mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-19 08:34:09 +00:00
970276b559
Collect obligations from RPITs (Return Position `impl Trait`) of a function which is being inferred. This allows inferring {unknown}s from RPIT bounds.
1050 lines
40 KiB
Rust
1050 lines
40 KiB
Rust
//! Type inference, i.e. the process of walking through the code and determining
|
|
//! the type of each expression and pattern.
|
|
//!
|
|
//! For type inference, compare the implementations in rustc (the various
|
|
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
|
|
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
|
|
//! inference here is the `infer` function, which infers the types of all
|
|
//! expressions in a given function.
|
|
//!
|
|
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
|
|
//! which represent currently unknown types; as we walk through the expressions,
|
|
//! we might determine that certain variables need to be equal to each other, or
|
|
//! to certain types. To record this, we use the union-find implementation from
|
|
//! the `ena` crate, which is extracted from rustc.
|
|
|
|
use std::ops::Index;
|
|
use std::sync::Arc;
|
|
|
|
use chalk_ir::{cast::Cast, ConstValue, DebruijnIndex, Mutability, Safety, Scalar, TypeFlags};
|
|
use hir_def::{
|
|
body::Body,
|
|
data::{ConstData, StaticData},
|
|
expr::{BindingAnnotation, ExprId, PatId},
|
|
lang_item::LangItemTarget,
|
|
path::{path, Path},
|
|
resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
|
|
type_ref::TypeRef,
|
|
AdtId, AssocItemId, DefWithBodyId, EnumVariantId, FieldId, FunctionId, HasModule, Lookup,
|
|
TraitId, TypeAliasId, VariantId,
|
|
};
|
|
use hir_expand::name::{name, Name};
|
|
use itertools::Either;
|
|
use la_arena::ArenaMap;
|
|
use rustc_hash::FxHashMap;
|
|
use stdx::{always, impl_from};
|
|
|
|
use crate::{
|
|
db::HirDatabase, fold_tys, fold_tys_and_consts, infer::coerce::CoerceMany,
|
|
lower::ImplTraitLoweringMode, to_assoc_type_id, AliasEq, AliasTy, Const, DomainGoal,
|
|
GenericArg, Goal, ImplTraitId, InEnvironment, Interner, ProjectionTy, Substitution,
|
|
TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt, TyKind,
|
|
};
|
|
|
|
// This lint has a false positive here. See the link below for details.
|
|
//
|
|
// https://github.com/rust-lang/rust/issues/57411
|
|
#[allow(unreachable_pub)]
|
|
pub use coerce::could_coerce;
|
|
#[allow(unreachable_pub)]
|
|
pub use unify::could_unify;
|
|
|
|
pub(crate) mod unify;
|
|
mod path;
|
|
mod expr;
|
|
mod pat;
|
|
mod coerce;
|
|
mod closure;
|
|
|
|
/// The entry point of type inference.
|
|
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
|
|
let _p = profile::span("infer_query");
|
|
let resolver = def.resolver(db.upcast());
|
|
let body = db.body(def);
|
|
let mut ctx = InferenceContext::new(db, def, &body, resolver);
|
|
|
|
match def {
|
|
DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
|
|
DefWithBodyId::FunctionId(f) => ctx.collect_fn(f),
|
|
DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)),
|
|
}
|
|
|
|
ctx.infer_body();
|
|
|
|
Arc::new(ctx.resolve_all())
|
|
}
|
|
|
|
/// Fully normalize all the types found within `ty` in context of `owner` body definition.
|
|
///
|
|
/// This is appropriate to use only after type-check: it assumes
|
|
/// that normalization will succeed, for example.
|
|
pub(crate) fn normalize(db: &dyn HirDatabase, owner: DefWithBodyId, ty: Ty) -> Ty {
|
|
if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION) {
|
|
return ty;
|
|
}
|
|
let krate = owner.module(db.upcast()).krate();
|
|
let trait_env = owner
|
|
.as_generic_def_id()
|
|
.map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
|
|
let mut table = unify::InferenceTable::new(db, trait_env);
|
|
|
|
let ty_with_vars = table.normalize_associated_types_in(ty);
|
|
table.resolve_obligations_as_possible();
|
|
table.propagate_diverging_flag();
|
|
table.resolve_completely(ty_with_vars)
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
enum ExprOrPatId {
|
|
ExprId(ExprId),
|
|
PatId(PatId),
|
|
}
|
|
impl_from!(ExprId, PatId for ExprOrPatId);
|
|
|
|
/// Binding modes inferred for patterns.
