rust-analyzer/crates/ra_hir_ty/src/_match.rs

2085 lines
62 KiB
Rust

//! This module implements match statement exhaustiveness checking and usefulness checking
//! for match arms.
//!
//! It is modeled on the rustc module `librustc_mir_build::hair::pattern::_match`, which
//! contains very detailed documentation about the algorithms used here. I've duplicated
//! most of that documentation below.
//!
//! This file includes the logic for exhaustiveness and usefulness checking for
//! pattern-matching. Specifically, given a list of patterns for a type, we can
//! tell whether:
//! (a) the patterns cover every possible constructor for the type [exhaustiveness]
//! (b) each pattern is necessary [usefulness]
//!
//! The algorithm implemented here is a modified version of the one described in:
//! http://moscova.inria.fr/~maranget/papers/warn/index.html
//! However, to save future implementors from reading the original paper, we
//! summarise the algorithm here to hopefully save time and be a little clearer
//! (without being so rigorous).
//!
//! The core of the algorithm revolves about a "usefulness" check. In particular, we
//! are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
//! a matrix). `U(P, p)` represents whether, given an existing list of patterns
//! `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
//! uncovered values of the type).
//!
//! If we have this predicate, then we can easily compute both exhaustiveness of an
//! entire set of patterns and the individual usefulness of each one.
//! (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
//! match doesn't increase the number of values we're matching)
//! (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
//! pattern to those that have come before it doesn't increase the number of values
//! we're matching).
//!
//! During the course of the algorithm, the rows of the matrix won't just be individual patterns,
//! but rather partially-deconstructed patterns in the form of a list of patterns. The paper
//! calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
//! new pattern `p`.
//!
//! For example, say we have the following:
//! ```
//! // x: (Option<bool>, Result<()>)
//! match x {
//! (Some(true), _) => {}
//! (None, Err(())) => {}
//! (None, Err(_)) => {}
//! }
//! ```
//! Here, the matrix `P` starts as:
//! [
//! [(Some(true), _)],
//! [(None, Err(()))],
//! [(None, Err(_))],
//! ]
//! We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
//! `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
//! all the values it covers are already covered by row 2.
//!
//! A list of patterns can be thought of as a stack, because we are mainly interested in the top of
//! the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
//! To match the paper, the top of the stack is at the beginning / on the left.
//!
//! There are two important operations on pattern-stacks necessary to understand the algorithm:
//! 1. We can pop a given constructor off the top of a stack. This operation is called
//! `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
//! `None`) and `p` a pattern-stack.
//! If the pattern on top of the stack can cover `c`, this removes the constructor and
//! pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
//! Otherwise the pattern-stack is discarded.
//! This essentially filters those pattern-stacks whose top covers the constructor `c` and
//! discards the others.
//!
//! For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
//! pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
//! `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
//! nothing back.
//!
//! This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
//! on top of the stack, and we have four cases:
//! 1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
//! push onto the stack the arguments of this constructor, and return the result:
//! r_1, .., r_a, p_2, .., p_n
//! 1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
//! return nothing.
//! 1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
//! arguments (its arity), and return the resulting stack:
//! _, .., _, p_2, .., p_n
//! 1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
//! stack:
//! S(c, (r_1, p_2, .., p_n))
//! S(c, (r_2, p_2, .., p_n))
//!
//! 2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
//! a pattern-stack.
//! This is used when we know there are missing constructor cases, but there might be
//! existing wildcard patterns, so to check the usefulness of the matrix, we have to check
//! all its *other* components.
//!
//! It is computed as follows. We look at the pattern `p_1` on top of the stack,
//! and we have three cases:
//! 1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
//! 1.2. `p_1 = _`. We return the rest of the stack:
//! p_2, .., p_n
//! 1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
//! stack.
//! D((r_1, p_2, .., p_n))
//! D((r_2, p_2, .., p_n))
//!
//! Note that the OR-patterns are not always used directly in Rust, but are used to derive the
//! exhaustive integer matching rules, so they're written here for posterity.
//!
//! Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
//! working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
//! the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
//!
//!
//! The algorithm for computing `U`
//! -------------------------------
//! The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
//! That means we're going to check the components from left-to-right, so the algorithm
//! operates principally on the first component of the matrix and new pattern-stack `p`.
//! This algorithm is realised in the `is_useful` function.
//!
//! Base case. (`n = 0`, i.e., an empty tuple pattern)
//! - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`),
//! then `U(P, p)` is false.
//! - Otherwise, `P` must be empty, so `U(P, p)` is true.
//!
//! Inductive step. (`n > 0`, i.e., whether there's at least one column
//! [which may then be expanded into further columns later])
//! We're going to match on the top of the new pattern-stack, `p_1`.
//! - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
//! Then, the usefulness of `p_1` can be reduced to whether it is useful when
//! we ignore all the patterns in the first column of `P` that involve other constructors.
//! This is where `S(c, P)` comes in:
//! `U(P, p) := U(S(c, P), S(c, p))`
//! This special case is handled in `is_useful_specialized`.
//!
//! For example, if `P` is:
//! [
//! [Some(true), _],
//! [None, 0],
//! ]
//! and `p` is [Some(false), 0], then we don't care about row 2 since we know `p` only
//! matches values that row 2 doesn't. For row 1 however, we need to dig into the
//! arguments of `Some` to know whether some new value is covered. So we compute
//! `U([[true, _]], [false, 0])`.
//!
//! - If `p_1 == _`, then we look at the list of constructors that appear in the first
//! component of the rows of `P`:
//! + If there are some constructors that aren't present, then we might think that the
//! wildcard `_` is useful, since it covers those constructors that weren't covered
//! before.
//! That's almost correct, but only works if there were no wildcards in those first
//! components. So we need to check that `p` is useful with respect to the rows that
//! start with a wildcard, if there are any. This is where `D` comes in:
//! `U(P, p) := U(D(P), D(p))`
//!
//! For example, if `P` is:
//! [
//! [_, true, _],
//! [None, false, 1],
//! ]
//! and `p` is [_, false, _], the `Some` constructor doesn't appear in `P`. So if we
//! only had row 2, we'd know that `p` is useful. However row 1 starts with a
//! wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
//!
//! + Otherwise, all possible constructors (for the relevant type) are present. In this
//! case we must check whether the wildcard pattern covers any unmatched value. For
//! that, we can think of the `_` pattern as a big OR-pattern that covers all
//! possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
//! example. The wildcard pattern is useful in this case if it is useful when
//! specialized to one of the possible constructors. So we compute:
//! `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
//!
//! For example, if `P` is:
//! [
//! [Some(true), _],
//! [None, false],
//! ]
//! and `p` is [_, false], both `None` and `Some` constructors appear in the first
//! components of `P`. We will therefore try popping both constructors in turn: we
//! compute U([[true, _]], [_, false]) for the `Some` constructor, and U([[false]],
//! [false]) for the `None` constructor. The first case returns true, so we know that
//! `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
//! before.
//!
//! - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
//! `U(P, p) := U(P, (r_1, p_2, .., p_n))
//! || U(P, (r_2, p_2, .., p_n))`
use std::sync::Arc;
use smallvec::{smallvec, SmallVec};
use crate::{
db::HirDatabase,
expr::{Body, Expr, Literal, Pat, PatId},
ApplicationTy, InferenceResult, Ty, TypeCtor,
};
use hir_def::{adt::VariantData, AdtId, EnumVariantId, VariantId};
use ra_arena::Idx;
#[derive(Debug, Clone, Copy)]
/// Either a pattern from the source code being analyzed, represented as
/// as `PatId`, or a `Wild` pattern which is created as an intermediate
/// step in the match checking algorithm and thus is not backed by a
/// real `PatId`.
///
/// Note that it is totally valid for the `PatId` variant to contain
/// a `PatId` which resolves to a `Wild` pattern, if that wild pattern
/// exists in the source code being analyzed.
enum PatIdOrWild {
PatId(PatId),
Wild,
}
impl PatIdOrWild {
fn as_pat(self, cx: &MatchCheckCtx) -> Pat {
match self {
PatIdOrWild::PatId(id) => cx.body.pats[id].clone(),
PatIdOrWild::Wild => Pat::Wild,
}
}
fn as_id(self) -> Option<PatId> {
match self {
PatIdOrWild::PatId(id) => Some(id),
PatIdOrWild::Wild => None,
}
}
}
impl From<PatId> for PatIdOrWild {
fn from(pat_id: PatId) -> Self {
Self::PatId(pat_id)
}
}
impl From<&PatId> for PatIdOrWild {
fn from(pat_id: &PatId) -> Self {
Self::PatId(*pat_id)
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum MatchCheckErr {
NotImplemented,
MalformedMatchArm,
/// Used when type inference cannot resolve the type of
/// a pattern or expression.
Unknown,
}
/// The return type of `is_useful` is either an indication of usefulness
/// of the match arm, or an error in the case the match statement
/// is made up of types for which exhaustiveness checking is currently
/// not completely implemented.
///
/// The `std::result::Result` type is used here rather than a custom enum
/// to allow the use of `?`.
pub type MatchCheckResult<T> = Result<T, MatchCheckErr>;
#[derive(Debug)]
/// A row in a Matrix.
