rust-analyzer/crates/hir-ty/src/display.rs
2023-07-03 20:34:09 +02:00

1910 lines
74 KiB
Rust

//! The `HirDisplay` trait, which serves two purposes: Turning various bits from
//! HIR back into source code, and just displaying them for debugging/testing
//! purposes.
use std::{
fmt::{self, Debug},
mem::size_of,
};
use base_db::CrateId;
use chalk_ir::{BoundVar, TyKind};
use hir_def::{
data::adt::VariantData,
db::DefDatabase,
find_path,
generics::{TypeOrConstParamData, TypeParamProvenance},
item_scope::ItemInNs,
lang_item::{LangItem, LangItemTarget},
nameres::DefMap,
path::{Path, PathKind},
type_ref::{TraitBoundModifier, TypeBound, TypeRef},
visibility::Visibility,
EnumVariantId, HasModule, ItemContainerId, LocalFieldId, Lookup, ModuleDefId, ModuleId,
TraitId,
};
use hir_expand::{hygiene::Hygiene, name::Name};
use intern::{Internable, Interned};
use itertools::Itertools;
use la_arena::ArenaMap;
use smallvec::SmallVec;
use stdx::never;
use crate::{
consteval::try_const_usize,
db::HirDatabase,
from_assoc_type_id, from_foreign_def_id, from_placeholder_idx,
layout::Layout,
lt_from_placeholder_idx,
mapping::from_chalk,
mir::pad16,
primitive, to_assoc_type_id,
utils::{self, detect_variant_from_bytes, generics, ClosureSubst},
AdtId, AliasEq, AliasTy, Binders, CallableDefId, CallableSig, Const, ConstScalar, ConstValue,
DomainGoal, GenericArg, ImplTraitId, Interner, Lifetime, LifetimeData, LifetimeOutlives,
MemoryMap, Mutability, OpaqueTy, ProjectionTy, ProjectionTyExt, QuantifiedWhereClause, Scalar,
Substitution, TraitRef, TraitRefExt, Ty, TyExt, WhereClause,
};
pub trait HirWrite: fmt::Write {
fn start_location_link(&mut self, location: ModuleDefId);
fn end_location_link(&mut self);
}
// String will ignore link metadata
impl HirWrite for String {
fn start_location_link(&mut self, _: ModuleDefId) {}
fn end_location_link(&mut self) {}
}
// `core::Formatter` will ignore metadata
impl HirWrite for fmt::Formatter<'_> {
fn start_location_link(&mut self, _: ModuleDefId) {}
fn end_location_link(&mut self) {}
}
pub struct HirFormatter<'a> {
pub db: &'a dyn HirDatabase,
fmt: &'a mut dyn HirWrite,
buf: String,
curr_size: usize,
pub(crate) max_size: Option<usize>,
omit_verbose_types: bool,
closure_style: ClosureStyle,
display_target: DisplayTarget,
}
impl HirFormatter<'_> {
fn start_location_link(&mut self, location: ModuleDefId) {
self.fmt.start_location_link(location);
}
fn end_location_link(&mut self) {
self.fmt.end_location_link();
}
}
pub trait HirDisplay {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError>;
/// Returns a `Display`able type that is human-readable.
fn into_displayable<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
omit_verbose_types: bool,
display_target: DisplayTarget,
closure_style: ClosureStyle,
) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
assert!(
!matches!(display_target, DisplayTarget::SourceCode { .. }),
"HirDisplayWrapper cannot fail with DisplaySourceCodeError, use HirDisplay::hir_fmt directly instead"
);
HirDisplayWrapper {
db,
t: self,
max_size,
omit_verbose_types,
display_target,
closure_style,
}
}
/// Returns a `Display`able type that is human-readable.
/// Use this for showing types to the user (e.g. diagnostics)
fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper {
db,
t: self,
max_size: None,
omit_verbose_types: false,
closure_style: ClosureStyle::ImplFn,
display_target: DisplayTarget::Diagnostics,
}
}
/// Returns a `Display`able type that is human-readable and tries to be succinct.