|
|
/// <https://doc.rust-lang.org/reference/patterns.html#binding-modes>
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
pub enum BindingMode {
|
|
Move,
|
|
Ref(Mutability),
|
|
}
|
|
|
|
impl BindingMode {
|
|
fn convert(annotation: BindingAnnotation) -> BindingMode {
|
|
match annotation {
|
|
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
|
|
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not),
|
|
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for BindingMode {
|
|
fn default() -> Self {
|
|
BindingMode::Move
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct InferOk<T> {
|
|
value: T,
|
|
goals: Vec<InEnvironment<Goal>>,
|
|
}
|
|
|
|
impl<T> InferOk<T> {
|
|
fn map<U>(self, f: impl FnOnce(T) -> U) -> InferOk<U> {
|
|
InferOk { value: f(self.value), goals: self.goals }
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct TypeError;
|
|
pub(crate) type InferResult<T> = Result<InferOk<T>, TypeError>;
|
|
|
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
pub enum InferenceDiagnostic {
|
|
NoSuchField { expr: ExprId },
|
|
BreakOutsideOfLoop { expr: ExprId },
|
|
MismatchedArgCount { call_expr: ExprId, expected: usize, found: usize },
|
|
}
|
|
|
|
/// A mismatch between an expected and an inferred type.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct TypeMismatch {
|
|
pub expected: Ty,
|
|
pub actual: Ty,
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
struct InternedStandardTypes {
|
|
unknown: Ty,
|
|
bool_: Ty,
|
|
unit: Ty,
|
|
}
|
|
|
|
impl Default for InternedStandardTypes {
|
|
fn default() -> Self {
|
|
InternedStandardTypes {
|
|
unknown: TyKind::Error.intern(Interner),
|
|
bool_: TyKind::Scalar(Scalar::Bool).intern(Interner),
|
|
unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner),
|
|
}
|
|
}
|
|
}
|
|
/// Represents coercing a value to a different type of value.
|
|
///
|
|
/// We transform values by following a number of `Adjust` steps in order.
|
|
/// See the documentation on variants of `Adjust` for more details.
|
|
///
|
|
/// Here are some common scenarios:
|
|
///
|
|
/// 1. The simplest cases are where a pointer is not adjusted fat vs thin.
|
|
/// Here the pointer will be dereferenced N times (where a dereference can
|
|
/// happen to raw or borrowed pointers or any smart pointer which implements
|
|
/// Deref, including Box<_>). The types of dereferences is given by
|
|
/// `autoderefs`. It can then be auto-referenced zero or one times, indicated
|
|
/// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is
|
|
/// `false`.
|
|
///
|
|
/// 2. A thin-to-fat coercion involves unsizing the underlying data. We start
|
|
/// with a thin pointer, deref a number of times, unsize the underlying data,
|
|
/// then autoref. The 'unsize' phase may change a fixed length array to a
|
|
/// dynamically sized one, a concrete object to a trait object, or statically
|
|
/// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is
|
|
/// represented by:
|
|
///
|
|
/// ```
|
|
/// Deref(None) -> [i32; 4],
|
|
/// Borrow(AutoBorrow::Ref) -> &[i32; 4],
|
|
/// Unsize -> &[i32],
|
|
/// ```
|
|
///
|
|
/// Note that for a struct, the 'deep' unsizing of the struct is not recorded.
|
|
/// E.g., `struct Foo<T> { x: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]>
|
|
/// The autoderef and -ref are the same as in the above example, but the type
|
|
/// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about
|
|
/// the underlying conversions from `[i32; 4]` to `[i32]`.
|
|
///
|
|
/// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In
|
|
/// that case, we have the pointer we need coming in, so there are no
|
|
/// autoderefs, and no autoref. Instead we just do the `Unsize` transformation.
|
|
/// At some point, of course, `Box` should move out of the compiler, in which
|
|
/// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> ->
|
|
/// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`.
|
|
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub struct Adjustment {
|
|
pub kind: Adjust,
|
|
pub target: Ty,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum Adjust {
|
|
/// Go from ! to any type.
|
|
NeverToAny,
|
|
/// Dereference once, producing a place.
|
|
Deref(Option<OverloadedDeref>),
|
|
/// Take the address and produce either a `&` or `*` pointer.
|
|
Borrow(AutoBorrow),
|
|
Pointer(PointerCast),
|
|
}
|
|
|
|
/// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)`
|
|
/// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`.
|
|
/// The target type is `U` in both cases, with the region and mutability
|
|
/// being those shared by both the receiver and the returned reference.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub struct OverloadedDeref(pub Mutability);
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum AutoBorrow {
|
|
/// Converts from T to &T.
|
|
Ref(Mutability),
|
|
/// Converts from T to *T.
|
|
RawPtr(Mutability),
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum PointerCast {
|
|
/// Go from a fn-item type to a fn-pointer type.