///
/// This type is modeled from the struct of the same name in `rustc`.
pub(crate) struct PatStack(PatStackInner);
type PatStackInner = SmallVec<[PatIdOrWild; 2]>;
impl PatStack {
pub(crate) fn from_pattern(pat_id: PatId) -> PatStack {
Self(smallvec!(pat_id.into()))
}
pub(crate) fn from_wild() -> PatStack {
Self(smallvec!(PatIdOrWild::Wild))
}
fn from_slice(slice: &[PatIdOrWild]) -> PatStack {
Self(SmallVec::from_slice(slice))
}
fn from_vec(v: PatStackInner) -> PatStack {
Self(v)
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn head(&self) -> PatIdOrWild {
self.0[0]
}
fn get_head(&self) -> Option<PatIdOrWild> {
self.0.first().copied()
}
fn to_tail(&self) -> PatStack {
Self::from_slice(&self.0[1..])
}
fn replace_head_with<I, T>(&self, pats: I) -> PatStack
where
I: Iterator<Item = T>,
T: Into<PatIdOrWild>,
{
let mut patterns: PatStackInner = smallvec![];
for pat in pats {
patterns.push(pat.into());
}
for pat in &self.0[1..] {
patterns.push(*pat);
}
PatStack::from_vec(patterns)
}
/// Computes `D(self)`.
///
/// See the module docs and the associated documentation in rustc for details.
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Option<PatStack> {
if matches!(self.head().as_pat(cx), Pat::Wild) {
Some(self.to_tail())
} else {
None
}
}
/// Computes `S(constructor, self)`.
///
/// See the module docs and the associated documentation in rustc for details.
fn specialize_constructor(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> MatchCheckResult<Option<PatStack>> {
let result = match (self.head().as_pat(cx), constructor) {
(Pat::Tuple { args: ref pat_ids, ellipsis }, Constructor::Tuple { arity: _ }) => {
if ellipsis.is_some() {
// If there are ellipsis here, we should add the correct number of
// Pat::Wild patterns to `pat_ids`. We should be able to use the
// constructors arity for this, but at the time of writing we aren't
// correctly calculating this arity when ellipsis are present.
return Err(MatchCheckErr::NotImplemented);
}
Some(self.replace_head_with(pat_ids.iter()))
}
(Pat::Lit(lit_expr), Constructor::Bool(constructor_val)) => {
match cx.body.exprs[lit_expr] {
Expr::Literal(Literal::Bool(pat_val)) if *constructor_val == pat_val => {
Some(self.to_tail())
}
// it was a bool but the value doesn't match
Expr::Literal(Literal::Bool(_)) => None,
// perhaps this is actually unreachable given we have
// already checked that these match arms have the appropriate type?
_ => return Err(MatchCheckErr::NotImplemented),
}
}
(Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)?),
(Pat::Path(_), Constructor::Enum(constructor)) => {
// unit enum variants become `Pat::Path`
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
None
} else {
Some(self.to_tail())
}
}
(
Pat::TupleStruct { args: ref pat_ids, ellipsis, .. },
Constructor::Enum(enum_constructor),
) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *enum_constructor) {
None
} else {
let constructor_arity = constructor.arity(cx)?;
if let Some(ellipsis_position) = ellipsis {
// If there are ellipsis in the pattern, the ellipsis must take the place
// of at least one sub-pattern, so `pat_ids` should be smaller than the
// constructor arity.
if pat_ids.len() < constructor_arity {
let mut new_patterns: Vec<PatIdOrWild> = vec![];
for pat_id in &pat_ids[0..ellipsis_position] {
new_patterns.push((*pat_id).into());
}
for _ in 0..(constructor_arity - pat_ids.len()) {
new_patterns.push(PatIdOrWild::Wild);
}
for pat_id in &pat_ids[ellipsis_position..pat_ids.len()] {
new_patterns.push((*pat_id).into());
}
Some(self.replace_head_with(new_patterns.into_iter()))
} else {
return Err(MatchCheckErr::MalformedMatchArm);
}
} else {
// If there is no ellipsis in the tuple pattern, the number
// of patterns must equal the constructor arity.
if pat_ids.len() == constructor_arity {
Some(self.replace_head_with(pat_ids.into_iter()))
} else {
return Err(MatchCheckErr::MalformedMatchArm);
}
}
}
}
(Pat::Record { args: ref arg_patterns, .. }, Constructor::Enum(e)) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *e) {
None
} else {
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
VariantData::Record(struct_field_arena) => {
// Here we treat any missing fields in the record as the wild pattern, as
// if the record has ellipsis. We want to do this here even if the
// record does not contain ellipsis, because it allows us to continue
// enforcing exhaustiveness for the rest of the match statement.
