mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-06 18:28:51 +00:00
981 lines
30 KiB
Rust
981 lines
30 KiB
Rust
//! The type system. We currently use this to infer types for completion, hover
|
|
//! information and various assists.
|
|
|
|
#[allow(unused)]
|
|
macro_rules! eprintln {
|
|
($($tt:tt)*) => { stdx::eprintln!($($tt)*) };
|
|
}
|
|
|
|
macro_rules! impl_froms {
|
|
($e:ident: $($v:ident $(($($sv:ident),*))?),*) => {
|
|
$(
|
|
impl From<$v> for $e {
|
|
fn from(it: $v) -> $e {
|
|
$e::$v(it)
|
|
}
|
|
}
|
|
$($(
|
|
impl From<$sv> for $e {
|
|
fn from(it: $sv) -> $e {
|
|
$e::$v($v::$sv(it))
|
|
}
|
|
}
|
|
)*)?
|
|
)*
|
|
}
|
|
}
|
|
|
|
mod autoderef;
|
|
pub mod primitive;
|
|
pub mod traits;
|
|
pub mod method_resolution;
|
|
mod op;
|
|
mod lower;
|
|
pub(crate) mod infer;
|
|
pub mod display;
|
|
pub(crate) mod utils;
|
|
pub mod db;
|
|
pub mod diagnostics;
|
|
pub mod expr;
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
#[cfg(test)]
|
|
mod test_db;
|
|
mod _match;
|
|
|
|
use std::ops::Deref;
|
|
use std::sync::Arc;
|
|
use std::{iter, mem};
|
|
|
|
use hir_def::{
|
|
expr::ExprId,
|
|
type_ref::{Mutability, Rawness},
|
|
AdtId, AssocContainerId, DefWithBodyId, GenericDefId, HasModule, Lookup, TraitId, TypeAliasId,
|
|
TypeParamId,
|
|
};
|
|
use ra_db::{impl_intern_key, salsa, CrateId};
|
|
|
|
use crate::{
|
|
db::HirDatabase,
|
|
primitive::{FloatTy, IntTy, Uncertain},
|
|
utils::{generics, make_mut_slice, Generics},
|
|
};
|
|
use display::HirDisplay;
|
|
|
|
pub use autoderef::autoderef;
|
|
pub use infer::{InferTy, InferenceResult};
|
|
pub use lower::CallableDef;
|
|
pub use lower::{
|
|
associated_type_shorthand_candidates, callable_item_sig, ImplTraitLoweringMode, TyDefId,
|
|
TyLoweringContext, ValueTyDefId,
|
|
};
|
|
pub use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};
|
|
|
|
pub use chalk_ir::{BoundVar, DebruijnIndex};
|
|
|
|
/// A type constructor or type name: this might be something like the primitive
|
|
/// type `bool`, a struct like `Vec`, or things like function pointers or
|
|
/// tuples.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub enum TypeCtor {
|
|
/// The primitive boolean type. Written as `bool`.
|
|
Bool,
|
|
|
|
/// The primitive character type; holds a Unicode scalar value
|
|
/// (a non-surrogate code point). Written as `char`.
|
|
Char,
|
|
|
|
/// A primitive integer type. For example, `i32`.
|
|
Int(Uncertain<IntTy>),
|
|
|
|
/// A primitive floating-point type. For example, `f64`.
|
|
Float(Uncertain<FloatTy>),
|
|
|
|
/// Structures, enumerations and unions.
|
|
Adt(AdtId),
|
|
|
|
/// The pointee of a string slice. Written as `str`.
|
|
Str,
|
|
|
|
/// The pointee of an array slice. Written as `[T]`.
|
|
Slice,
|
|
|
|
/// An array with the given length. Written as `[T; n]`.
|
|
Array,
|
|
|
|
/// A raw pointer. Written as `*mut T` or `*const T`
|
|
RawPtr(Mutability),
|
|
|
|
/// A reference; a pointer with an associated lifetime. Written as
|
|
/// `&'a mut T` or `&'a T`.
