mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-20 09:03:56 +00:00
daaf46177e
+ further refactoring.
342 lines
13 KiB
Rust
342 lines
13 KiB
Rust
//! This module is concerned with finding methods that a given type provides.
|
|
//! For details about how this works in rustc, see the method lookup page in the
|
|
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
|
|
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
|
|
use std::sync::Arc;
|
|
|
|
use arrayvec::ArrayVec;
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use super::{autoderef, lower, Canonical, InEnvironment, TraitEnvironment, TraitRef};
|
|
use crate::{
|
|
db::HirDatabase,
|
|
impl_block::{ImplBlock, ImplId},
|
|
nameres::CrateModuleId,
|
|
resolve::Resolver,
|
|
ty::primitive::{FloatBitness, UncertainFloatTy, UncertainIntTy},
|
|
ty::{Ty, TypeCtor},
|
|
type_ref::Mutability,
|
|
AssocItem, Crate, Function, Module, Name, Trait,
|
|
};
|
|
|
|
/// This is used as a key for indexing impls.
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub enum TyFingerprint {
|
|
Apply(TypeCtor),
|
|
}
|
|
|
|
impl TyFingerprint {
|
|
/// Creates a TyFingerprint for looking up an impl. Only certain types can
|
|
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
|
|
/// `impl &S`. Hence, this will return `None` for reference types and such.
|
|
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
|
|
match ty {
|
|
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct CrateImplBlocks {
|
|
/// To make sense of the CrateModuleIds, we need the source root.
|
|
krate: Crate,
|
|
impls: FxHashMap<TyFingerprint, Vec<(CrateModuleId, ImplId)>>,
|
|
impls_by_trait: FxHashMap<Trait, Vec<(CrateModuleId, ImplId)>>,
|
|
}
|
|
|
|
impl CrateImplBlocks {
|
|
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
|
|
let fingerprint = TyFingerprint::for_impl(ty);
|
|
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
|
|
move |(module_id, impl_id)| {
|
|
let module = Module { krate: self.krate, module_id: *module_id };
|
|
ImplBlock::from_id(module, *impl_id)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub fn lookup_impl_blocks_for_trait<'a>(
|
|
&'a self,
|
|
tr: Trait,
|
|
) -> impl Iterator<Item = ImplBlock> + 'a {
|
|
self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map(
|
|
move |(module_id, impl_id)| {
|
|
let module = Module { krate: self.krate, module_id: *module_id };
|
|
ImplBlock::from_id(module, *impl_id)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplBlock> + 'a {
|
|
self.impls.values().chain(self.impls_by_trait.values()).flat_map(|i| i.iter()).map(
|
|
move |(module_id, impl_id)| {
|
|
let module = Module { krate: self.krate, module_id: *module_id };
|
|
ImplBlock::from_id(module, *impl_id)
|
|
},
|
|
)
|
|
}
|
|
|
|
fn collect_recursive(&mut self, db: &impl HirDatabase, module: Module) {
|
|
let module_impl_blocks = db.impls_in_module(module);
|
|
|
|
for (impl_id, _) in module_impl_blocks.impls.iter() {
|
|
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
|
|
|
|
let target_ty = impl_block.target_ty(db);
|
|
|
|
if impl_block.target_trait(db).is_some() {
|
|
if let Some(tr) = impl_block.target_trait_ref(db) {
|
|
self.impls_by_trait
|
|
.entry(tr.trait_)
|
|
.or_insert_with(Vec::new)
|
|
.push((module.module_id, impl_id));
|
|
}
|
|
} else {
|
|
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
|
|
self.impls
|
|
.entry(target_ty_fp)
|
|
.or_insert_with(Vec::new)
|
|
.push((module.module_id, impl_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
for child in module.children(db) {
|
|
self.collect_recursive(db, child);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn impls_in_crate_query(
|
|
db: &impl HirDatabase,
|
|
krate: Crate,
|
|
) -> Arc<CrateImplBlocks> {
|
|
let mut crate_impl_blocks = CrateImplBlocks {
|
|
krate,
|
|
impls: FxHashMap::default(),
|
|
impls_by_trait: FxHashMap::default(),
|
|
};
|
|
if let Some(module) = krate.root_module(db) {
|
|
crate_impl_blocks.collect_recursive(db, module);
|
|
}
|
|
Arc::new(crate_impl_blocks)
|
|
}
|
|
}
|
|
|
|
fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<ArrayVec<[Crate; 2]>> {
|
|
// Types like slice can have inherent impls in several crates, (core and alloc).
|
|
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
|
|
macro_rules! lang_item_crate {
|
|
($db:expr, $cur_crate:expr, $($name:expr),+ $(,)?) => {{
|
|
let mut v = ArrayVec::<[Crate; 2]>::new();
|
|
$(
|
|
v.extend($db.lang_item($cur_crate, $name.into()).and_then(|item| item.krate($db)));
|
|
)+
|
|
Some(v)
|
|
}};
|
|
}
|
|
|
|
match ty {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::Adt(def_id) => Some(std::iter::once(def_id.krate(db)?).collect()),
|
|
TypeCtor::Bool => lang_item_crate!(db, cur_crate, "bool"),
|
|
TypeCtor::Char => lang_item_crate!(db, cur_crate, "char"),
|
|
TypeCtor::Float(UncertainFloatTy::Known(f)) => match f.bitness {
|
|
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
|
|
FloatBitness::X32 => lang_item_crate!(db, cur_crate, "f32", "f32_runtime"),
|
|
FloatBitness::X64 => lang_item_crate!(db, cur_crate, "f64", "f64_runtime"),
|
|
},
|
|
TypeCtor::Int(UncertainIntTy::Known(i)) => {
|
|
lang_item_crate!(db, cur_crate, i.ty_to_string())
|
|
}
|
|
TypeCtor::Str => lang_item_crate!(db, cur_crate, "str_alloc", "str"),
|
|
TypeCtor::Slice => lang_item_crate!(db, cur_crate, "slice_alloc", "slice"),
|
|
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!(db, cur_crate, "const_ptr"),
|
|
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!(db, cur_crate, "mut_ptr"),
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Look up the method with the given name, returning the actual autoderefed
|
|
/// receiver type (but without autoref applied yet).
