rust-analyzer/crates/ra_mbe/src/mbe_expander.rs
Aleksey Kladov 1c5800dee8 "Fix" mbe to work with decomposed tokens
We regressed $i * 2 where $i = 1 + 1, need to fix that!
2019-09-10 15:56:05 +03:00

594 lines
21 KiB
Rust

//! This module takes a (parsed) definition of `macro_rules` invocation, a
//! `tt::TokenTree` representing an argument of macro invocation, and produces a
//! `tt::TokenTree` for the result of the expansion.
use ra_parser::FragmentKind::*;
use ra_syntax::SmolStr;
use rustc_hash::FxHashMap;
use tt::TokenId;
use crate::tt_cursor::TtCursor;
use crate::ExpandError;
pub(crate) fn expand(
rules: &crate::MacroRules,
input: &tt::Subtree,
) -> Result<tt::Subtree, ExpandError> {
rules.rules.iter().find_map(|it| expand_rule(it, input).ok()).ok_or(ExpandError::NoMatchingRule)
}
fn expand_rule(rule: &crate::Rule, input: &tt::Subtree) -> Result<tt::Subtree, ExpandError> {
let mut input = TtCursor::new(input);
let bindings = match_lhs(&rule.lhs, &mut input)?;
if !input.is_eof() {
return Err(ExpandError::UnexpectedToken);
}
let mut ctx = ExpandCtx { bindings: &bindings, nesting: Vec::new(), var_expanded: false };
expand_subtree(&rule.rhs, &mut ctx)
}
/// The actual algorithm for expansion is not too hard, but is pretty tricky.
/// `Bindings` structure is the key to understanding what we are doing here.
///
/// On the high level, it stores mapping from meta variables to the bits of
/// syntax it should be substituted with. For example, if `$e:expr` is matched
/// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`.
///
/// The tricky bit is dealing with repetitions (`$()*`). Consider this example:
///
/// ```not_rust
/// macro_rules! foo {
/// ($($ i:ident $($ e:expr),*);*) => {
/// $(fn $ i() { $($ e);*; })*
/// }
/// }
/// foo! { foo 1,2,3; bar 4,5,6 }
/// ```
///
/// Here, the `$i` meta variable is matched first with `foo` and then with
/// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`.
///
/// To represent such "multi-mappings", we use a recursive structures: we map
/// variables not to values, but to *lists* of values or other lists (that is,
/// to the trees).
///
/// For the above example, the bindings would store
///
/// ```not_rust
/// i -> [foo, bar]
/// e -> [[1, 2, 3], [4, 5, 6]]
/// ```
///
/// We construct `Bindings` in the `match_lhs`. The interesting case is
/// `TokenTree::Repeat`, where we use `push_nested` to create the desired
/// nesting structure.
///
/// The other side of the puzzle is `expand_subtree`, where we use the bindings
/// to substitute meta variables in the output template. When expanding, we
/// maintain a `nesting` stack of indices which tells us which occurrence from
/// the `Bindings` we should take. We push to the stack when we enter a
/// repetition.
///
/// In other words, `Bindings` is a *multi* mapping from `SmolStr` to
/// `tt::TokenTree`, where the index to select a particular `TokenTree` among
/// many is not a plain `usize`, but an `&[usize]`.
#[derive(Debug, Default)]
struct Bindings {
inner: FxHashMap<SmolStr, Binding>,
}
#[derive(Debug)]
enum Binding {
Simple(tt::TokenTree),
Nested(Vec<Binding>),
Empty,
}
impl Bindings {
fn push_optional(&mut self, name: &SmolStr) {
// FIXME: Do we have a better way to represent an empty token ?