|
|
ReifyFnPointer,
|
|
|
|
/// Go from a safe fn pointer to an unsafe fn pointer.
|
|
UnsafeFnPointer,
|
|
|
|
/// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer.
|
|
/// It cannot convert a closure that requires unsafe.
|
|
ClosureFnPointer(Safety),
|
|
|
|
/// Go from a mut raw pointer to a const raw pointer.
|
|
MutToConstPointer,
|
|
|
|
#[allow(dead_code)]
|
|
/// Go from `*const [T; N]` to `*const T`
|
|
ArrayToPointer,
|
|
|
|
/// Unsize a pointer/reference value, e.g., `&[T; n]` to
|
|
/// `&[T]`. Note that the source could be a thin or fat pointer.
|
|
/// This will do things like convert thin pointers to fat
|
|
/// pointers, or convert structs containing thin pointers to
|
|
/// structs containing fat pointers, or convert between fat
|
|
/// pointers. We don't store the details of how the transform is
|
|
/// done (in fact, we don't know that, because it might depend on
|
|
/// the precise type parameters). We just store the target
|
|
/// type. Codegen backends and miri figure out what has to be done
|
|
/// based on the precise source/target type at hand.
|
|
Unsize,
|
|
}
|
|
|
|
/// The result of type inference: A mapping from expressions and patterns to types.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Default)]
|
|
pub struct InferenceResult {
|
|
/// For each method call expr, records the function it resolves to.
|
|
method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>,
|
|
/// For each field access expr, records the field it resolves to.
|
|
field_resolutions: FxHashMap<ExprId, FieldId>,
|
|
/// For each struct literal or pattern, records the variant it resolves to.
|
|
variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
|
|
/// For each associated item record what it resolves to
|
|
assoc_resolutions: FxHashMap<ExprOrPatId, AssocItemId>,
|
|
pub diagnostics: Vec<InferenceDiagnostic>,
|
|
pub type_of_expr: ArenaMap<ExprId, Ty>,
|
|
/// For each pattern record the type it resolves to.
|
|
///
|
|
/// **Note**: When a pattern type is resolved it may still contain
|
|
/// unresolved or missing subpatterns or subpatterns of mismatched types.
|
|
pub type_of_pat: ArenaMap<PatId, Ty>,
|
|
type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>,
|
|
/// Interned Unknown to return references to.
|
|
standard_types: InternedStandardTypes,
|
|
/// Stores the types which were implicitly dereferenced in pattern binding modes.
|
|
pub pat_adjustments: FxHashMap<PatId, Vec<Adjustment>>,
|
|
pub pat_binding_modes: FxHashMap<PatId, BindingMode>,
|
|
pub expr_adjustments: FxHashMap<ExprId, Vec<Adjustment>>,
|
|
}
|
|
|
|
impl InferenceResult {
|
|
pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> {
|
|
self.method_resolutions.get(&expr).cloned()
|
|
}
|
|
pub fn field_resolution(&self, expr: ExprId) -> Option<FieldId> {
|
|
self.field_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItemId> {
|
|
self.assoc_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItemId> {
|
|
self.assoc_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
|
|
self.type_mismatches.get(&expr.into())
|
|
}
|
|
pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> {
|
|
self.type_mismatches.get(&pat.into())
|
|
}
|
|
pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> {
|
|
self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
|
|
ExprOrPatId::ExprId(expr) => Some((expr, mismatch)),
|
|
_ => None,
|
|
})
|
|
}
|
|
pub fn pat_type_mismatches(&self) -> impl Iterator<Item = (PatId, &TypeMismatch)> {
|
|
self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
|
|
ExprOrPatId::PatId(pat) => Some((pat, mismatch)),
|
|
_ => None,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Index<ExprId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, expr: ExprId) -> &Ty {
|
|
self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown)
|
|
}
|
|
}
|
|
|
|
impl Index<PatId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, pat: PatId) -> &Ty {
|
|
self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown)
|
|
}
|
|
}
|
|
|
|
/// The inference context contains all information needed during type inference.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct InferenceContext<'a> {
|
|
pub(crate) db: &'a dyn HirDatabase,
|
|
pub(crate) owner: DefWithBodyId,
|
|
pub(crate) body: &'a Body,
|
|
pub(crate) resolver: Resolver,
|
|
table: unify::InferenceTable<'a>,
|
|
trait_env: Arc<TraitEnvironment>,
|
|
pub(crate) result: InferenceResult,
|
|
/// The return type of the function being inferred, the closure or async block if we're
|
|
/// currently within one.
|
|
///
|
|
/// We might consider using a nested inference context for checking
|
|
/// closures, but currently this is the only field that will change there,
|
|
/// so it doesn't make sense.