|
|
Ref(Mutability),
|
|
|
|
/// The anonymous type of a function declaration/definition. Each
|
|
/// function has a unique type, which is output (for a function
|
|
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
|
|
///
|
|
/// This includes tuple struct / enum variant constructors as well.
|
|
///
|
|
/// For example the type of `bar` here:
|
|
///
|
|
/// ```
|
|
/// fn foo() -> i32 { 1 }
|
|
/// let bar = foo; // bar: fn() -> i32 {foo}
|
|
/// ```
|
|
FnDef(CallableDef),
|
|
|
|
/// A pointer to a function. Written as `fn() -> i32`.
|
|
///
|
|
/// For example the type of `bar` here:
|
|
///
|
|
/// ```
|
|
/// fn foo() -> i32 { 1 }
|
|
/// let bar: fn() -> i32 = foo;
|
|
/// ```
|
|
FnPtr { num_args: u16 },
|
|
|
|
/// The never type `!`.
|
|
Never,
|
|
|
|
/// A tuple type. For example, `(i32, bool)`.
|
|
Tuple { cardinality: u16 },
|
|
|
|
/// Represents an associated item like `Iterator::Item`. This is used
|
|
/// when we have tried to normalize a projection like `T::Item` but
|
|
/// couldn't find a better representation. In that case, we generate
|
|
/// an **application type** like `(Iterator::Item)<T>`.
|
|
AssociatedType(TypeAliasId),
|
|
|
|
/// The type of a specific closure.
|
|
///
|
|
/// The closure signature is stored in a `FnPtr` type in the first type
|
|
/// parameter.
|
|
Closure { def: DefWithBodyId, expr: ExprId },
|
|
}
|
|
|
|
/// This exists just for Chalk, because Chalk just has a single `StructId` where
|
|
/// we have different kinds of ADTs, primitive types and special type
|
|
/// constructors like tuples and function pointers.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
|
|
pub struct TypeCtorId(salsa::InternId);
|
|
impl_intern_key!(TypeCtorId);
|
|
|
|
/// This exists just for Chalk, because Chalk just has a single `FnDefId` where
|
|
/// we have different IDs for struct and enum variant constructors.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
|
|
pub struct CallableDefId(salsa::InternId);
|
|
impl_intern_key!(CallableDefId);
|
|
|
|
impl TypeCtor {
|
|
pub fn num_ty_params(self, db: &dyn HirDatabase) -> usize {
|
|
match self {
|
|
TypeCtor::Bool
|
|
| TypeCtor::Char
|
|
| TypeCtor::Int(_)
|
|
| TypeCtor::Float(_)
|
|
| TypeCtor::Str
|
|
| TypeCtor::Never => 0,
|
|
TypeCtor::Slice
|
|
| TypeCtor::Array
|
|
| TypeCtor::RawPtr(_)
|
|
| TypeCtor::Ref(_)
|
|
| TypeCtor::Closure { .. } // 1 param representing the signature of the closure
|
|
=> 1,
|
|
TypeCtor::Adt(adt) => {
|
|
let generic_params = generics(db.upcast(), adt.into());
|
|
generic_params.len()
|
|
}
|
|
TypeCtor::FnDef(callable) => {
|
|
let generic_params = generics(db.upcast(), callable.into());
|
|
generic_params.len()
|
|
}
|
|
TypeCtor::AssociatedType(type_alias) => {
|
|
let generic_params = generics(db.upcast(), type_alias.into());
|
|
generic_params.len()
|
|
}
|
|
TypeCtor::FnPtr { num_args } => num_args as usize + 1,
|
|
TypeCtor::Tuple { cardinality } => cardinality as usize,
|
|
}
|
|
}
|
|
|
|
pub fn krate(self, db: &dyn HirDatabase) -> Option<CrateId> {
|
|
match self {
|
|
TypeCtor::Bool
|
|
| TypeCtor::Char
|
|
| TypeCtor::Int(_)
|
|
| TypeCtor::Float(_)
|
|
| TypeCtor::Str
|
|
| TypeCtor::Never
|
|
| TypeCtor::Slice
|
|
| TypeCtor::Array
|
|
| TypeCtor::RawPtr(_)
|
|
| TypeCtor::Ref(_)
|
|
| TypeCtor::FnPtr { .. }
|
|
| TypeCtor::Tuple { .. } => None,
|
|
// Closure's krate is irrelevant for coherence I would think?