/// Use this for showing types to the user where space is constrained (e.g. doc popups)
fn display_truncated<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper {
db,
t: self,
max_size,
omit_verbose_types: true,
closure_style: ClosureStyle::ImplFn,
display_target: DisplayTarget::Diagnostics,
}
}
/// Returns a String representation of `self` that can be inserted into the given module.
/// Use this when generating code (e.g. assists)
fn display_source_code<'a>(
&'a self,
db: &'a dyn HirDatabase,
module_id: ModuleId,
allow_opaque: bool,
) -> Result<String, DisplaySourceCodeError> {
let mut result = String::new();
match self.hir_fmt(&mut HirFormatter {
db,
fmt: &mut result,
buf: String::with_capacity(20),
curr_size: 0,
max_size: None,
omit_verbose_types: false,
closure_style: ClosureStyle::ImplFn,
display_target: DisplayTarget::SourceCode { module_id, allow_opaque },
}) {
Ok(()) => {}
Err(HirDisplayError::FmtError) => panic!("Writing to String can't fail!"),
Err(HirDisplayError::DisplaySourceCodeError(e)) => return Err(e),
};
Ok(result)
}
/// Returns a String representation of `self` for test purposes
fn display_test<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper {
db,
t: self,
max_size: None,
omit_verbose_types: false,
closure_style: ClosureStyle::ImplFn,
display_target: DisplayTarget::Test,
}
}
}
impl HirFormatter<'_> {
pub fn write_joined<T: HirDisplay>(
&mut self,
iter: impl IntoIterator<Item = T>,
sep: &str,
) -> Result<(), HirDisplayError> {
let mut first = true;
for e in iter {
if !first {
write!(self, "{sep}")?;
}
first = false;
// Abbreviate multiple omitted types with a single ellipsis.
if self.should_truncate() {
return write!(self, "{TYPE_HINT_TRUNCATION}");
}
e.hir_fmt(self)?;
}
Ok(())
}
/// This allows using the `write!` macro directly with a `HirFormatter`.
pub fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<(), HirDisplayError> {
// We write to a buffer first to track output size
self.buf.clear();
fmt::write(&mut self.buf, args)?;
self.curr_size += self.buf.len();
// Then we write to the internal formatter from the buffer
self.fmt.write_str(&self.buf).map_err(HirDisplayError::from)
}
pub fn write_str(&mut self, s: &str) -> Result<(), HirDisplayError> {
self.fmt.write_str(s)?;
Ok(())
}
pub fn write_char(&mut self, c: char) -> Result<(), HirDisplayError> {
self.fmt.write_char(c)?;
Ok(())
}
pub fn should_truncate(&self) -> bool {
match self.max_size {
Some(max_size) => self.curr_size >= max_size,
None => false,
}
}
pub fn omit_verbose_types(&self) -> bool {
self.omit_verbose_types
}
}
#[derive(Clone, Copy)]
pub enum DisplayTarget {
/// Display types for inlays, doc popups, autocompletion, etc...
/// Showing `{unknown}` or not qualifying paths is fine here.
/// There's no reason for this to fail.
Diagnostics,
/// Display types for inserting them in source files.
/// The generated code should compile, so paths need to be qualified.
SourceCode { module_id: ModuleId, allow_opaque: bool },
/// Only for test purpose to keep real types
Test,
}
impl DisplayTarget {
fn is_source_code(self) -> bool {
matches!(self, Self::SourceCode { .. })
}
fn is_test(self) -> bool {
matches!(self, Self::Test)
}
fn allows_opaque(self) -> bool {
match self {
Self::SourceCode { allow_opaque, .. } => allow_opaque,
_ => true,
}
}
}
#[derive(Debug)]
pub enum DisplaySourceCodeError {
PathNotFound,
UnknownType,
Generator,
OpaqueType,
}
pub enum HirDisplayError {
/// Errors that can occur when generating source code
DisplaySourceCodeError(DisplaySourceCodeError),
/// `FmtError` is required to be compatible with std::fmt::Display
FmtError,
}
impl From<fmt::Error> for HirDisplayError {
fn from(_: fmt::Error) -> Self {
Self::FmtError
}
}
pub struct HirDisplayWrapper<'a, T> {
db: &'a dyn HirDatabase,
t: &'a T,
max_size: Option<usize>,
omit_verbose_types: bool,
closure_style: ClosureStyle,
display_target: DisplayTarget,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ClosureStyle {
/// `impl FnX(i32, i32) -> i32`, where `FnX` is the most special trait between `Fn`, `FnMut`, `FnOnce` that the
/// closure implements. This is the default.