|
|
return_ty: Ty,
|
|
diverges: Diverges,
|
|
breakables: Vec<BreakableContext>,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct BreakableContext {
|
|
may_break: bool,
|
|
coerce: CoerceMany,
|
|
label: Option<name::Name>,
|
|
}
|
|
|
|
fn find_breakable<'c>(
|
|
ctxs: &'c mut [BreakableContext],
|
|
label: Option<&name::Name>,
|
|
) -> Option<&'c mut BreakableContext> {
|
|
match label {
|
|
Some(_) => ctxs.iter_mut().rev().find(|ctx| ctx.label.as_ref() == label),
|
|
None => ctxs.last_mut(),
|
|
}
|
|
}
|
|
|
|
impl<'a> InferenceContext<'a> {
|
|
fn new(
|
|
db: &'a dyn HirDatabase,
|
|
owner: DefWithBodyId,
|
|
body: &'a Body,
|
|
resolver: Resolver,
|
|
) -> Self {
|
|
let krate = owner.module(db.upcast()).krate();
|
|
let trait_env = owner
|
|
.as_generic_def_id()
|
|
.map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
|
|
InferenceContext {
|
|
result: InferenceResult::default(),
|
|
table: unify::InferenceTable::new(db, trait_env.clone()),
|
|
trait_env,
|
|
return_ty: TyKind::Error.intern(Interner), // set in collect_fn_signature
|
|
db,
|
|
owner,
|
|
body,
|
|
resolver,
|
|
diverges: Diverges::Maybe,
|
|
breakables: Vec::new(),
|
|
}
|
|
}
|
|
|
|
fn resolve_all(self) -> InferenceResult {
|
|
let InferenceContext { mut table, mut result, .. } = self;
|
|
|
|
// FIXME resolve obligations as well (use Guidance if necessary)
|
|
table.resolve_obligations_as_possible();
|
|
|
|
// make sure diverging type variables are marked as such
|
|
table.propagate_diverging_flag();
|
|
for ty in result.type_of_expr.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for ty in result.type_of_pat.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for mismatch in result.type_mismatches.values_mut() {
|
|
mismatch.expected = table.resolve_completely(mismatch.expected.clone());
|
|
mismatch.actual = table.resolve_completely(mismatch.actual.clone());
|
|
}
|
|
for (_, subst) in result.method_resolutions.values_mut() {
|
|
*subst = table.resolve_completely(subst.clone());
|
|
}
|
|
for adjustment in result.expr_adjustments.values_mut().flatten() {
|
|
adjustment.target = table.resolve_completely(adjustment.target.clone());
|
|
}
|
|
for adjustment in result.pat_adjustments.values_mut().flatten() {
|
|
adjustment.target = table.resolve_completely(adjustment.target.clone());
|
|
}
|
|
result
|
|
}
|
|
|
|
fn collect_const(&mut self, data: &ConstData) {
|
|
self.return_ty = self.make_ty(&data.type_ref);
|
|
}
|
|
|
|
fn collect_static(&mut self, data: &StaticData) {
|
|
self.return_ty = self.make_ty(&data.type_ref);
|
|
}
|
|
|
|
fn collect_fn(&mut self, func: FunctionId) {
|
|
let data = self.db.function_data(func);
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
|
|
.with_impl_trait_mode(ImplTraitLoweringMode::Param);
|
|
let param_tys =
|
|
data.params.iter().map(|(_, type_ref)| ctx.lower_ty(type_ref)).collect::<Vec<_>>();
|
|
for (ty, pat) in param_tys.into_iter().zip(self.body.params.iter()) {
|
|
let ty = self.insert_type_vars(ty);
|
|
let ty = self.normalize_associated_types_in(ty);
|
|
|
|
self.infer_pat(*pat, &ty, BindingMode::default());
|
|
}
|
|
let error_ty = &TypeRef::Error;
|
|
let return_ty = if data.has_async_kw() {
|
|
data.async_ret_type.as_deref().unwrap_or(error_ty)
|
|
} else {
|
|
&*data.ret_type
|
|
};
|
|
let return_ty = self.make_ty_with_mode(return_ty, ImplTraitLoweringMode::Opaque);
|
|
self.return_ty = return_ty;
|
|
|
|
if let Some(rpits) = self.db.return_type_impl_traits(func) {
|
|
// RPIT opaque types use substitution of their parent function.