|
|
TypeCtor::Closure { .. } => None,
|
|
TypeCtor::Adt(adt) => Some(adt.module(db.upcast()).krate),
|
|
TypeCtor::FnDef(callable) => Some(callable.krate(db)),
|
|
TypeCtor::AssociatedType(type_alias) => {
|
|
Some(type_alias.lookup(db.upcast()).module(db.upcast()).krate)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn as_generic_def(self) -> Option<GenericDefId> {
|
|
match self {
|
|
TypeCtor::Bool
|
|
| TypeCtor::Char
|
|
| TypeCtor::Int(_)
|
|
| TypeCtor::Float(_)
|
|
| TypeCtor::Str
|
|
| TypeCtor::Never
|
|
| TypeCtor::Slice
|
|
| TypeCtor::Array
|
|
| TypeCtor::RawPtr(_)
|
|
| TypeCtor::Ref(_)
|
|
| TypeCtor::FnPtr { .. }
|
|
| TypeCtor::Tuple { .. }
|
|
| TypeCtor::Closure { .. } => None,
|
|
TypeCtor::Adt(adt) => Some(adt.into()),
|
|
TypeCtor::FnDef(callable) => Some(callable.into()),
|
|
TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A nominal type with (maybe 0) type parameters. This might be a primitive
|
|
/// type like `bool`, a struct, tuple, function pointer, reference or
|
|
/// several other things.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct ApplicationTy {
|
|
pub ctor: TypeCtor,
|
|
pub parameters: Substs,
|
|
}
|
|
|
|
/// A "projection" type corresponds to an (unnormalized)
|
|
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
|
|
/// trait and all its parameters are fully known.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct ProjectionTy {
|
|
pub associated_ty: TypeAliasId,
|
|
pub parameters: Substs,
|
|
}
|
|
|
|
impl ProjectionTy {
|
|
pub fn trait_ref(&self, db: &dyn HirDatabase) -> TraitRef {
|
|
TraitRef { trait_: self.trait_(db), substs: self.parameters.clone() }
|
|
}
|
|
|
|
fn trait_(&self, db: &dyn HirDatabase) -> TraitId {
|
|
match self.associated_ty.lookup(db.upcast()).container {
|
|
AssocContainerId::TraitId(it) => it,
|
|
_ => panic!("projection ty without parent trait"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl TypeWalk for ProjectionTy {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
self.parameters.walk(f);
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
self.parameters.walk_mut_binders(f, binders);
|
|
}
|
|
}
|
|
|
|
/// A type.
|
|
///
|
|
/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
|
|
/// the same thing (but in a different way).
|
|
///
|
|
/// This should be cheap to clone.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub enum Ty {
|
|
/// A nominal type with (maybe 0) type parameters. This might be a primitive
|
|
/// type like `bool`, a struct, tuple, function pointer, reference or
|
|
/// several other things.
|
|
Apply(ApplicationTy),
|
|
|
|
/// A "projection" type corresponds to an (unnormalized)
|
|
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
|
|
/// trait and all its parameters are fully known.
|
|
Projection(ProjectionTy),
|
|
|
|
/// A placeholder for a type parameter; for example, `T` in `fn f<T>(x: T)
|
|
/// {}` when we're type-checking the body of that function. In this
|
|
/// situation, we know this stands for *some* type, but don't know the exact
|
|
/// type.