//
// Creating the diagnostic for the missing field in the pattern
// should be done in a different diagnostic.
let patterns = struct_field_arena.iter().map(|(_, struct_field)| {
arg_patterns
.iter()
.find(|pat| pat.name == struct_field.name)
.map(|pat| PatIdOrWild::from(pat.pat))
.unwrap_or(PatIdOrWild::Wild)
});
Some(self.replace_head_with(patterns))
}
_ => return Err(MatchCheckErr::Unknown),
}
}
}
(Pat::Or(_), _) => return Err(MatchCheckErr::NotImplemented),
(_, _) => return Err(MatchCheckErr::NotImplemented),
};
Ok(result)
}
/// A special case of `specialize_constructor` where the head of the pattern stack
/// is a Wild pattern.
///
/// Replaces the Wild pattern at the head of the pattern stack with N Wild patterns
/// (N >= 0), where N is the arity of the given constructor.
fn expand_wildcard(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> MatchCheckResult<PatStack> {
assert_eq!(
Pat::Wild,
self.head().as_pat(cx),
"expand_wildcard must only be called on PatStack with wild at head",
);
let mut patterns: PatStackInner = smallvec![];
for _ in 0..constructor.arity(cx)? {
patterns.push(PatIdOrWild::Wild);
}
for pat in &self.0[1..] {
patterns.push(*pat);
}
Ok(PatStack::from_vec(patterns))
}
}
#[derive(Debug)]
/// A collection of PatStack.
///
/// This type is modeled from the struct of the same name in `rustc`.
pub(crate) struct Matrix(Vec<PatStack>);
impl Matrix {
pub(crate) fn empty() -> Self {
Self(vec![])
}
pub(crate) fn push(&mut self, cx: &MatchCheckCtx, row: PatStack) {
if let Some(Pat::Or(pat_ids)) = row.get_head().map(|pat_id| pat_id.as_pat(cx)) {
// Or patterns are expanded here
for pat_id in pat_ids {
self.0.push(PatStack::from_pattern(pat_id));
}
} else {
self.0.push(row);
}
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn heads(&self) -> Vec<PatIdOrWild> {
self.0.iter().map(|p| p.head()).collect()
}
/// Computes `D(self)` for each contained PatStack.
///
/// See the module docs and the associated documentation in rustc for details.
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Self {
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_wildcard(cx)))
}
/// Computes `S(constructor, self)` for each contained PatStack.
///
/// See the module docs and the associated documentation in rustc for details.
fn specialize_constructor(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> MatchCheckResult<Self> {
let mut new_matrix = Matrix::empty();
for pat in &self.0 {
if let Some(pat) = pat.specialize_constructor(cx, constructor)? {
new_matrix.push(cx, pat);
}
}
Ok(new_matrix)
}
fn collect<T: IntoIterator<Item = PatStack>>(cx: &MatchCheckCtx, iter: T) -> Self {
let mut matrix = Matrix::empty();
for pat in iter {
// using push ensures we expand or-patterns
matrix.push(cx, pat);
}
matrix
}
}
#[derive(Clone, Debug, PartialEq)]
/// An indication of the usefulness of a given match arm, where
/// usefulness is defined as matching some patterns which were
/// not matched by an prior match arms.
///
/// We may eventually need an `Unknown` variant here.
pub enum Usefulness {
Useful,
NotUseful,
}
pub struct MatchCheckCtx<'a> {
pub match_expr: Idx<Expr>,
pub body: Arc<Body>,
pub infer: Arc<InferenceResult>,
pub db: &'a dyn HirDatabase,
}
/// Given a set of patterns `matrix`, and pattern to consider `v`, determines
/// whether `v` is useful. A pattern is useful if it covers cases which were
/// not previously covered.
///
/// When calling this function externally (that is, not the recursive calls) it
/// expected that you have already type checked the match arms. All patterns in
/// matrix should be the same type as v, as well as they should all be the same
/// type as the match expression.
pub(crate) fn is_useful(
cx: &MatchCheckCtx,
matrix: &Matrix,
v: &PatStack,
) -> MatchCheckResult<Usefulness> {
// Handle two special cases:
// - enum with no variants
// - `!` type
// In those cases, no match arm is useful.
match cx.infer[cx.match_expr].strip_references() {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(AdtId::EnumId(enum_id)), .. }) => {
if cx.db.enum_data(*enum_id).variants.is_empty() {
return Ok(Usefulness::NotUseful);
}
}
Ty::Apply(ApplicationTy { ctor: TypeCtor::Never, .. }) => {
return Ok(Usefulness::NotUseful);
}
_ => (),
}
if v.is_empty() {
let result = if matrix.is_empty() { Usefulness::Useful } else { Usefulness::NotUseful };
return Ok(result);
}
if let Pat::Or(pat_ids) = v.head().as_pat(cx) {
let mut found_unimplemented = false;
let any_useful = pat_ids.iter().any(|&pat_id| {
let v = PatStack::from_pattern(pat_id);
match is_useful(cx, matrix, &v) {
Ok(Usefulness::Useful) => true,
Ok(Usefulness::NotUseful) => false,
_ => {
found_unimplemented = true;
false
}
}
});
return if any_useful {
Ok(Usefulness::Useful)
} else if found_unimplemented {
Err(MatchCheckErr::NotImplemented)
} else {
Ok(Usefulness::NotUseful)
};
}
if let Some(constructor) = pat_constructor(cx, v.head())? {
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
let v = v
.specialize_constructor(&cx, &constructor)?
