
pub fn variants(self, db: &impl DefDatabase) -> Vec<EnumVariant> {
db.enum_data(self).variants.iter().map(|(id, _)| EnumVariant { parent: self, id }).collect()
}
pub fn variant(self, db: &impl DefDatabase, name: &Name) -> Option<EnumVariant> {
db.enum_data(self)
.variants
.iter()
.find(|(_id, data)| data.name.as_ref() == Some(name))
.map(|(id, _)| EnumVariant { parent: self, id })
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
// FIXME: move to a more general type
/// Builds a resolver for type references inside this struct.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
let r = self.module(db).resolver(db);
// ...and add generic params, if present
let p = self.generic_params(db);
let r = if !p.params.is_empty() { r.push_generic_params_scope(p) } else { r };
r
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct EnumVariant {
pub(crate) parent: Enum,
pub(crate) id: EnumVariantId,
}
impl EnumVariant {
pub fn module(self, db: &impl HirDatabase) -> Module {
self.parent.module(db)
}
pub fn parent_enum(self, _db: &impl DefDatabase) -> Enum {
self.parent
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
db.enum_data(self.parent).variants[self.id].name.clone()
}
pub fn fields(self, db: &impl HirDatabase) -> Vec<StructField> {
self.variant_data(db)
.fields()
.into_iter()
.flat_map(|it| it.iter())
.map(|(id, _)| StructField { parent: self.into(), id })
.collect()
}
pub fn field(self, db: &impl HirDatabase, name: &Name) -> Option<StructField> {
self.variant_data(db)
.fields()
.into_iter()
.flat_map(|it| it.iter())
.find(|(_id, data)| data.name == *name)
.map(|(id, _)| StructField { parent: self.into(), id })
}
}
/// A Data Type
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adt {
Struct(Struct),
Union(Union),
Enum(Enum),
}
impl_froms!(Adt: Struct, Union, Enum);
impl Adt {
pub fn ty(self, db: &impl HirDatabase) -> Ty {
match self {
Adt::Struct(it) => it.ty(db),
Adt::Union(it) => it.ty(db),
Adt::Enum(it) => it.ty(db),
}
}
pub(crate) fn krate(self, db: &impl HirDatabase) -> Option<Crate> {
match self {
Adt::Struct(s) => s.module(db),
Adt::Union(s) => s.module(db),
Adt::Enum(e) => e.module(db),
}
.krate(db)
}
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
match self {
Adt::Struct(it) => it.resolver(db),
Adt::Union(it) => it.resolver(db),
Adt::Enum(it) => it.resolver(db),
}
}
}
/// The defs which have a body.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum DefWithBody {
Function(Function),
Static(Static),
Const(Const),
}
impl_froms!(DefWithBody: Function, Const, Static);
impl DefWithBody {
/// Builds a resolver for code inside this item.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
match self {
DefWithBody::Const(c) => c.resolver(db),
DefWithBody::Function(f) => f.resolver(db),
DefWithBody::Static(s) => s.resolver(db),
}
}
}
pub trait HasBody: Copy {
fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult>;
fn body(self, db: &impl HirDatabase) -> Arc<Body>;
fn body_source_map(self, db: &impl HirDatabase) -> Arc<BodySourceMap>;
}
impl<T> HasBody for T
where
T: Into<DefWithBody> + Copy + HasSource,
{
fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
fn body(self, db: &impl HirDatabase) -> Arc<Body> {
db.body_hir(self.into())
}
fn body_source_map(self, db: &impl HirDatabase) -> Arc<BodySourceMap> {
db.body_with_source_map(self.into()).1
}
}
impl HasBody for DefWithBody {
fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self)
}
fn body(self, db: &impl HirDatabase) -> Arc<Body> {
db.body_hir(self)
}
fn body_source_map(self, db: &impl HirDatabase) -> Arc<BodySourceMap> {
db.body_with_source_map(self).1
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Function {
pub(crate) id: FunctionId,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FnData {
pub(crate) name: Name,
pub(crate) params: Vec<TypeRef>,
pub(crate) ret_type: TypeRef,
/// True if the first param is `self`. This is relevant to decide whether this
/// can be called as a method.
pub(crate) has_self_param: bool,
}
impl FnData {
pub(crate) fn fn_data_query(
db: &(impl DefDatabase + AstDatabase),
func: Function,
) -> Arc<FnData> {
let src = func.source(db);
let name = src.ast.name().map(|n| n.as_name()).unwrap_or_else(Name::missing);
let mut params = Vec::new();
let mut has_self_param = false;
if let Some(param_list) = src.ast.param_list() {
if let Some(self_param) = param_list.self_param() {
let self_type = if let Some(type_ref) = self_param.ascribed_type() {
TypeRef::from_ast(type_ref)
} else {
let self_type = TypeRef::Path(SELF_TYPE.into());
match self_param.kind() {
ast::SelfParamKind::Owned => self_type,
ast::SelfParamKind::Ref => {
TypeRef::Reference(Box::new(self_type), Mutability::Shared)
}
ast::SelfParamKind::MutRef => {
TypeRef::Reference(Box::new(self_type), Mutability::Mut)
}
}
};
params.push(self_type);
has_self_param = true;
}
for param in param_list.params() {
let type_ref = TypeRef::from_ast_opt(param.ascribed_type());
params.push(type_ref);
}
}
let ret_type = if let Some(type_ref) = src.ast.ret_type().and_then(|rt| rt.type_ref()) {
TypeRef::from_ast(type_ref)
} else {
TypeRef::unit()
};
let sig = FnData { name, params, ret_type, has_self_param };
Arc::new(sig)
}
pub fn name(&self) -> &Name {
&self.name
}
pub fn params(&self) -> &[TypeRef] {
&self.params
}
pub fn ret_type(&self) -> &TypeRef {
&self.ret_type
}
/// True if the first arg is `self`. This is relevant to decide whether this
/// can be called as a method.