|
|
Placeholder(TypeParamId),
|
|
|
|
/// A bound type variable. This is used in various places: when representing
|
|
/// some polymorphic type like the type of function `fn f<T>`, the type
|
|
/// parameters get turned into variables; during trait resolution, inference
|
|
/// variables get turned into bound variables and back; and in `Dyn` the
|
|
/// `Self` type is represented with a bound variable as well.
|
|
Bound(BoundVar),
|
|
|
|
/// A type variable used during type checking.
|
|
Infer(InferTy),
|
|
|
|
/// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
|
|
///
|
|
/// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
|
|
/// represents the `Self` type inside the bounds. This is currently
|
|
/// implicit; Chalk has the `Binders` struct to make it explicit, but it
|
|
/// didn't seem worth the overhead yet.
|
|
Dyn(Arc<[GenericPredicate]>),
|
|
|
|
/// An opaque type (`impl Trait`).
|
|
///
|
|
/// The predicates are quantified over the `Self` type; see `Ty::Dyn` for
|
|
/// more.
|
|
Opaque(Arc<[GenericPredicate]>),
|
|
|
|
/// A placeholder for a type which could not be computed; this is propagated
|
|
/// to avoid useless error messages. Doubles as a placeholder where type
|
|
/// variables are inserted before type checking, since we want to try to
|
|
/// infer a better type here anyway -- for the IDE use case, we want to try
|
|
/// to infer as much as possible even in the presence of type errors.
|
|
Unknown,
|
|
}
|
|
|
|
/// A list of substitutions for generic parameters.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct Substs(Arc<[Ty]>);
|
|
|
|
impl TypeWalk for Substs {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
for t in self.0.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
for t in make_mut_slice(&mut self.0) {
|
|
t.walk_mut_binders(f, binders);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Substs {
|
|
pub fn empty() -> Substs {
|
|
Substs(Arc::new([]))
|
|
}
|
|
|
|
pub fn single(ty: Ty) -> Substs {
|
|
Substs(Arc::new([ty]))
|
|
}
|
|
|
|
pub fn prefix(&self, n: usize) -> Substs {
|
|
Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
|
|
}
|
|
|
|
pub fn suffix(&self, n: usize) -> Substs {
|
|
Substs(self.0[self.0.len() - std::cmp::min(self.0.len(), n)..].into())
|
|
}
|
|
|
|
pub fn as_single(&self) -> &Ty {
|
|
if self.0.len() != 1 {
|
|
panic!("expected substs of len 1, got {:?}", self);
|
|
}
|
|
&self.0[0]
|
|
}
|
|
|
|
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
|
|
pub(crate) fn type_params_for_generics(generic_params: &Generics) -> Substs {
|
|
Substs(generic_params.iter().map(|(id, _)| Ty::Placeholder(id)).collect())
|
|
}
|
|
|
|
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
|
|
pub fn type_params(db: &dyn HirDatabase, def: impl Into<GenericDefId>) -> Substs {
|
|
let params = generics(db.upcast(), def.into());
|
|
Substs::type_params_for_generics(¶ms)
|
|
}
|
|
|
|
/// Return Substs that replace each parameter by a bound variable.
|
|
pub(crate) fn bound_vars(generic_params: &Generics, debruijn: DebruijnIndex) -> Substs {
|
|
Substs(
|
|
generic_params
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(idx, _)| Ty::Bound(BoundVar::new(debruijn, idx)))
|
|
.collect(),
|
|
)
|
|
}
|
|
|
|
pub fn build_for_def(db: &dyn HirDatabase, def: impl Into<GenericDefId>) -> SubstsBuilder {
|
|
let def = def.into();
|
|
let params = generics(db.upcast(), def);
|
|
let param_count = params.len();
|
|
Substs::builder(param_count)
|
|
}
|
|
|
|
pub(crate) fn build_for_generics(generic_params: &Generics) -> SubstsBuilder {
|
|
Substs::builder(generic_params.len())
|
|
}
|
|
|
|
pub fn build_for_type_ctor(db: &dyn HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
|
|
Substs::builder(type_ctor.num_ty_params(db))
|
|
}
|
|
|
|
fn builder(param_count: usize) -> SubstsBuilder {
|
|
SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
|
|
}
|
|
}
|
|
|
|
/// Return an index of a parameter in the generic type parameter list by it's id.