ImplFn,
/// `|i32, i32| -> i32`
RANotation,
/// `{closure#14825}`, useful for some diagnostics (like type mismatch) and internal usage.
ClosureWithId,
/// `{closure#14825}<i32, ()>`, useful for internal usage.
ClosureWithSubst,
/// `…`, which is the `TYPE_HINT_TRUNCATION`
Hide,
}
impl<T: HirDisplay> HirDisplayWrapper<'_, T> {
pub fn write_to<F: HirWrite>(&self, f: &mut F) -> Result<(), HirDisplayError> {
self.t.hir_fmt(&mut HirFormatter {
db: self.db,
fmt: f,
buf: String::with_capacity(20),
curr_size: 0,
max_size: self.max_size,
omit_verbose_types: self.omit_verbose_types,
display_target: self.display_target,
closure_style: self.closure_style,
})
}
pub fn with_closure_style(mut self, c: ClosureStyle) -> Self {
self.closure_style = c;
self
}
}
impl<T> fmt::Display for HirDisplayWrapper<'_, T>
where
T: HirDisplay,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.write_to(f) {
Ok(()) => Ok(()),
Err(HirDisplayError::FmtError) => Err(fmt::Error),
Err(HirDisplayError::DisplaySourceCodeError(_)) => {
// This should never happen
panic!("HirDisplay::hir_fmt failed with DisplaySourceCodeError when calling Display::fmt!")
}
}
}
}
const TYPE_HINT_TRUNCATION: &str = "";
impl<T: HirDisplay> HirDisplay for &T {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
HirDisplay::hir_fmt(*self, f)
}
}
impl<T: HirDisplay + Internable> HirDisplay for Interned<T> {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
HirDisplay::hir_fmt(self.as_ref(), f)
}
}
impl HirDisplay for ProjectionTy {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{TYPE_HINT_TRUNCATION}");
}
let trait_ref = self.trait_ref(f.db);
write!(f, "<")?;
fmt_trait_ref(f, &trait_ref, true)?;
write!(
f,
">::{}",
f.db.type_alias_data(from_assoc_type_id(self.associated_ty_id))
.name
.display(f.db.upcast())
)?;
let proj_params_count =
self.substitution.len(Interner) - trait_ref.substitution.len(Interner);
let proj_params = &self.substitution.as_slice(Interner)[..proj_params_count];
if !proj_params.is_empty() {
write!(f, "<")?;
f.write_joined(proj_params, ", ")?;
write!(f, ">")?;
}
Ok(())
}
}
impl HirDisplay for OpaqueTy {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{TYPE_HINT_TRUNCATION}");
}
self.substitution.at(Interner, 0).hir_fmt(f)
}
}
impl HirDisplay for GenericArg {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match self.interned() {
crate::GenericArgData::Ty(ty) => ty.hir_fmt(f),
crate::GenericArgData::Lifetime(lt) => lt.hir_fmt(f),
crate::GenericArgData::Const(c) => c.hir_fmt(f),
}
}
}
impl HirDisplay for Const {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
let data = self.interned();
match &data.value {
ConstValue::BoundVar(idx) => idx.hir_fmt(f),
ConstValue::InferenceVar(..) => write!(f, "#c#"),
ConstValue::Placeholder(idx) => {
let id = from_placeholder_idx(f.db, *idx);
let generics = generics(f.db.upcast(), id.parent);
let param_data = &generics.params.type_or_consts[id.local_id];
write!(f, "{}", param_data.name().unwrap().display(f.db.upcast()))?;
Ok(())
}
ConstValue::Concrete(c) => match &c.interned {
ConstScalar::Bytes(b, m) => render_const_scalar(f, &b, m, &data.ty),
ConstScalar::UnevaluatedConst(c, parameters) => {
write!(f, "{}", c.name(f.db.upcast()))?;
hir_fmt_generics(f, parameters, c.generic_def(f.db.upcast()))?;
Ok(())
}
ConstScalar::Unknown => f.write_char('_'),
},
}
}
}