|
|
let fn_placeholders = TyBuilder::placeholder_subst(self.db, func);
|
|
self.return_ty = fold_tys(
|
|
self.return_ty.clone(),
|
|
|ty, _| {
|
|
let opaque_ty_id = match ty.kind(Interner) {
|
|
TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id,
|
|
_ => return ty,
|
|
};
|
|
let idx = match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) {
|
|
ImplTraitId::ReturnTypeImplTrait(_, idx) => idx,
|
|
_ => unreachable!(),
|
|
};
|
|
let bounds = (*rpits).map_ref(|rpits| {
|
|
rpits.impl_traits[idx as usize].bounds.map_ref(|it| it.into_iter())
|
|
});
|
|
let var = self.table.new_type_var();
|
|
let var_subst = Substitution::from1(Interner, var.clone());
|
|
for bound in bounds {
|
|
let predicate =
|
|
bound.map(|it| it.cloned()).substitute(Interner, &fn_placeholders);
|
|
let (var_predicate, binders) = predicate
|
|
.substitute(Interner, &var_subst)
|
|
.into_value_and_skipped_binders();
|
|
always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
|
|
self.push_obligation(var_predicate.cast(Interner));
|
|
}
|
|
var
|
|
},
|
|
DebruijnIndex::INNERMOST,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn infer_body(&mut self) {
|
|
self.infer_expr_coerce(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
|
|
}
|
|
|
|
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
|
|
self.result.type_of_expr.insert(expr, ty);
|
|
}
|
|
|
|
fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec<Adjustment>) {
|
|
self.result.expr_adjustments.insert(expr, adjustments);
|
|
}
|
|
|
|
fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) {
|
|
self.result.method_resolutions.insert(expr, (func, subst));
|
|
}
|
|
|
|
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
|
|
self.result.variant_resolutions.insert(id, variant);
|
|
}
|
|
|
|
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
|
|
self.result.assoc_resolutions.insert(id, item);
|
|
}
|
|
|
|
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
|
|
self.result.type_of_pat.insert(pat, ty);
|
|
}
|
|
|
|
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
|
|
self.result.diagnostics.push(diagnostic);
|
|
}
|
|
|
|
fn make_ty_with_mode(
|
|
&mut self,
|
|
type_ref: &TypeRef,
|
|
impl_trait_mode: ImplTraitLoweringMode,
|
|
) -> Ty {
|
|
// FIXME use right resolver for block
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
|
|
.with_impl_trait_mode(impl_trait_mode);
|
|
let ty = ctx.lower_ty(type_ref);
|
|
let ty = self.insert_type_vars(ty);
|
|
self.normalize_associated_types_in(ty)
|
|
}
|
|
|
|
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
|
|
self.make_ty_with_mode(type_ref, ImplTraitLoweringMode::Disallowed)
|
|
}
|
|
|
|
fn err_ty(&self) -> Ty {
|
|
self.result.standard_types.unknown.clone()
|
|
}
|
|
|
|
/// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it.
|
|
fn insert_const_vars_shallow(&mut self, c: Const) -> Const {
|
|
let data = c.data(Interner);
|
|
match data.value {
|
|
ConstValue::Concrete(cc) => match cc.interned {
|
|
hir_def::type_ref::ConstScalar::Usize(_) => c,
|
|
hir_def::type_ref::ConstScalar::Unknown => {
|
|
self.table.new_const_var(data.ty.clone())
|
|
}
|
|
},
|
|
_ => c,
|
|
}
|
|
}
|
|
|
|
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
|
|
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
|
|
match ty.kind(Interner) {
|
|
TyKind::Error => self.table.new_type_var(),
|
|
TyKind::InferenceVar(..) => {
|
|
let ty_resolved = self.resolve_ty_shallow(&ty);
|
|
if ty_resolved.is_unknown() {
|
|
self.table.new_type_var()
|
|
} else {
|
|
ty
|
|
}
|
|
}
|
|
_ => ty,
|
|
}
|
|
}
|
|
|
|
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
|
|
fold_tys_and_consts(
|
|
ty,
|
|
|x, _| match x {
|
|
Either::Left(ty) => Either::Left(self.insert_type_vars_shallow(ty)),
|
|
Either::Right(c) => Either::Right(self.insert_const_vars_shallow(c)),
|
|
},
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
}
|
|
|
|
fn resolve_obligations_as_possible(&mut self) {
|
|
self.table.resolve_obligations_as_possible();
|
|
}
|
|
|
|
fn push_obligation(&mut self, o: DomainGoal) {
|
|
self.table.register_obligation(o.cast(Interner));
|
|
}
|
|
|
|
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
self.table.unify(ty1, ty2)
|
|
}
|
|
|
|
/// Recurses through the given type, normalizing associated types mentioned
|
|
/// in it by replacing them by type variables and registering obligations to
|
|
/// resolve later. This should be done once for every type we get from some
|
|
/// type annotation (e.g. from a let type annotation, field type or function
|
|
/// call). `make_ty` handles this already, but e.g. for field types we need
|
|
/// to do it as well.