|
|
pub fn param_idx(db: &dyn HirDatabase, id: TypeParamId) -> Option<usize> {
|
|
generics(db.upcast(), id.parent).param_idx(id)
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct SubstsBuilder {
|
|
vec: Vec<Ty>,
|
|
param_count: usize,
|
|
}
|
|
|
|
impl SubstsBuilder {
|
|
pub fn build(self) -> Substs {
|
|
assert_eq!(self.vec.len(), self.param_count);
|
|
Substs(self.vec.into())
|
|
}
|
|
|
|
pub fn push(mut self, ty: Ty) -> Self {
|
|
self.vec.push(ty);
|
|
self
|
|
}
|
|
|
|
fn remaining(&self) -> usize {
|
|
self.param_count - self.vec.len()
|
|
}
|
|
|
|
pub fn fill_with_bound_vars(self, debruijn: DebruijnIndex, starting_from: usize) -> Self {
|
|
self.fill((starting_from..).map(|idx| Ty::Bound(BoundVar::new(debruijn, idx))))
|
|
}
|
|
|
|
pub fn fill_with_unknown(self) -> Self {
|
|
self.fill(iter::repeat(Ty::Unknown))
|
|
}
|
|
|
|
pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
|
|
self.vec.extend(filler.take(self.remaining()));
|
|
assert_eq!(self.remaining(), 0);
|
|
self
|
|
}
|
|
|
|
pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
|
|
assert!(self.vec.is_empty());
|
|
assert!(parent_substs.len() <= self.param_count);
|
|
self.vec.extend(parent_substs.iter().cloned());
|
|
self
|
|
}
|
|
}
|
|
|
|
impl Deref for Substs {
|
|
type Target = [Ty];
|
|
|
|
fn deref(&self) -> &[Ty] {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct Binders<T> {
|
|
pub num_binders: usize,
|
|
pub value: T,
|
|
}
|
|
|
|
impl<T> Binders<T> {
|
|
pub fn new(num_binders: usize, value: T) -> Self {
|
|
Self { num_binders, value }
|
|
}
|
|
|
|
pub fn as_ref(&self) -> Binders<&T> {
|
|
Binders { num_binders: self.num_binders, value: &self.value }
|
|
}
|
|
|
|
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> Binders<U> {
|
|
Binders { num_binders: self.num_binders, value: f(self.value) }
|
|
}
|
|
|
|
pub fn filter_map<U>(self, f: impl FnOnce(T) -> Option<U>) -> Option<Binders<U>> {
|
|
Some(Binders { num_binders: self.num_binders, value: f(self.value)? })
|
|
}
|
|
}
|
|
|
|
impl<T: Clone> Binders<&T> {
|
|
pub fn cloned(&self) -> Binders<T> {
|
|
Binders { num_binders: self.num_binders, value: self.value.clone() }
|
|
}
|
|
}
|
|
|
|
impl<T: TypeWalk> Binders<T> {
|
|
/// Substitutes all variables.
|
|
pub fn subst(self, subst: &Substs) -> T {
|
|
assert_eq!(subst.len(), self.num_binders);
|
|
self.value.subst_bound_vars(subst)
|
|
}
|
|
|
|
/// Substitutes just a prefix of the variables (shifting the rest).
|
|
pub fn subst_prefix(self, subst: &Substs) -> Binders<T> {
|
|
assert!(subst.len() < self.num_binders);
|
|
Binders::new(self.num_binders - subst.len(), self.value.subst_bound_vars(subst))
|
|
}
|
|
}
|
|
|
|
/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
|
|
/// Name to be bikeshedded: TraitBound? TraitImplements?