pub struct HexifiedConst(pub Const);
impl HirDisplay for HexifiedConst {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
let data = &self.0.data(Interner);
if let TyKind::Scalar(s) = data.ty.kind(Interner) {
if matches!(s, Scalar::Int(_) | Scalar::Uint(_)) {
if let ConstValue::Concrete(c) = &data.value {
if let ConstScalar::Bytes(b, m) = &c.interned {
let value = u128::from_le_bytes(pad16(b, false));
if value >= 10 {
render_const_scalar(f, &b, m, &data.ty)?;
return write!(f, " ({:#X})", value);
}
}
}
}
}
self.0.hir_fmt(f)
}
}
fn render_const_scalar(
f: &mut HirFormatter<'_>,
b: &[u8],
memory_map: &MemoryMap,
ty: &Ty,
) -> Result<(), HirDisplayError> {
// FIXME: We need to get krate from the final callers of the hir display
// infrastructure and have it here as a field on `f`.
let krate = *f.db.crate_graph().crates_in_topological_order().last().unwrap();
match ty.kind(Interner) {
TyKind::Scalar(s) => match s {
Scalar::Bool => write!(f, "{}", if b[0] == 0 { false } else { true }),
Scalar::Char => {
let x = u128::from_le_bytes(pad16(b, false)) as u32;
let Ok(c) = char::try_from(x) else {
return f.write_str("<unicode-error>");
};
write!(f, "{c:?}")
}
Scalar::Int(_) => {
let x = i128::from_le_bytes(pad16(b, true));
write!(f, "{x}")
}
Scalar::Uint(_) => {
let x = u128::from_le_bytes(pad16(b, false));
write!(f, "{x}")
}
Scalar::Float(fl) => match fl {
chalk_ir::FloatTy::F32 => {
let x = f32::from_le_bytes(b.try_into().unwrap());
write!(f, "{x:?}")
}
chalk_ir::FloatTy::F64 => {
let x = f64::from_le_bytes(b.try_into().unwrap());
write!(f, "{x:?}")
}
},
},
TyKind::Ref(_, _, t) => match t.kind(Interner) {
TyKind::Str => {
let addr = usize::from_le_bytes(b[0..b.len() / 2].try_into().unwrap());
let size = usize::from_le_bytes(b[b.len() / 2..].try_into().unwrap());
let Some(bytes) = memory_map.get(addr, size) else {
return f.write_str("<ref-data-not-available>");
};
let s = std::str::from_utf8(&bytes).unwrap_or("<utf8-error>");
write!(f, "{s:?}")
}
TyKind::Slice(ty) => {
let addr = usize::from_le_bytes(b[0..b.len() / 2].try_into().unwrap());
let count = usize::from_le_bytes(b[b.len() / 2..].try_into().unwrap());
let Ok(layout) = f.db.layout_of_ty(ty.clone(), krate) else {
return f.write_str("<layout-error>");
};
let size_one = layout.size.bytes_usize();
let Some(bytes) = memory_map.get(addr, size_one * count) else {
return f.write_str("<ref-data-not-available>");
};
f.write_str("&[")?;
let mut first = true;
for i in 0..count {
if first {
first = false;
} else {
f.write_str(", ")?;
}
let offset = size_one * i;
render_const_scalar(f, &bytes[offset..offset + size_one], memory_map, &ty)?;
}
f.write_str("]")
}
TyKind::Dyn(_) => {
let addr = usize::from_le_bytes(b[0..b.len() / 2].try_into().unwrap());
let ty_id = usize::from_le_bytes(b[b.len() / 2..].try_into().unwrap());
let Ok(t) = memory_map.vtable.ty(ty_id) else {
return f.write_str("<ty-missing-in-vtable-map>");
};
let Ok(layout) = f.db.layout_of_ty(t.clone(), krate) else {
return f.write_str("<layout-error>");
};
let size = layout.size.bytes_usize();
let Some(bytes) = memory_map.get(addr, size) else {
return f.write_str("<ref-data-not-available>");
};
f.write_str("&")?;
render_const_scalar(f, bytes, memory_map, t)
}
TyKind::Adt(adt, _) if b.len() == 2 * size_of::<usize>() => match adt.0 {
hir_def::AdtId::StructId(s) => {
let data = f.db.struct_data(s);