// Insert an empty subtree for empty token
self.inner.insert(
name.clone(),
Binding::Simple(
tt::Subtree { delimiter: tt::Delimiter::None, token_trees: vec![] }.into(),
),
);
}
fn push_empty(&mut self, name: &SmolStr) {
self.inner.insert(name.clone(), Binding::Empty);
}
fn contains(&self, name: &SmolStr) -> bool {
self.inner.contains_key(name)
}
fn get(&self, name: &SmolStr, nesting: &[usize]) -> Result<&tt::TokenTree, ExpandError> {
let mut b = self.inner.get(name).ok_or_else(|| {
ExpandError::BindingError(format!("could not find binding `{}`", name))
})?;
for &idx in nesting.iter() {
b = match b {
Binding::Simple(_) => break,
Binding::Nested(bs) => bs.get(idx).ok_or_else(|| {
ExpandError::BindingError(format!("could not find nested binding `{}`", name))
})?,
Binding::Empty => {
return Err(ExpandError::BindingError(format!(
"could not find empty binding `{}`",
name
)))
}
};
}
match b {
Binding::Simple(it) => Ok(it),
Binding::Nested(_) => Err(ExpandError::BindingError(format!(
"expected simple binding, found nested binding `{}`",
name
))),
Binding::Empty => Err(ExpandError::BindingError(format!(
"expected simple binding, found empty binding `{}`",
name
))),
}
}
fn push_nested(&mut self, idx: usize, nested: Bindings) -> Result<(), ExpandError> {
for (key, value) in nested.inner {
if !self.inner.contains_key(&key) {
self.inner.insert(key.clone(), Binding::Nested(Vec::new()));
}
match self.inner.get_mut(&key) {
Some(Binding::Nested(it)) => {
// insert empty nested bindings before this one
while it.len() < idx {
it.push(Binding::Nested(vec![]));
}
it.push(value);
}
_ => {
return Err(ExpandError::BindingError(format!(
"could not find binding `{}`",
key
)));
}
}
}
Ok(())
}
fn merge(&mut self, nested: Bindings) {
self.inner.extend(nested.inner);
}
}
fn collect_vars(subtree: &crate::Subtree) -> Vec<SmolStr> {
let mut res = vec![];
for tkn in subtree.token_trees.iter() {
match tkn {
crate::TokenTree::Leaf(crate::Leaf::Var(crate::Var { text, .. })) => {
res.push(text.clone());
}
crate::TokenTree::Subtree(subtree) => {
res.extend(collect_vars(subtree));
}
crate::TokenTree::Repeat(crate::Repeat { subtree, .. }) => {
res.extend(collect_vars(subtree));
}
_ => {}
}
}
res
}
fn match_lhs(pattern: &crate::Subtree, input: &mut TtCursor) -> Result<Bindings, ExpandError> {
let mut res = Bindings::default();
for pat in pattern.token_trees.iter() {
match pat {
crate::TokenTree::Leaf(leaf) => match leaf {
crate::Leaf::Var(crate::Var { text, kind }) => {
let kind = kind.as_ref().ok_or(ExpandError::UnexpectedToken)?;
match match_meta_var(kind.as_str(), input)? {
Some(tt) => {
res.inner.insert(text.clone(), Binding::Simple(tt));
}
None => res.push_optional(text),
}
}
crate::Leaf::Punct(punct) => {
if !input.eat_punct().map(|p| p.char == punct.char).unwrap_or(false) {
return Err(ExpandError::UnexpectedToken);
}
}
crate::Leaf::Ident(ident) => {
if input.eat_ident().map(|i| &i.text) != Some(&ident.text) {
return Err(ExpandError::UnexpectedToken);
}
}
crate::Leaf::Literal(literal) => {
if input.eat_literal().map(|i| &i.text) != Some(&literal.text) {
return Err(ExpandError::UnexpectedToken);
}
}
},
crate::TokenTree::Repeat(crate::Repeat { subtree, kind, separator }) => {
// Dirty hack to make macro-expansion terminate.
// This should be replaced by a propper macro-by-example implementation
let mut limit = 65536;
let mut counter = 0;
let mut memento = input.save();
loop {
match match_lhs(subtree, input) {
Ok(nested) => {
limit -= 1;
if limit == 0 {
log::warn!("match_lhs excced in repeat pattern exceed limit => {:#?}\n{:#?}\n{:#?}\n{:#?}", subtree, input, kind, separator);
break;
}
memento = input.save();
res.push_nested(counter, nested)?;
counter += 1;
if counter == 1 {
if let crate::RepeatKind::ZeroOrOne = kind {
break;
}
}
if let Some(separator) = separator {
if !input
.eat_seperator()
.map(|sep| sep == *separator)
.unwrap_or(false)
{
input.rollback(memento);
break;
}
}
}
Err(_) => {
input.rollback(memento);
break;
}
}
}
match kind {
crate::RepeatKind::OneOrMore if counter == 0 => {
return Err(ExpandError::UnexpectedToken);
}
_ if counter == 0 => {
// Collect all empty variables in subtrees
collect_vars(subtree).iter().for_each(|s| res.push_empty(s));
}
_ => {}
}
}
crate::TokenTree::Subtree(subtree) => {
let input_subtree =
input.eat_subtree().map_err(|_| ExpandError::UnexpectedToken)?;
if subtree.delimiter != input_subtree.delimiter {
return Err(ExpandError::UnexpectedToken);
}
let mut input = TtCursor::new(input_subtree);
let bindings = match_lhs(&subtree, &mut input)?;
if !input.is_eof() {
return Err(ExpandError::UnexpectedToken);
}
res.merge(bindings);
}
}
}
Ok(res)
}
fn match_meta_var(kind: &str, input: &mut TtCursor) -> Result<Option<tt::TokenTree>, ExpandError> {