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct TraitRef {
|
|
/// FIXME name?
|
|
pub trait_: TraitId,
|
|
pub substs: Substs,
|
|
}
|
|
|
|
impl TraitRef {
|
|
pub fn self_ty(&self) -> &Ty {
|
|
&self.substs[0]
|
|
}
|
|
}
|
|
|
|
impl TypeWalk for TraitRef {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
self.substs.walk(f);
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
self.substs.walk_mut_binders(f, binders);
|
|
}
|
|
}
|
|
|
|
/// Like `generics::WherePredicate`, but with resolved types: A condition on the
|
|
/// parameters of a generic item.
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub enum GenericPredicate {
|
|
/// The given trait needs to be implemented for its type parameters.
|
|
Implemented(TraitRef),
|
|
/// An associated type bindings like in `Iterator<Item = T>`.
|
|
Projection(ProjectionPredicate),
|
|
/// We couldn't resolve the trait reference. (If some type parameters can't
|
|
/// be resolved, they will just be Unknown).
|
|
Error,
|
|
}
|
|
|
|
impl GenericPredicate {
|
|
pub fn is_error(&self) -> bool {
|
|
match self {
|
|
GenericPredicate::Error => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn is_implemented(&self) -> bool {
|
|
match self {
|
|
GenericPredicate::Implemented(_) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn trait_ref(&self, db: &dyn HirDatabase) -> Option<TraitRef> {
|
|
match self {
|
|
GenericPredicate::Implemented(tr) => Some(tr.clone()),
|
|
GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
|
|
GenericPredicate::Error => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl TypeWalk for GenericPredicate {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
match self {
|
|
GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
|
|
GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
|
|
GenericPredicate::Error => {}
|
|
}
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
match self {
|
|
GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
|
|
GenericPredicate::Projection(projection_pred) => {
|
|
projection_pred.walk_mut_binders(f, binders)
|
|
}
|
|
GenericPredicate::Error => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Basically a claim (currently not validated / checked) that the contained
|
|
/// type / trait ref contains no inference variables; any inference variables it
|
|
/// contained have been replaced by bound variables, and `num_vars` tells us how
|
|
/// many there are. This is used to erase irrelevant differences between types
|
|
/// before using them in queries.
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub struct Canonical<T> {
|
|
pub value: T,
|
|
pub num_vars: usize,
|
|
}
|
|
|
|
/// A function signature as seen by type inference: Several parameter types and
|
|
/// one return type.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct FnSig {
|
|
params_and_return: Arc<[Ty]>,
|
|
}
|
|
|
|
/// A polymorphic function signature.