.expect("we know this can't fail because we get the constructor from `v.head()` above");
is_useful(&cx, &matrix, &v)
} else {
// expanding wildcard
let mut used_constructors: Vec<Constructor> = vec![];
for pat in matrix.heads() {
if let Some(constructor) = pat_constructor(cx, pat)? {
used_constructors.push(constructor);
}
}
// We assume here that the first constructor is the "correct" type. Since we
// only care about the "type" of the constructor (i.e. if it is a bool we
// don't care about the value), this assumption should be valid as long as
// the match statement is well formed. We currently uphold this invariant by
// filtering match arms before calling `is_useful`, only passing in match arms
// whose type matches the type of the match expression.
match &used_constructors.first() {
Some(constructor) if all_constructors_covered(&cx, constructor, &used_constructors) => {
// If all constructors are covered, then we need to consider whether
// any values are covered by this wildcard.
//
// For example, with matrix '[[Some(true)], [None]]', all
// constructors are covered (`Some`/`None`), so we need
// to perform specialization to see that our wildcard will cover
// the `Some(false)` case.
//
// Here we create a constructor for each variant and then check
// usefulness after specializing for that constructor.
let mut found_unimplemented = false;
for constructor in constructor.all_constructors(cx) {
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
let v = v.expand_wildcard(&cx, &constructor)?;
match is_useful(&cx, &matrix, &v) {
Ok(Usefulness::Useful) => return Ok(Usefulness::Useful),
Ok(Usefulness::NotUseful) => continue,
_ => found_unimplemented = true,
};
}
if found_unimplemented {
Err(MatchCheckErr::NotImplemented)
} else {
Ok(Usefulness::NotUseful)
}
}
_ => {
// Either not all constructors are covered, or the only other arms
// are wildcards. Either way, this pattern is useful if it is useful
// when compared to those arms with wildcards.
let matrix = matrix.specialize_wildcard(&cx);
let v = v.to_tail();
is_useful(&cx, &matrix, &v)
}
}
}
}
#[derive(Debug, Clone, Copy)]
/// Similar to TypeCtor, but includes additional information about the specific
/// value being instantiated. For example, TypeCtor::Bool doesn't contain the
/// boolean value.
enum Constructor {
Bool(bool),
Tuple { arity: usize },
Enum(EnumVariantId),
}
impl Constructor {
fn arity(&self, cx: &MatchCheckCtx) -> MatchCheckResult<usize> {
let arity = match self {
Constructor::Bool(_) => 0,
Constructor::Tuple { arity } => *arity,
Constructor::Enum(e) => {
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
VariantData::Tuple(struct_field_data) => struct_field_data.len(),
VariantData::Record(struct_field_data) => struct_field_data.len(),
VariantData::Unit => 0,
}
}
};
Ok(arity)
}
fn all_constructors(&self, cx: &MatchCheckCtx) -> Vec<Constructor> {
match self {
Constructor::Bool(_) => vec![Constructor::Bool(true), Constructor::Bool(false)],
Constructor::Tuple { .. } => vec![*self],
Constructor::Enum(e) => cx
.db
.enum_data(e.parent)
.variants
.iter()
.map(|(local_id, _)| {
Constructor::Enum(EnumVariantId { parent: e.parent, local_id })
})
.collect(),
}
}
}
/// Returns the constructor for the given pattern. Should only return None
/// in the case of a Wild pattern.
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> MatchCheckResult<Option<Constructor>> {
let res = match pat.as_pat(cx) {
Pat::Wild => None,
// FIXME somehow create the Tuple constructor with the proper arity. If there are
// ellipsis, the arity is not equal to the number of patterns.