|
|
fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
|
|
self.table.normalize_associated_types_in(ty)
|
|
}
|
|
|
|
fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
|
|
self.resolve_obligations_as_possible();
|
|
self.table.resolve_ty_shallow(ty)
|
|
}
|
|
|
|
fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
|
|
self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
|
|
}
|
|
|
|
fn resolve_associated_type_with_params(
|
|
&mut self,
|
|
inner_ty: Ty,
|
|
assoc_ty: Option<TypeAliasId>,
|
|
params: &[GenericArg],
|
|
) -> Ty {
|
|
match assoc_ty {
|
|
Some(res_assoc_ty) => {
|
|
let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container {
|
|
hir_def::ItemContainerId::TraitId(trait_) => trait_,
|
|
_ => panic!("resolve_associated_type called with non-associated type"),
|
|
};
|
|
let ty = self.table.new_type_var();
|
|
let mut param_iter = params.iter().cloned();
|
|
let trait_ref = TyBuilder::trait_ref(self.db, trait_)
|
|
.push(inner_ty)
|
|
.fill(|_| param_iter.next().unwrap())
|
|
.build();
|
|
let alias_eq = AliasEq {
|
|
alias: AliasTy::Projection(ProjectionTy {
|
|
associated_ty_id: to_assoc_type_id(res_assoc_ty),
|
|
substitution: trait_ref.substitution.clone(),
|
|
}),
|
|
ty: ty.clone(),
|
|
};
|
|
self.push_obligation(trait_ref.cast(Interner));
|
|
self.push_obligation(alias_eq.cast(Interner));
|
|
ty
|
|
}
|
|
None => self.err_ty(),
|
|
}
|
|
}
|
|
|
|
fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option<VariantId>) {
|
|
let path = match path {
|
|
Some(path) => path,
|
|
None => return (self.err_ty(), None),
|
|
};
|
|
let resolver = &self.resolver;
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver);
|
|
// FIXME: this should resolve assoc items as well, see this example:
|
|
// https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
|
|
let (resolution, unresolved) = if value_ns {
|
|
match resolver.resolve_path_in_value_ns(self.db.upcast(), path.mod_path()) {
|
|
Some(ResolveValueResult::ValueNs(value)) => match value {
|
|
ValueNs::EnumVariantId(var) => {
|
|
let substs = ctx.substs_from_path(path, var.into(), true);
|
|
let ty = self.db.ty(var.parent.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
return (ty, Some(var.into()));
|
|
}
|
|
ValueNs::StructId(strukt) => {
|
|
let substs = ctx.substs_from_path(path, strukt.into(), true);
|
|
let ty = self.db.ty(strukt.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
return (ty, Some(strukt.into()));
|
|
}
|
|
_ => return (self.err_ty(), None),
|
|
},
|
|
Some(ResolveValueResult::Partial(typens, unresolved)) => (typens, Some(unresolved)),
|
|
None => return (self.err_ty(), None),
|
|
}
|
|
} else {
|
|
match resolver.resolve_path_in_type_ns(self.db.upcast(), path.mod_path()) {
|
|
Some(it) => it,
|
|
None => return (self.err_ty(), None),
|
|
}
|
|
};
|
|
return match resolution {
|
|
TypeNs::AdtId(AdtId::StructId(strukt)) => {
|
|
let substs = ctx.substs_from_path(path, strukt.into(), true);
|
|
let ty = self.db.ty(strukt.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
forbid_unresolved_segments((ty, Some(strukt.into())), unresolved)
|
|
}
|
|
TypeNs::AdtId(AdtId::UnionId(u)) => {
|
|
let substs = ctx.substs_from_path(path, u.into(), true);
|
|
let ty = self.db.ty(u.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
forbid_unresolved_segments((ty, Some(u.into())), unresolved)
|
|
}
|
|
TypeNs::EnumVariantId(var) => {
|
|
let substs = ctx.substs_from_path(path, var.into(), true);
|
|
let ty = self.db.ty(var.parent.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
forbid_unresolved_segments((ty, Some(var.into())), unresolved)
|
|
}
|
|
TypeNs::SelfType(impl_id) => {
|
|
let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
|
|
let substs = generics.placeholder_subst(self.db);
|
|
let ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs);
|
|
self.resolve_variant_on_alias(ty, unresolved, path)
|
|
}
|
|
TypeNs::TypeAliasId(it) => {
|
|
let ty = TyBuilder::def_ty(self.db, it.into())
|
|
.fill_with_inference_vars(&mut self.table)
|
|
.build();
|
|
self.resolve_variant_on_alias(ty, unresolved, path)
|
|
}
|
|
TypeNs::AdtSelfType(_) => {
|
|
// FIXME this could happen in array size expressions, once we're checking them
|
|
(self.err_ty(), None)
|
|
}
|
|
TypeNs::GenericParam(_) => {
|
|
// FIXME potentially resolve assoc type
|
|
(self.err_ty(), None)
|
|
}
|
|