|
|
pub type PolyFnSig = Binders<FnSig>;
|
|
|
|
impl FnSig {
|
|
pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
|
|
params.push(ret);
|
|
FnSig { params_and_return: params.into() }
|
|
}
|
|
|
|
pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
|
|
FnSig { params_and_return: Arc::clone(&substs.0) }
|
|
}
|
|
|
|
pub fn params(&self) -> &[Ty] {
|
|
&self.params_and_return[0..self.params_and_return.len() - 1]
|
|
}
|
|
|
|
pub fn ret(&self) -> &Ty {
|
|
&self.params_and_return[self.params_and_return.len() - 1]
|
|
}
|
|
}
|
|
|
|
impl TypeWalk for FnSig {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
for t in self.params_and_return.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
for t in make_mut_slice(&mut self.params_and_return) {
|
|
t.walk_mut_binders(f, binders);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Ty {
|
|
pub fn simple(ctor: TypeCtor) -> Ty {
|
|
Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
|
|
}
|
|
pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
|
|
Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
|
|
}
|
|
pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
|
|
Ty::Apply(ApplicationTy { ctor, parameters })
|
|
}
|
|
pub fn unit() -> Self {
|
|
Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
|
|
}
|
|
pub fn fn_ptr(sig: FnSig) -> Self {
|
|
Ty::apply(
|
|
TypeCtor::FnPtr { num_args: sig.params().len() as u16 },
|
|
Substs(sig.params_and_return),
|
|
)
|
|
}
|
|
|
|
pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
|
|
Some((parameters.as_single(), *mutability))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn as_reference_or_ptr(&self) -> Option<(&Ty, Rawness, Mutability)> {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
|
|
Some((parameters.as_single(), Rawness::Ref, *mutability))
|
|
}
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::RawPtr(mutability), parameters }) => {
|
|
Some((parameters.as_single(), Rawness::RawPtr, *mutability))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn strip_references(&self) -> &Ty {
|
|
let mut t: &Ty = self;
|
|
|
|
while let Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(_mutability), parameters }) = t {
|
|
t = parameters.as_single();
|
|
}
|
|
|
|
t
|
|
}
|
|
|
|
pub fn as_adt(&self) -> Option<(AdtId, &Substs)> {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
|
|
Some((*adt_def, parameters))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn as_tuple(&self) -> Option<&Substs> {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
|
|
Some(parameters)
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
|
|
Some((*callable_def, parameters))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn is_never(&self) -> bool {
|
|
matches!(self, Ty::Apply(ApplicationTy { ctor: TypeCtor::Never, .. }))
|
|
}
|
|
|
|
/// If this is a `dyn Trait` type, this returns the `Trait` part.
|
|
pub fn dyn_trait_ref(&self) -> Option<&TraitRef> {
|
|
match self {
|
|
Ty::Dyn(bounds) => bounds.get(0).and_then(|b| match b {
|
|
GenericPredicate::Implemented(trait_ref) => Some(trait_ref),
|
|
_ => None,
|
|
}),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn builtin_deref(&self) -> Option<Ty> {
|
|
match self {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
|
|
TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn callable_sig(&self, db: &dyn HirDatabase) -> Option<FnSig> {
|
|
match self {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
|
|
TypeCtor::FnDef(def) => {
|
|
let sig = db.callable_item_signature(def);
|
|
Some(sig.subst(&a_ty.parameters))
|
|
}
|
|
TypeCtor::Closure { .. } => {
|
|
let sig_param = &a_ty.parameters[0];
|
|
sig_param.callable_sig(db)
|
|
}
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// If this is a type with type parameters (an ADT or function), replaces
|
|
/// the `Substs` for these type parameters with the given ones. (So e.g. if
|
|
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
|
|
/// `Option<u32>` afterwards.)
|
|
pub fn apply_substs(self, substs: Substs) -> Ty {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
|
|
assert_eq!(previous_substs.len(), substs.len());
|
|
Ty::Apply(ApplicationTy { ctor, parameters: substs })
|
|
}
|
|
_ => self,
|
|
}
|
|
}
|
|
|
|
/// Returns the type parameters of this type if it has some (i.e. is an ADT
|
|
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
|
|
pub fn substs(&self) -> Option<Substs> {
|
|
match self {
|
|
Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// If this is a `dyn Trait`, returns that trait.
|
|
pub fn dyn_trait(&self) -> Option<TraitId> {
|
|
match self {
|
|
Ty::Dyn(predicates) => predicates.iter().find_map(|pred| match pred {
|
|
GenericPredicate::Implemented(tr) => Some(tr.trait_),
|
|
_ => None,
|
|
}),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This allows walking structures that contain types to do something with those
|
|
/// types, similar to Chalk's `Fold` trait.
|
|
pub trait TypeWalk {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty));
|
|
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
|
|
self.walk_mut_binders(&mut |ty, _binders| f(ty), DebruijnIndex::INNERMOST);
|
|
}
|
|
/// Walk the type, counting entered binders.
|
|
///
|
|
/// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
|
|
/// to the innermost binder, 1 to the next, etc.. So when we want to
|
|
/// substitute a certain bound variable, we can't just walk the whole type
|
|
/// and blindly replace each instance of a certain index; when we 'enter'
|
|
/// things that introduce new bound variables, we have to keep track of
|
|
/// that. Currently, the only thing that introduces bound variables on our
|
|
/// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
|
|
/// variable for the self type.