Pat::Tuple { args: pats, ellipsis } if ellipsis.is_none() => {
Some(Constructor::Tuple { arity: pats.len() })
}
Pat::Lit(lit_expr) => match cx.body.exprs[lit_expr] {
Expr::Literal(Literal::Bool(val)) => Some(Constructor::Bool(val)),
_ => return Err(MatchCheckErr::NotImplemented),
},
Pat::TupleStruct { .. } | Pat::Path(_) | Pat::Record { .. } => {
let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
let variant_id =
cx.infer.variant_resolution_for_pat(pat_id).ok_or(MatchCheckErr::Unknown)?;
match variant_id {
VariantId::EnumVariantId(enum_variant_id) => {
Some(Constructor::Enum(enum_variant_id))
}
_ => return Err(MatchCheckErr::NotImplemented),
}
}
_ => return Err(MatchCheckErr::NotImplemented),
};
Ok(res)
}
fn all_constructors_covered(
cx: &MatchCheckCtx,
constructor: &Constructor,
used_constructors: &[Constructor],
) -> bool {
match constructor {
Constructor::Tuple { arity } => {
used_constructors.iter().any(|constructor| match constructor {
Constructor::Tuple { arity: used_arity } => arity == used_arity,
_ => false,
})
}
Constructor::Bool(_) => {
if used_constructors.is_empty() {
return false;
}
let covers_true =
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(true)));
let covers_false =
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(false)));
covers_true && covers_false
}
Constructor::Enum(e) => cx.db.enum_data(e.parent).variants.iter().all(|(id, _)| {
for constructor in used_constructors {
if let Constructor::Enum(e) = constructor {
if id == e.local_id {
return true;
}
}
}
false
}),
}
}
fn enum_variant_matches(cx: &MatchCheckCtx, pat_id: PatId, enum_variant_id: EnumVariantId) -> bool {
Some(enum_variant_id.into()) == cx.infer.variant_resolution_for_pat(pat_id)
}
#[cfg(test)]
mod tests {
pub(super) use insta::assert_snapshot;
pub(super) use ra_db::fixture::WithFixture;
pub(super) use crate::{diagnostics::MissingMatchArms, test_db::TestDB};
pub(super) fn check_diagnostic_message(content: &str) -> String {
TestDB::with_single_file(content).0.diagnostic::<MissingMatchArms>().0
}
pub(super) fn check_diagnostic(content: &str) {
let diagnostic_count =
TestDB::with_single_file(content).0.diagnostic::<MissingMatchArms>().1;
assert_eq!(1, diagnostic_count, "no diagnostic reported");
}
pub(super) fn check_no_diagnostic(content: &str) {
let diagnostic_count =
TestDB::with_single_file(content).0.diagnostic::<MissingMatchArms>().1;
assert_eq!(0, diagnostic_count, "expected no diagnostic, found one");
}
#[test]
fn empty_tuple_no_arms_diagnostic_message() {
let content = r"
fn test_fn() {
match () {
}
}
";
assert_snapshot!(
check_diagnostic_message(content),
@"\"()\": Missing match arm\n"
);
}
#[test]
fn empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match () {
}
}
";
check_diagnostic(content);
}
#[test]
fn empty_tuple_wild() {
let content = r"
fn test_fn() {
match () {
_ => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match () {
() => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match (()) {
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match (()) {
(()) => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_two_empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match ((), ()) {
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_two_empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match ((), ()) {
((), ()) => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn bool_no_arms() {
let content = r"
fn test_fn() {
match false {
}
}
";
check_diagnostic(content);
}
#[test]
fn bool_missing_arm() {
let content = r"
fn test_fn() {
match false {
true => {}
}
}
";
check_diagnostic(content);
}
#[test]
fn bool_no_diagnostic() {
let content = r"
fn test_fn() {
match false {
true => {}
false => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_no_arms() {
let content = r"
fn test_fn() {
match (false, true) {
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_bools_missing_arms() {
let content = r"
fn test_fn() {
match (false, true) {
(true, true) => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_bools_missing_arm() {
let content = r"
fn test_fn() {
match (false, true) {
(false, true) => {},
(false, false) => {},
(true, false) => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_bools_with_wilds() {
let content = r"
fn test_fn() {
match (false, true) {
(false, _) => {},
(true, false) => {},
(_, true) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true) {
(true, true) => {},
(true, false) => {},
(false, true) => {},
(false, false) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_binding_missing_arms() {
let content = r"
fn test_fn() {
match (false, true) {
(true, _x) => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_bools_binding_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true) {
(true, _x) => {},
(false, true) => {},
(false, false) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_with_ellipsis_at_end_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true, false) {
(false, ..) => {},
(true, ..) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_with_ellipsis_at_beginning_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true, false) {
(.., false) => {},
(.., true) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_with_ellipsis_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true, false) {
(..) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_missing_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
(true, ((), false)) => {},
(false, ((), true)) => {},
(false, ((), false)) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_wildcard_missing_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, _) => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_wildcard_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
(true, ((), false)) => {},
(false, _) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_no_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::A {
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_missing_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::B {
Either::A => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_no_diagnostic() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::B {
Either::A => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_ref_missing_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match &Either::B {
Either::A => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_ref_no_diagnostic() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match &Either::B {
Either::A => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_no_arms() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_containing_bool_missing_arms() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true) => (),
Either::B => (),
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_containing_bool_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true) => (),
Either::A(false) => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_with_wild_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::B => (),
_ => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_with_wild_2_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(_) => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_different_sizes_missing_arms() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(_) => (),
Either::B(false, _) => (),
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_different_sizes_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(_) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn or_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(true) | Either::A(false) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_enum_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
enum Either2 {
C,
D,
}
fn test_fn() {
match (Either::A(false), Either2::C) {
(Either::A(true), _) | (Either::A(false), _) => (),
(Either::B(true, _), Either2::C) => (),
(Either::B(false, _), Either2::C) => (),
(Either::B(_, _), Either2::D) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn mismatched_types() {
let content = r"
enum Either {
A,
B,
}
enum Either2 {
C,
D,
}
fn test_fn() {
match Either::A {
Either2::C => (),
Either2::D => (),
}
}
";
// Match statements with arms that don't match the
// expression pattern do not fire this diagnostic.