let fragment = match kind {
"path" => Path,
"expr" => Expr,
"ty" => Type,
"pat" => Pattern,
"stmt" => Statement,
"block" => Block,
"meta" => MetaItem,
"item" => Item,
_ => {
let binding = match kind {
"ident" => {
let ident = input.eat_ident().ok_or(ExpandError::UnexpectedToken)?.clone();
tt::Leaf::from(ident).into()
}
"tt" => input.eat().ok_or(ExpandError::UnexpectedToken)?.clone(),
"lifetime" => input.eat_lifetime().ok_or(ExpandError::UnexpectedToken)?.clone(),
"literal" => {
let literal = input.eat_literal().ok_or(ExpandError::UnexpectedToken)?.clone();
tt::Leaf::from(literal).into()
}
// `vis` is optional
"vis" => match input.try_eat_vis() {
Some(vis) => vis,
None => return Ok(None),
},
_ => return Err(ExpandError::UnexpectedToken),
};
return Ok(Some(binding));
}
};
let binding = input.eat_fragment(fragment).ok_or(ExpandError::UnexpectedToken)?;
Ok(Some(binding))
}
#[derive(Debug)]
struct ExpandCtx<'a> {
bindings: &'a Bindings,
nesting: Vec<usize>,
var_expanded: bool,
}
fn expand_subtree(
template: &crate::Subtree,
ctx: &mut ExpandCtx,
) -> Result<tt::Subtree, ExpandError> {
let mut buf: Vec<tt::TokenTree> = Vec::new();
for tt in template.token_trees.iter() {
let tt = expand_tt(tt, ctx)?;
push_tt(&mut buf, tt);
}
Ok(tt::Subtree { delimiter: template.delimiter, token_trees: buf })
}
/// Reduce single token subtree to single token
/// In `tt` matcher case, all tt tokens will be braced by a Delimiter::None
/// which makes all sort of problems.
fn reduce_single_token(mut subtree: tt::Subtree) -> tt::TokenTree {
if subtree.delimiter != tt::Delimiter::None || subtree.token_trees.len() != 1 {
return subtree.into();
}
match subtree.token_trees.pop().unwrap() {
tt::TokenTree::Subtree(subtree) => reduce_single_token(subtree),
tt::TokenTree::Leaf(token) => token.into(),
}
}
fn expand_tt(
template: &crate::TokenTree,
ctx: &mut ExpandCtx,
) -> Result<tt::TokenTree, ExpandError> {
let res: tt::TokenTree = match template {
crate::TokenTree::Subtree(subtree) => expand_subtree(subtree, ctx)?.into(),
crate::TokenTree::Repeat(repeat) => {
let mut buf: Vec<tt::TokenTree> = Vec::new();
ctx.nesting.push(0);
// Dirty hack to make macro-expansion terminate.
// This should be replaced by a propper macro-by-example implementation
let mut limit = 65536;
let mut has_seps = 0;
let mut counter = 0;
// We store the old var expanded value, and restore it later
// It is because before this `$repeat`,
// it is possible some variables already expanad in the same subtree
//
// `some_var_expanded` keep check if the deeper subtree has expanded variables
let mut some_var_expanded = false;
let old_var_expanded = ctx.var_expanded;
ctx.var_expanded = false;
while let Ok(t) = expand_subtree(&repeat.subtree, ctx) {
// if no var expanded in the child, we count it as a fail
if !ctx.var_expanded {
break;
}
// Reset `ctx.var_expandeded` to see if there is other expanded variable
// in the next matching
some_var_expanded = true;
ctx.var_expanded = false;
counter += 1;
limit -= 1;
if limit == 0 {
log::warn!(
"expand_tt excced in repeat pattern exceed limit => {:#?}\n{:#?}",
template,
ctx
);
break;
}
let idx = ctx.nesting.pop().unwrap();
ctx.nesting.push(idx + 1);
push_subtree(&mut buf, t);
if let Some(ref sep) = repeat.separator {
match sep {
crate::Separator::Ident(ident) => {
has_seps = 1;
buf.push(tt::Leaf::from(ident.clone()).into());
}
crate::Separator::Literal(lit) => {
has_seps = 1;
buf.push(tt::Leaf::from(lit.clone()).into());
}
crate::Separator::Puncts(puncts) => {
has_seps = puncts.len();
for punct in puncts {
buf.push(tt::Leaf::from(*punct).into());
}
}
}
}
if let crate::RepeatKind::ZeroOrOne = repeat.kind {
break;
}
}
// Restore the `var_expanded` by combining old one and the new one
ctx.var_expanded = some_var_expanded || old_var_expanded;
ctx.nesting.pop().unwrap();
for _ in 0..has_seps {
buf.pop();
}
if crate::RepeatKind::OneOrMore == repeat.kind && counter == 0 {
return Err(ExpandError::UnexpectedToken);
}
// Check if it is a single token subtree without any delimiter
// e.g {Delimiter:None> ['>'] /Delimiter:None>}
reduce_single_token(tt::Subtree { delimiter: tt::Delimiter::None, token_trees: buf })
}
crate::TokenTree::Leaf(leaf) => match leaf {
crate::Leaf::Ident(ident) => {
tt::Leaf::from(tt::Ident { text: ident.text.clone(), id: TokenId::unspecified() })
.into()
}
crate::Leaf::Punct(punct) => tt::Leaf::from(*punct).into(),
crate::Leaf::Var(v) => {
if v.text == "crate" {
// FIXME: Properly handle $crate token
tt::Leaf::from(tt::Ident { text: "$crate".into(), id: TokenId::unspecified() })
.into()
} else if !ctx.bindings.contains(&v.text) {
// Note that it is possible to have a `$var` inside a macro which is not bound.