TypeNs::AdtId(AdtId::EnumId(_)) | TypeNs::BuiltinType(_) | TypeNs::TraitId(_) => {
|
|
// FIXME diagnostic
|
|
(self.err_ty(), None)
|
|
}
|
|
};
|
|
|
|
fn forbid_unresolved_segments(
|
|
result: (Ty, Option<VariantId>),
|
|
unresolved: Option<usize>,
|
|
) -> (Ty, Option<VariantId>) {
|
|
if unresolved.is_none() {
|
|
result
|
|
} else {
|
|
// FIXME diagnostic
|
|
(TyKind::Error.intern(Interner), None)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_variant_on_alias(
|
|
&mut self,
|
|
ty: Ty,
|
|
unresolved: Option<usize>,
|
|
path: &Path,
|
|
) -> (Ty, Option<VariantId>) {
|
|
let remaining = unresolved.map(|x| path.segments().skip(x).len()).filter(|x| x > &0);
|
|
match remaining {
|
|
None => {
|
|
let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id {
|
|
AdtId::StructId(s) => Some(VariantId::StructId(s)),
|
|
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
|
|
AdtId::EnumId(_) => {
|
|
// FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
|
|
None
|
|
}
|
|
});
|
|
(ty, variant)
|
|
}
|
|
Some(1) => {
|
|
let segment = path.mod_path().segments().last().unwrap();
|
|
// this could be an enum variant or associated type
|
|
if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() {
|
|
let enum_data = self.db.enum_data(enum_id);
|
|
if let Some(local_id) = enum_data.variant(segment) {
|
|
let variant = EnumVariantId { parent: enum_id, local_id };
|
|
return (ty, Some(variant.into()));
|
|
}
|
|
}
|
|
// FIXME potentially resolve assoc type
|
|
(self.err_ty(), None)
|
|
}
|
|
Some(_) => {
|
|
// FIXME diagnostic
|
|
(self.err_ty(), None)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_lang_item(&self, name: Name) -> Option<LangItemTarget> {
|
|
let krate = self.resolver.krate();
|
|
self.db.lang_item(krate, name.to_smol_str())
|
|
}
|
|
|
|
fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
|
|
let path = path![core::iter::IntoIterator];
|
|
let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Item])
|
|
}
|
|
|
|
fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
|
|
// FIXME resolve via lang_item once try v2 is stable
|
|
let path = path![core::ops::Try];
|
|
let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
|
|
let trait_data = self.db.trait_data(trait_);
|
|
trait_data
|
|
// FIXME remove once try v2 is stable
|
|
.associated_type_by_name(&name![Ok])
|
|
.or_else(|| trait_data.associated_type_by_name(&name![Output]))
|
|
}
|
|
|
|
fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_lang_item(name![neg])?.as_trait()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_lang_item(name![not])?.as_trait()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_lang_item(name![future_trait])?.as_trait()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_boxed_box(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(name![owned_box])?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_full(&self) -> Option<AdtId> {
|
|
let path = path![core::ops::RangeFull];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range(&self) -> Option<AdtId> {
|
|
let path = path![core::ops::Range];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_inclusive(&self) -> Option<AdtId> {
|
|
let path = path![core::ops::RangeInclusive];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_from(&self) -> Option<AdtId> {
|
|
let path = path![core::ops::RangeFrom];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_to(&self) -> Option<AdtId> {
|
|
let path = path![core::ops::RangeTo];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
|
|
let path = path![core::ops::RangeToInclusive];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_ops_index(&self) -> Option<TraitId> {
|
|
self.resolve_lang_item(name![index])?.as_trait()
|
|
}
|
|
|
|
fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_ops_index()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
}
|
|
|
|
/// When inferring an expression, we propagate downward whatever type hint we
|
|
/// are able in the form of an `Expectation`.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub(crate) enum Expectation {
|
|
None,
|
|
HasType(Ty),
|
|
// Castable(Ty), // rustc has this, we currently just don't propagate an expectation for casts
|
|
RValueLikeUnsized(Ty),
|
|
}
|
|
|
|
impl Expectation {
|
|
/// The expectation that the type of the expression needs to equal the given
|
|
/// type.
|
|
fn has_type(ty: Ty) -> Self {
|
|
if ty.is_unknown() {
|
|
// FIXME: get rid of this?