write!(f, "&{}", data.name.display(f.db.upcast()))?;
Ok(())
}
_ => {
return f.write_str("<unsized-enum-or-union>");
}
},
_ => {
let addr = usize::from_le_bytes(match b.try_into() {
Ok(b) => b,
Err(_) => {
never!(
"tried rendering ty {:?} in const ref with incorrect byte count {}",
t,
b.len()
);
return f.write_str("<layout-error>");
}
});
let Ok(layout) = f.db.layout_of_ty(t.clone(), krate) else {
return f.write_str("<layout-error>");
};
let size = layout.size.bytes_usize();
let Some(bytes) = memory_map.get(addr, size) else {
return f.write_str("<ref-data-not-available>");
};
f.write_str("&")?;
render_const_scalar(f, bytes, memory_map, t)
}
},
TyKind::Tuple(_, subst) => {
let Ok(layout) = f.db.layout_of_ty(ty.clone(), krate) else {
return f.write_str("<layout-error>");
};
f.write_str("(")?;
let mut first = true;
for (id, ty) in subst.iter(Interner).enumerate() {
if first {
first = false;
} else {
f.write_str(", ")?;
}
let ty = ty.assert_ty_ref(Interner); // Tuple only has type argument
let offset = layout.fields.offset(id).bytes_usize();
let Ok(layout) = f.db.layout_of_ty(ty.clone(), krate) else {
f.write_str("<layout-error>")?;
continue;
};
let size = layout.size.bytes_usize();
render_const_scalar(f, &b[offset..offset + size], memory_map, &ty)?;
}
f.write_str(")")
}
TyKind::Adt(adt, subst) => {
let Ok(layout) = f.db.layout_of_adt(adt.0, subst.clone(), krate) else {
return f.write_str("<layout-error>");
};
match adt.0 {
hir_def::AdtId::StructId(s) => {
let data = f.db.struct_data(s);
write!(f, "{}", data.name.display(f.db.upcast()))?;
let field_types = f.db.field_types(s.into());
render_variant_after_name(
&data.variant_data,
f,
&field_types,
adt.0.module(f.db.upcast()).krate(),
&layout,
subst,
b,
memory_map,
)
}
hir_def::AdtId::UnionId(u) => {
write!(f, "{}", f.db.union_data(u).name.display(f.db.upcast()))
}
hir_def::AdtId::EnumId(e) => {
let Some((var_id, var_layout)) =
detect_variant_from_bytes(&layout, f.db, krate, b, e)
else {
return f.write_str("<failed-to-detect-variant>");
};
let data = &f.db.enum_data(e).variants[var_id];
write!(f, "{}", data.name.display(f.db.upcast()))?;
let field_types =
f.db.field_types(EnumVariantId { parent: e, local_id: var_id }.into());
render_variant_after_name(
&data.variant_data,
f,
&field_types,
adt.0.module(f.db.upcast()).krate(),
&var_layout,
subst,
b,
memory_map,
)
}
}
}
TyKind::FnDef(..) => ty.hir_fmt(f),
TyKind::Function(_) | TyKind::Raw(_, _) => {
let x = u128::from_le_bytes(pad16(b, false));
write!(f, "{:#X} as ", x)?;
ty.hir_fmt(f)
}
TyKind::Array(ty, len) => {
let Some(len) = try_const_usize(f.db, len) else {
return f.write_str("<unknown-array-len>");
};
let Ok(layout) = f.db.layout_of_ty(ty.clone(), krate) else {
return f.write_str("<layout-error>");
};
let size_one = layout.size.bytes_usize();
f.write_str("[")?;
let mut first = true;
for i in 0..len as usize {
if first {
first = false;
} else {
f.write_str(", ")?;
}
let offset = size_one * i;
render_const_scalar(f, &b[offset..offset + size_one], memory_map, &ty)?;
}
f.write_str("]")
}
TyKind::Never => f.write_str("!"),
TyKind::Closure(_, _) => f.write_str("<closure>"),
TyKind::Generator(_, _) => f.write_str("<generator>"),
TyKind::GeneratorWitness(_, _) => f.write_str("<generator-witness>"),
// The below arms are unreachable, since const eval will bail out before here.