pub fn has_self_param(&self) -> bool {
self.has_self_param
}
}
impl Function {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.module(db)
}
pub fn name(self, db: &impl HirDatabase) -> Name {
self.data(db).name.clone()
}
pub(crate) fn body_source_map(self, db: &impl HirDatabase) -> Arc<BodySourceMap> {
db.body_with_source_map(self.into()).1
}
pub fn body(self, db: &impl HirDatabase) -> Arc<Body> {
db.body_hir(self.into())
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Values)
}
pub fn data(self, db: &impl HirDatabase) -> Arc<FnData> {
db.fn_data(self)
}
pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
/// The containing impl block, if this is a method.
pub fn impl_block(self, db: &impl DefDatabase) -> Option<ImplBlock> {
let module_impls = db.impls_in_module(self.module(db));
ImplBlock::containing(module_impls, self.into())
}
/// The containing trait, if this is a trait method definition.
pub fn parent_trait(self, db: &impl DefDatabase) -> Option<Trait> {
db.trait_items_index(self.module(db)).get_parent_trait(self.into())
}
pub fn container(self, db: &impl DefDatabase) -> Option<Container> {
if let Some(impl_block) = self.impl_block(db) {
Some(impl_block.into())
} else if let Some(trait_) = self.parent_trait(db) {
Some(trait_.into())
} else {
None
}
}
// FIXME: move to a more general type for 'body-having' items
/// Builds a resolver for code inside this item.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
let r = self.container(db).map_or_else(|| self.module(db).resolver(db), |c| c.resolver(db));
// ...and add generic params, if present
let p = self.generic_params(db);
let r = if !p.params.is_empty() { r.push_generic_params_scope(p) } else { r };
r
}
pub fn diagnostics(self, db: &impl HirDatabase, sink: &mut DiagnosticSink) {
let infer = self.infer(db);
infer.add_diagnostics(db, self, sink);
let mut validator = ExprValidator::new(self, infer, sink);
validator.validate_body(db);
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Const {
pub(crate) id: ConstId,
}
impl Const {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.module(db)
}
pub fn data(self, db: &impl HirDatabase) -> Arc<ConstData> {
db.const_data(self)
}
pub fn name(&self, db: &impl HirDatabase) -> Option<Name> {
self.data(db).name().cloned()
}
pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
/// The containing impl block, if this is a method.
pub fn impl_block(self, db: &impl DefDatabase) -> Option<ImplBlock> {
let module_impls = db.impls_in_module(self.module(db));
ImplBlock::containing(module_impls, self.into())
}
// FIXME: move to a more general type for 'body-having' items
/// Builds a resolver for code inside this item.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
let r = self
.impl_block(db)
.map(|ib| ib.resolver(db))
.unwrap_or_else(|| self.module(db).resolver(db));
r
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ConstData {
pub(crate) name: Option<Name>,
pub(crate) type_ref: TypeRef,
}
impl ConstData {
pub fn name(&self) -> Option<&Name> {
self.name.as_ref()
}
pub fn type_ref(&self) -> &TypeRef {
&self.type_ref
}
pub(crate) fn const_data_query(
db: &(impl DefDatabase + AstDatabase),
konst: Const,
) -> Arc<ConstData> {
let node = konst.source(db).ast;
const_data_for(&node)
}
pub(crate) fn static_data_query(
db: &(impl DefDatabase + AstDatabase),
konst: Static,
) -> Arc<ConstData> {
let node = konst.source(db).ast;
const_data_for(&node)
}
}
fn const_data_for<N: NameOwner + TypeAscriptionOwner>(node: &N) -> Arc<ConstData> {
let name = node.name().map(|n| n.as_name());
let type_ref = TypeRef::from_ast_opt(node.ascribed_type());
let sig = ConstData { name, type_ref };
Arc::new(sig)
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Static {
pub(crate) id: StaticId,
}
impl Static {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.module(db)
}
pub fn data(self, db: &impl HirDatabase) -> Arc<ConstData> {
db.static_data(self)
}
/// Builds a resolver for code inside this item.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
self.module(db).resolver(db)
}
pub fn infer(self, db: &impl HirDatabase) -> Arc<InferenceResult> {
db.infer(self.into())
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Trait {
pub(crate) id: TraitId,
}
impl Trait {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.module(db)
}
pub fn name(self, db: &impl DefDatabase) -> Option<Name> {
self.trait_data(db).name().clone()
}
pub fn items(self, db: &impl DefDatabase) -> Vec<AssocItem> {