check_no_diagnostic(content);
}
#[test]
fn mismatched_types_with_different_arity() {
let content = r"
fn test_fn() {
match (true, false) {
(true, false, true) => (),
(true) => (),
}
}
";
// Match statements with arms that don't match the
// expression pattern do not fire this diagnostic.
check_no_diagnostic(content);
}
#[test]
fn malformed_match_arm_tuple_missing_pattern() {
let content = r"
fn test_fn() {
match (0) {
() => (),
}
}
";
// Match statements with arms that don't match the
// expression pattern do not fire this diagnostic.
check_no_diagnostic(content);
}
#[test]
fn malformed_match_arm_tuple_enum_missing_pattern() {
let content = r"
enum Either {
A,
B(u32),
}
fn test_fn() {
match Either::A {
Either::A => (),
Either::B() => (),
}
}
";
// We are testing to be sure we don't panic here when the match
// arm `Either::B` is missing its pattern.
check_no_diagnostic(content);
}
#[test]
fn enum_not_in_scope() {
let content = r"
fn test_fn() {
match Foo::Bar {
Foo::Baz => (),
}
}
";
// The enum is not in scope so we don't perform exhaustiveness
// checking, but we want to be sure we don't panic here (and
// we don't create a diagnostic).
check_no_diagnostic(content);
}
#[test]
fn expr_diverges() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match loop {} {
Either::A => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn expr_loop_with_break() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match loop { break Foo::A } {
Either::A => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn expr_partially_diverges() {
let content = r"
enum Either<T> {
A(T),
B,
}
fn foo() -> Either<!> {
Either::B
}
fn test_fn() -> u32 {
match foo() {
Either::A(val) => val,
Either::B => 0,
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_record_no_arms() {
let content = r"
enum Either {
A { foo: bool },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_record_missing_arms() {
let content = r"
enum Either {
A { foo: bool },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
Either::A { foo: true } => (),
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_record_no_diagnostic() {
let content = r"
enum Either {
A { foo: bool },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
Either::A { foo: true } => (),
Either::A { foo: false } => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_record_missing_field_no_diagnostic() {
let content = r"
enum Either {
A { foo: bool },
B,
}
fn test_fn() {
let a = Either::B;
match a {
Either::A { } => (),
Either::B => (),
}
}
";
// When `Either::A` is missing a struct member, we don't want
// to fire the missing match arm diagnostic. This should fire
// some other diagnostic.
check_no_diagnostic(content);
}
#[test]
fn enum_record_missing_field_missing_match_arm() {
let content = r"
enum Either {
A { foo: bool },
B,
}
fn test_fn() {
let a = Either::B;
match a {
Either::A { } => (),
}
}
";
// Even though `Either::A` is missing fields, we still want to fire
// the missing arm diagnostic here, since we know `Either::B` is missing.