|
|
pub(crate) fn lookup_method(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: &Name,
|
|
resolver: &Resolver,
|
|
) -> Option<(Ty, Function)> {
|
|
iterate_method_candidates(ty, db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
|
|
}
|
|
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
|
|
pub(crate) fn iterate_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
|
|
) -> Option<T> {
|
|
// For method calls, rust first does any number of autoderef, and then one
|
|
// autoref (i.e. when the method takes &self or &mut self). We just ignore
|
|
// the autoref currently -- when we find a method matching the given name,
|
|
// we assume it fits.
|
|
|
|
// Also note that when we've got a receiver like &S, even if the method we
|
|
// find in the end takes &self, we still do the autoderef step (just as
|
|
// rustc does an autoderef and then autoref again).
|
|
|
|
let krate = resolver.krate()?;
|
|
for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) {
|
|
if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, krate, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
if let Some(result) =
|
|
iterate_trait_method_candidates(&derefed_ty, db, resolver, name, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_trait_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
|
|
) -> Option<T> {
|
|
let krate = resolver.krate()?;
|
|
// FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
|
|
let env = lower::trait_env(db, resolver);
|
|
// if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
|
|
let inherent_trait = ty.value.inherent_trait().into_iter();
|
|
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
|
|
let traits_from_env = env
|
|
.trait_predicates_for_self_ty(&ty.value)
|
|
.map(|tr| tr.trait_)
|
|
.flat_map(|t| t.all_super_traits(db));
|
|
let traits = inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db));
|
|
'traits: for t in traits {
|
|
let data = t.trait_data(db);
|
|
|
|
// FIXME this is a bit of a hack, since Chalk should say the same thing
|
|
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
|
|
let inherently_implemented = ty.value.inherent_trait() == Some(t);
|
|
|
|
// we'll be lazy about checking whether the type implements the
|
|
// trait, but if we find out it doesn't, we'll skip the rest of the
|
|
// iteration
|
|
let mut known_implemented = inherently_implemented;
|
|
for item in data.items() {
|
|
if let AssocItem::Function(m) = *item {
|
|
let data = m.data(db);
|
|
if name.map_or(true, |name| data.name() == name) && data.has_self_param() {
|
|
if !known_implemented {
|
|
let goal = generic_implements_goal(db, env.clone(), t, ty.clone());
|
|
if db.trait_solve(krate, goal).is_none() {
|
|
continue 'traits;
|
|
}
|
|
}
|
|
known_implemented = true;
|
|
if let Some(result) = callback(&ty.value, m) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_inherent_methods<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: Option<&Name>,
|
|
krate: Crate,
|
|
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
|
|
) -> Option<T> {
|
|
for krate in def_crates(db, krate, &ty.value)? {
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_block in impls.lookup_impl_blocks(&ty.value) {
|
|
for item in impl_block.items(db) {
|
|
if let AssocItem::Function(f) = item {
|
|
let data = f.data(db);
|
|
if name.map_or(true, |name| data.name() == name) && data.has_self_param() {
|
|
if let Some(result) = callback(&ty.value, f) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
pub(crate) fn implements_trait(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
krate: Crate,
|
|
trait_: Trait,
|
|
) -> bool {
|
|
if ty.value.inherent_trait() == Some(trait_) {
|
|
// FIXME this is a bit of a hack, since Chalk should say the same thing
|
|
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
|
|
return true;
|
|
}
|
|
let env = lower::trait_env(db, resolver);
|
|
let goal = generic_implements_goal(db, env, trait_, ty.clone());
|
|
let solution = db.trait_solve(krate, goal);
|
|
|
|
solution.is_some()
|
|
}
|
|
|
|
impl Ty {
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
|
|
pub fn iterate_impl_items<T>(
|
|
self,
|
|
db: &impl HirDatabase,
|
|
krate: Crate,
|
|
mut callback: impl FnMut(AssocItem) -> Option<T>,
|
|
) -> Option<T> {
|
|
for krate in def_crates(db, krate, &self)? {
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_block in impls.lookup_impl_blocks(&self) {
|
|
for item in impl_block.items(db) {
|
|
if let Some(result) = callback(item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// This creates Substs for a trait with the given Self type and type variables
|
|
/// for all other parameters, to query Chalk with it.
|
|
fn generic_implements_goal(
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
trait_: Trait,
|
|
self_ty: Canonical<Ty>,
|
|
) -> Canonical<InEnvironment<super::Obligation>> {
|
|
let num_vars = self_ty.num_vars;
|
|
let substs = super::Substs::build_for_def(db, trait_)
|
|
.push(self_ty.value)
|
|
.fill_with_bound_vars(num_vars as u32)
|
|
.build();
|
|
let num_vars = substs.len() - 1 + self_ty.num_vars;
|
|
let trait_ref = TraitRef { trait_, substs };
|
|
let obligation = super::Obligation::Trait(trait_ref);
|
|
Canonical { num_vars, value: InEnvironment::new(env, obligation) }
|
|
}
|