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
);
|
|
|
|
fn fold_binders(
|
|
mut self,
|
|
f: &mut impl FnMut(Ty, DebruijnIndex) -> Ty,
|
|
binders: DebruijnIndex,
|
|
) -> Self
|
|
where
|
|
Self: Sized,
|
|
{
|
|
self.walk_mut_binders(
|
|
&mut |ty_mut, binders| {
|
|
let ty = mem::replace(ty_mut, Ty::Unknown);
|
|
*ty_mut = f(ty, binders);
|
|
},
|
|
binders,
|
|
);
|
|
self
|
|
}
|
|
|
|
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
|
|
where
|
|
Self: Sized,
|
|
{
|
|
self.walk_mut(&mut |ty_mut| {
|
|
let ty = mem::replace(ty_mut, Ty::Unknown);
|
|
*ty_mut = f(ty);
|
|
});
|
|
self
|
|
}
|
|
|
|
/// Substitutes `Ty::Bound` vars with the given substitution.
|
|
fn subst_bound_vars(self, substs: &Substs) -> Self
|
|
where
|
|
Self: Sized,
|
|
{
|
|
self.subst_bound_vars_at_depth(substs, DebruijnIndex::INNERMOST)
|
|
}
|
|
|
|
/// Substitutes `Ty::Bound` vars with the given substitution.
|
|
fn subst_bound_vars_at_depth(mut self, substs: &Substs, depth: DebruijnIndex) -> Self
|
|
where
|
|
Self: Sized,
|
|
{
|
|
self.walk_mut_binders(
|
|
&mut |ty, binders| {
|
|
if let &mut Ty::Bound(bound) = ty {
|
|
if bound.debruijn >= binders {
|
|
*ty = substs.0[bound.index].clone().shift_bound_vars(binders);
|
|
}
|
|
}
|
|
},
|
|
depth,
|
|
);
|
|
self
|
|
}
|
|
|
|
/// Shifts up debruijn indices of `Ty::Bound` vars by `n`.
|
|
fn shift_bound_vars(self, n: DebruijnIndex) -> Self
|
|
where
|
|
Self: Sized,
|
|
{
|
|
self.fold_binders(
|
|
&mut |ty, binders| match ty {
|
|
Ty::Bound(bound) if bound.debruijn >= binders => {
|
|
Ty::Bound(bound.shifted_in_from(n))
|
|
}
|
|
ty => ty,
|
|
},
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl TypeWalk for Ty {
|
|
fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
match self {
|
|
Ty::Apply(a_ty) => {
|
|
for t in a_ty.parameters.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
Ty::Projection(p_ty) => {
|
|
for t in p_ty.parameters.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
|
|
for p in predicates.iter() {
|
|
p.walk(f);
|
|
}
|
|
}
|
|
Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
|
|
}
|
|
f(self);
|
|
}
|
|
|
|
fn walk_mut_binders(
|
|
&mut self,
|
|
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
|
|
binders: DebruijnIndex,
|
|
) {
|
|
match self {
|
|
Ty::Apply(a_ty) => {
|
|
a_ty.parameters.walk_mut_binders(f, binders);
|
|
}
|
|
Ty::Projection(p_ty) => {
|
|
p_ty.parameters.walk_mut_binders(f, binders);
|
|
}
|
|
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
|
|
for p in make_mut_slice(predicates) {
|
|
p.walk_mut_binders(f, binders.shifted_in());
|
|
}
|
|
}
|
|
Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
|
|
}
|
|
f(self, binders);
|
|
}
|
|
}
|