TyKind::Foreign(_) => f.write_str("<extern-type>"),
TyKind::Error
| TyKind::Placeholder(_)
| TyKind::Alias(_)
| TyKind::AssociatedType(_, _)
| TyKind::OpaqueType(_, _)
| TyKind::BoundVar(_)
| TyKind::InferenceVar(_, _) => f.write_str("<placeholder-or-unknown-type>"),
// The below arms are unreachable, since we handled them in ref case.
TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => f.write_str("<unsized-value>"),
}
}
fn render_variant_after_name(
data: &VariantData,
f: &mut HirFormatter<'_>,
field_types: &ArenaMap<LocalFieldId, Binders<Ty>>,
krate: CrateId,
layout: &Layout,
subst: &Substitution,
b: &[u8],
memory_map: &MemoryMap,
) -> Result<(), HirDisplayError> {
match data {
VariantData::Record(fields) | VariantData::Tuple(fields) => {
let render_field = |f: &mut HirFormatter<'_>, id: LocalFieldId| {
let offset = layout.fields.offset(u32::from(id.into_raw()) as usize).bytes_usize();
let ty = field_types[id].clone().substitute(Interner, subst);
let Ok(layout) = f.db.layout_of_ty(ty.clone(), krate) else {
return f.write_str("<layout-error>");
};
let size = layout.size.bytes_usize();
render_const_scalar(f, &b[offset..offset + size], memory_map, &ty)
};
let mut it = fields.iter();
if matches!(data, VariantData::Record(_)) {
write!(f, " {{")?;
if let Some((id, data)) = it.next() {
write!(f, " {}: ", data.name.display(f.db.upcast()))?;
render_field(f, id)?;
}
for (id, data) in it {
write!(f, ", {}: ", data.name.display(f.db.upcast()))?;
render_field(f, id)?;
}
write!(f, " }}")?;
} else {
let mut it = it.map(|x| x.0);
write!(f, "(")?;
if let Some(id) = it.next() {
render_field(f, id)?;
}
for id in it {
write!(f, ", ")?;
render_field(f, id)?;
}
write!(f, ")")?;
}
return Ok(());
}
VariantData::Unit => Ok(()),
}
}
impl HirDisplay for BoundVar {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
write!(f, "?{}.{}", self.debruijn.depth(), self.index)
}
}
impl HirDisplay for Ty {
fn hir_fmt(
&self,
f @ &mut HirFormatter { db, .. }: &mut HirFormatter<'_>,
) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{TYPE_HINT_TRUNCATION}");
}
match self.kind(Interner) {
TyKind::Never => write!(f, "!")?,
TyKind::Str => write!(f, "str")?,
TyKind::Scalar(Scalar::Bool) => write!(f, "bool")?,
TyKind::Scalar(Scalar::Char) => write!(f, "char")?,
&TyKind::Scalar(Scalar::Float(t)) => write!(f, "{}", primitive::float_ty_to_string(t))?,
&TyKind::Scalar(Scalar::Int(t)) => write!(f, "{}", primitive::int_ty_to_string(t))?,
&TyKind::Scalar(Scalar::Uint(t)) => write!(f, "{}", primitive::uint_ty_to_string(t))?,
TyKind::Slice(t) => {
write!(f, "[")?;
t.hir_fmt(f)?;
write!(f, "]")?;
}
TyKind::Array(t, c) => {
write!(f, "[")?;
t.hir_fmt(f)?;
write!(f, "; ")?;
c.hir_fmt(f)?;
write!(f, "]")?;
}
TyKind::Raw(m, t) | TyKind::Ref(m, _, t) => {
if matches!(self.kind(Interner), TyKind::Raw(..)) {
write!(
f,
"*{}",
match m {
Mutability::Not => "const ",
Mutability::Mut => "mut ",
}
)?;
} else {
write!(
f,
"&{}",
match m {
Mutability::Not => "",
Mutability::Mut => "mut ",
}
)?;
}
// FIXME: all this just to decide whether to use parentheses...