self.trait_data(db).items().to_vec()
}
fn direct_super_traits(self, db: &impl HirDatabase) -> Vec<Trait> {
let resolver = self.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
self.generic_params(db)
.where_predicates
.iter()
.filter_map(|pred| match &pred.type_ref {
TypeRef::Path(p) if p.as_ident() == Some(&crate::name::SELF_TYPE) => {
pred.bound.as_path()
}
_ => None,
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path) {
Some(TypeNs::Trait(t)) => Some(t),
_ => None,
})
.collect()
}
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub fn all_super_traits(self, db: &impl HirDatabase) -> Vec<Trait> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![self];
let mut i = 0;
while i < result.len() {
let t = result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in t.direct_super_traits(db) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
pub fn associated_type_by_name(self, db: &impl DefDatabase, name: &Name) -> Option<TypeAlias> {
let trait_data = self.trait_data(db);
trait_data
.items()
.iter()
.filter_map(|item| match item {
AssocItem::TypeAlias(t) => Some(*t),
_ => None,
})
.find(|t| &t.name(db) == name)
}
pub fn associated_type_by_name_including_super_traits(
self,
db: &impl HirDatabase,
name: &Name,
) -> Option<TypeAlias> {
self.all_super_traits(db).into_iter().find_map(|t| t.associated_type_by_name(db, name))
}
pub(crate) fn trait_data(self, db: &impl DefDatabase) -> Arc<TraitData> {
db.trait_data(self)
}
pub fn trait_ref(self, db: &impl HirDatabase) -> TraitRef {
TraitRef::for_trait(db, self)
}
pub fn is_auto(self, db: &impl DefDatabase) -> bool {
self.trait_data(db).is_auto()
}
pub(crate) fn resolver(self, db: &impl DefDatabase) -> Resolver {
let r = self.module(db).resolver(db);
// add generic params, if present
let p = self.generic_params(db);
let r = if !p.params.is_empty() { r.push_generic_params_scope(p) } else { r };
r
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeAlias {
pub(crate) id: TypeAliasId,
}
impl TypeAlias {
pub fn module(self, db: &impl DefDatabase) -> Module {
self.id.module(db)
}
pub fn krate(self, db: &impl DefDatabase) -> Option<Crate> {
self.module(db).krate(db)
}
/// The containing impl block, if this is a method.
pub fn impl_block(self, db: &impl DefDatabase) -> Option<ImplBlock> {
let module_impls = db.impls_in_module(self.module(db));
ImplBlock::containing(module_impls, self.into())
}
/// The containing trait, if this is a trait method definition.
pub fn parent_trait(self, db: &impl DefDatabase) -> Option<Trait> {
db.trait_items_index(self.module(db)).get_parent_trait(self.into())
}
pub fn container(self, db: &impl DefDatabase) -> Option<Container> {
if let Some(impl_block) = self.impl_block(db) {
Some(impl_block.into())
} else if let Some(trait_) = self.parent_trait(db) {
Some(trait_.into())
} else {
None
}
}
pub fn type_ref(self, db: &impl DefDatabase) -> Option<TypeRef> {
db.type_alias_data(self).type_ref.clone()
}
pub fn ty(self, db: &impl HirDatabase) -> Ty {
db.type_for_def(self.into(), Namespace::Types)
}
pub fn name(self, db: &impl DefDatabase) -> Name {
db.type_alias_data(self).name.clone()
}
/// Builds a resolver for the type references in this type alias.
pub(crate) fn resolver(self, db: &impl HirDatabase) -> Resolver {
// take the outer scope...
let r = self
.impl_block(db)
.map(|ib| ib.resolver(db))
.unwrap_or_else(|| self.module(db).resolver(db));
// ...and add generic params, if present
let p = self.generic_params(db);
let r = if !p.params.is_empty() { r.push_generic_params_scope(p) } else { r };
r
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct MacroDef {
pub(crate) id: MacroDefId,
}
impl MacroDef {}
pub enum Container {
Trait(Trait),
ImplBlock(ImplBlock),
}
impl_froms!(Container: Trait, ImplBlock);
impl Container {
pub(crate) fn resolver(self, db: &impl DefDatabase) -> Resolver {
match self {
Container::Trait(trait_) => trait_.resolver(db),
Container::ImplBlock(impl_block) => impl_block.resolver(db),
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AssocItem {
Function(Function),
Const(Const),
TypeAlias(TypeAlias),
}
// FIXME: not every function, ... is actually an assoc item. maybe we should make
// sure that you can only turn actual assoc items into AssocItems. This would
// require not implementing From, and instead having some checked way of
// casting them, and somehow making the constructors private, which would be annoying.
impl_froms!(AssocItem: Function, Const, TypeAlias);