check_diagnostic(content);
}
#[test]
fn enum_record_no_diagnostic_wild() {
let content = r"
enum Either {
A { foo: bool },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
Either::A { foo: _ } => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_record_fields_out_of_order_missing_arm() {
let content = r"
enum Either {
A { foo: bool, bar: () },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
Either::A { bar: (), foo: false } => (),
Either::A { foo: true, bar: () } => (),
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_record_fields_out_of_order_no_diagnostic() {
let content = r"
enum Either {
A { foo: bool, bar: () },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
Either::A { bar: (), foo: false } => (),
Either::A { foo: true, bar: () } => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_record_ellipsis_missing_arm() {
let content = r"
enum Either {
A { foo: bool, bar: bool },
B,
}
fn test_fn() {
match Either::B {
Either::A { foo: true, .. } => (),
Either::B => (),
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_record_ellipsis_no_diagnostic() {
let content = r"
enum Either {
A { foo: bool, bar: bool },
B,
}
fn test_fn() {
let a = Either::A { foo: true };
match a {
Either::A { foo: true, .. } => (),
Either::A { foo: false, .. } => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_record_ellipsis_all_fields_missing_arm() {
let content = r"
enum Either {
A { foo: bool, bar: bool },
B,
}
fn test_fn() {
let a = Either::B;
match a {
Either::A { .. } => (),
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_record_ellipsis_all_fields_no_diagnostic() {
let content = r"
enum Either {
A { foo: bool, bar: bool },
B,
}
fn test_fn() {
let a = Either::B;
match a {
Either::A { .. } => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_tuple_partial_ellipsis_no_diagnostic() {
let content = r"
enum Either {
A(bool, bool, bool, bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true, .., true) => {},
Either::A(true, .., false) => {},
Either::A(false, .., true) => {},
Either::A(false, .., false) => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_tuple_partial_ellipsis_2_no_diagnostic() {
let content = r"
enum Either {
A(bool, bool, bool, bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true, .., true) => {},
Either::A(true, .., false) => {},
Either::A(.., true) => {},
Either::A(.., false) => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_tuple_partial_ellipsis_missing_arm() {
let content = r"
enum Either {
A(bool, bool, bool, bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true, .., true) => {},
Either::A(true, .., false) => {},
Either::A(false, .., false) => {},
Either::B => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_tuple_partial_ellipsis_2_missing_arm() {
let content = r"
enum Either {
A(bool, bool, bool, bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true, .., true) => {},
Either::A(true, .., false) => {},
Either::A(.., true) => {},
Either::B => {},
}
}
";
check_diagnostic(content);
}
#[test]
fn enum_tuple_ellipsis_no_diagnostic() {
let content = r"
enum Either {
A(bool, bool, bool, bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(..) => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_never() {
let content = r"
enum Never {}
fn test_fn(never: Never) {
match never {}
}
";
check_no_diagnostic(content);
}
#[test]
fn type_never() {
let content = r"
fn test_fn(never: !) {
match never {}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_never_ref() {
let content = r"
enum Never {}
fn test_fn(never: &Never) {
match never {}
}
";
check_no_diagnostic(content);
}
#[test]
fn expr_diverges_missing_arm() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match loop {} {
Either::A => (),
}
}
";
check_no_diagnostic(content);
}
}
#[cfg(test)]
mod false_negatives {
//! The implementation of match checking here is a work in progress. As we roll this out, we
//! prefer false negatives to false positives (ideally there would be no false positives). This
//! test module should document known false negatives. Eventually we will have a complete
//! implementation of match checking and this module will be empty.
//!
//! The reasons for documenting known false negatives:
//!
//! 1. It acts as a backlog of work that can be done to improve the behavior of the system.
//! 2. It ensures the code doesn't panic when handling these cases.
use super::tests::*;
#[test]
fn integers() {
let content = r"
fn test_fn() {
match 5 {
10 => (),
11..20 => (),
}
}
";
// This is a false negative.
// We don't currently check integer exhaustiveness.
check_no_diagnostic(content);
}
#[test]
fn internal_or() {
let content = r"
fn test_fn() {
enum Either {
A(bool),
B,
}
match Either::B {
Either::A(true | false) => (),
}
}
";
// This is a false negative.
// We do not currently handle patterns with internal `or`s.
check_no_diagnostic(content);
}
#[test]
fn expr_loop_missing_arm() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match loop { break Foo::A } {
Either::A => (),
}
}
";
// This is a false negative.
// We currently infer the type of `loop { break Foo::A }` to `!`, which
// causes us to skip the diagnostic since `Either::A` doesn't type check
// with `!`.
check_diagnostic(content);
}
#[test]
fn tuple_of_bools_with_ellipsis_at_end_missing_arm() {
let content = r"
fn test_fn() {
match (false, true, false) {
(false, ..) => {},
}
}
";
// This is a false negative.
// We don't currently handle tuple patterns with ellipsis.
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_with_ellipsis_at_beginning_missing_arm() {
let content = r"
fn test_fn() {
match (false, true, false) {
(.., false) => {},
}
}
";
// This is a false negative.
// We don't currently handle tuple patterns with ellipsis.
check_no_diagnostic(content);
}
#[test]
fn struct_missing_arm() {
let content = r"
struct Foo {
a: bool,
}
fn test_fn(f: Foo) {
match f {
Foo { a: true } => {},
}
}
";
// This is a false negative.
// We don't currently handle structs.
check_no_diagnostic(content);
}
}