// For example:
// ```
// macro_rules! foo {
// ($a:ident, $b:ident, $c:tt) => {
// macro_rules! bar {
// ($bi:ident) => {
// fn $bi() -> u8 {$c}
// }
// }
// }
// ```
// We just treat it a normal tokens
tt::Subtree {
delimiter: tt::Delimiter::None,
token_trees: vec![
tt::Leaf::from(tt::Punct { char: '$', spacing: tt::Spacing::Alone })
.into(),
tt::Leaf::from(tt::Ident {
text: v.text.clone(),
id: TokenId::unspecified(),
})
.into(),
],
}
.into()
} else {
let tkn = ctx.bindings.get(&v.text, &ctx.nesting)?.clone();
ctx.var_expanded = true;
if let tt::TokenTree::Subtree(subtree) = tkn {
reduce_single_token(subtree)
} else {
tkn
}
}
}
crate::Leaf::Literal(l) => tt::Leaf::from(tt::Literal { text: l.text.clone() }).into(),
},
};
Ok(res)
}
#[cfg(test)]
mod tests {
use ra_syntax::{ast, AstNode};
use super::*;
use crate::ast_to_token_tree;
#[test]
fn test_expand_rule() {
// FIXME: The missing $var check should be in parsing phase
// assert_err(
// "($i:ident) => ($j)",
// "foo!{a}",
// ExpandError::BindingError(String::from("could not find binding `j`")),
// );
assert_err(
"($($i:ident);*) => ($i)",
"foo!{a}",
ExpandError::BindingError(String::from(
"expected simple binding, found nested binding `i`",
)),
);
assert_err("($i) => ($i)", "foo!{a}", ExpandError::UnexpectedToken);
assert_err("($i:) => ($i)", "foo!{a}", ExpandError::UnexpectedToken);
// FIXME:
// Add an err test case for ($($i:ident)) => ($())
}
fn assert_err(macro_body: &str, invocation: &str, err: ExpandError) {
assert_eq!(expand_first(&create_rules(&format_macro(macro_body)), invocation), Err(err));
}
fn format_macro(macro_body: &str) -> String {
format!(
"
macro_rules! foo {{
{}
}}
",
macro_body
)
}
fn create_rules(macro_definition: &str) -> crate::MacroRules {
let source_file = ast::SourceFile::parse(macro_definition).ok().unwrap();
let macro_definition =
source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap();
let (definition_tt, _) =
ast_to_token_tree(&macro_definition.token_tree().unwrap()).unwrap();
crate::MacroRules::parse(&definition_tt).unwrap()
}
fn expand_first(
rules: &crate::MacroRules,
invocation: &str,
) -> Result<tt::Subtree, ExpandError> {
let source_file = ast::SourceFile::parse(invocation).ok().unwrap();
let macro_invocation =
source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap();
let (invocation_tt, _) =
ast_to_token_tree(&macro_invocation.token_tree().unwrap()).unwrap();
expand_rule(&rules.rules[0], &invocation_tt)
}
}
fn push_tt(buf: &mut Vec<tt::TokenTree>, tt: tt::TokenTree) {
match tt {
tt::TokenTree::Subtree(tt) => push_subtree(buf, tt),
_ => buf.push(tt),
}
}
fn push_subtree(buf: &mut Vec<tt::TokenTree>, tt: tt::Subtree) {
match tt.delimiter {
tt::Delimiter::None => buf.extend(tt.token_trees),
_ => buf.push(tt.into()),
}
}