|
|
Expectation::None
|
|
} else {
|
|
Expectation::HasType(ty)
|
|
}
|
|
}
|
|
|
|
fn from_option(ty: Option<Ty>) -> Self {
|
|
ty.map_or(Expectation::None, Expectation::HasType)
|
|
}
|
|
|
|
/// The following explanation is copied straight from rustc:
|
|
/// Provides an expectation for an rvalue expression given an *optional*
|
|
/// hint, which is not required for type safety (the resulting type might
|
|
/// be checked higher up, as is the case with `&expr` and `box expr`), but
|
|
/// is useful in determining the concrete type.
|
|
///
|
|
/// The primary use case is where the expected type is a fat pointer,
|
|
/// like `&[isize]`. For example, consider the following statement:
|
|
///
|
|
/// let x: &[isize] = &[1, 2, 3];
|
|
///
|
|
/// In this case, the expected type for the `&[1, 2, 3]` expression is
|
|
/// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
|
|
/// expectation `ExpectHasType([isize])`, that would be too strong --
|
|
/// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
|
|
/// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
|
|
/// to the type `&[isize]`. Therefore, we propagate this more limited hint,
|
|
/// which still is useful, because it informs integer literals and the like.
|
|
/// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
|
|
/// for examples of where this comes up,.
|
|
fn rvalue_hint(table: &mut unify::InferenceTable, ty: Ty) -> Self {
|
|
// FIXME: do struct_tail_without_normalization
|
|
match table.resolve_ty_shallow(&ty).kind(Interner) {
|
|
TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty),
|
|
_ => Expectation::has_type(ty),
|
|
}
|
|
}
|
|
|
|
/// This expresses no expectation on the type.
|
|
fn none() -> Self {
|
|
Expectation::None
|
|
}
|
|
|
|
fn resolve(&self, table: &mut unify::InferenceTable) -> Expectation {
|
|
match self {
|
|
Expectation::None => Expectation::None,
|
|
Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)),
|
|
Expectation::RValueLikeUnsized(t) => {
|
|
Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn to_option(&self, table: &mut unify::InferenceTable) -> Option<Ty> {
|
|
match self.resolve(table) {
|
|
Expectation::None => None,
|
|
Expectation::HasType(t) |
|
|
// Expectation::Castable(t) |
|
|
Expectation::RValueLikeUnsized(t) => Some(t),
|
|
}
|
|
}
|
|
|
|
fn only_has_type(&self, table: &mut unify::InferenceTable) -> Option<Ty> {
|
|
match self {
|
|
Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)),
|
|
// Expectation::Castable(_) |
|
|
Expectation::RValueLikeUnsized(_) | Expectation::None => None,
|
|
}
|
|
}
|
|
|
|
/// Comment copied from rustc:
|
|
/// Disregard "castable to" expectations because they
|
|
/// can lead us astray. Consider for example `if cond
|
|
/// {22} else {c} as u8` -- if we propagate the
|
|
/// "castable to u8" constraint to 22, it will pick the
|
|
/// type 22u8, which is overly constrained (c might not
|
|
/// be a u8). In effect, the problem is that the
|
|
/// "castable to" expectation is not the tightest thing
|
|
/// we can say, so we want to drop it in this case.
|
|
/// The tightest thing we can say is "must unify with
|
|
/// else branch". Note that in the case of a "has type"
|
|
/// constraint, this limitation does not hold.
|
|
///
|
|
/// If the expected type is just a type variable, then don't use
|
|
/// an expected type. Otherwise, we might write parts of the type
|
|
/// when checking the 'then' block which are incompatible with the
|
|
/// 'else' branch.
|
|
fn adjust_for_branches(&self, table: &mut unify::InferenceTable) -> Expectation {
|
|
match self {
|
|
Expectation::HasType(ety) => {
|
|
let ety = table.resolve_ty_shallow(ety);
|
|
if !ety.is_ty_var() {
|
|
Expectation::HasType(ety)
|
|
} else {
|
|
Expectation::None
|
|
}
|
|
}
|
|
Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()),
|
|
_ => Expectation::None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
|
enum Diverges {
|
|
Maybe,
|
|
Always,
|
|
}
|
|
|
|
impl Diverges {
|
|
fn is_always(self) -> bool {
|
|
self == Diverges::Always
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitAnd for Diverges {
|
|
type Output = Self;
|
|
fn bitand(self, other: Self) -> Self {
|
|
std::cmp::min(self, other)
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitOr for Diverges {
|
|
type Output = Self;
|
|
fn bitor(self, other: Self) -> Self {
|
|
std::cmp::max(self, other)
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitAndAssign for Diverges {
|
|
fn bitand_assign(&mut self, other: Self) {
|
|
*self = *self & other;
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitOrAssign for Diverges {
|
|
fn bitor_assign(&mut self, other: Self) {
|
|
*self = *self | other;
|
|
}
|
|
}
|