let contains_impl_fn = |bounds: &[QuantifiedWhereClause]| {
bounds.iter().any(|bound| {
if let WhereClause::Implemented(trait_ref) = bound.skip_binders() {
let trait_ = trait_ref.hir_trait_id();
fn_traits(db.upcast(), trait_).any(|it| it == trait_)
} else {
false
}
})
};
let (preds_to_print, has_impl_fn_pred) = match t.kind(Interner) {
TyKind::Dyn(dyn_ty) if dyn_ty.bounds.skip_binders().interned().len() > 1 => {
let bounds = dyn_ty.bounds.skip_binders().interned();
(bounds.len(), contains_impl_fn(bounds))
}
TyKind::Alias(AliasTy::Opaque(OpaqueTy {
opaque_ty_id,
substitution: parameters,
}))
| TyKind::OpaqueType(opaque_ty_id, parameters) => {
let impl_trait_id = db.lookup_intern_impl_trait_id((*opaque_ty_id).into());
if let ImplTraitId::ReturnTypeImplTrait(func, idx) = impl_trait_id {
let datas = db
.return_type_impl_traits(func)
.expect("impl trait id without data");
let data =
(*datas).as_ref().map(|rpit| rpit.impl_traits[idx].bounds.clone());
let bounds = data.substitute(Interner, parameters);
let mut len = bounds.skip_binders().len();
// Don't count Sized but count when it absent
// (i.e. when explicit ?Sized bound is set).
let default_sized = SizedByDefault::Sized {
anchor: func.lookup(db.upcast()).module(db.upcast()).krate(),
};
let sized_bounds = bounds
.skip_binders()
.iter()
.filter(|b| {
matches!(
b.skip_binders(),
WhereClause::Implemented(trait_ref)
if default_sized.is_sized_trait(
trait_ref.hir_trait_id(),
db.upcast(),
),
)
})
.count();
match sized_bounds {
0 => len += 1,
_ => {
len = len.saturating_sub(sized_bounds);
}
}
(len, contains_impl_fn(bounds.skip_binders()))
} else {
(0, false)
}
}
_ => (0, false),
};
if has_impl_fn_pred && preds_to_print <= 2 {
return t.hir_fmt(f);
}
if preds_to_print > 1 {
write!(f, "(")?;
t.hir_fmt(f)?;
write!(f, ")")?;
} else {
t.hir_fmt(f)?;
}
}
TyKind::Tuple(_, substs) => {
if substs.len(Interner) == 1 {
write!(f, "(")?;
substs.at(Interner, 0).hir_fmt(f)?;
write!(f, ",)")?;
} else {
write!(f, "(")?;
f.write_joined(&*substs.as_slice(Interner), ", ")?;
write!(f, ")")?;
}
}
TyKind::Function(fn_ptr) => {
let sig = CallableSig::from_fn_ptr(fn_ptr);
sig.hir_fmt(f)?;
}
TyKind::FnDef(def, parameters) => {
let def = from_chalk(db, *def);
let sig = db.callable_item_signature(def).substitute(Interner, parameters);
f.start_location_link(def.into());
match def {
CallableDefId::FunctionId(ff) => {
write!(f, "fn {}", db.function_data(ff).name.display(f.db.upcast()))?
}
CallableDefId::StructId(s) => {
write!(f, "{}", db.struct_data(s).name.display(f.db.upcast()))?
}
CallableDefId::EnumVariantId(e) => write!(
f,
"{}",
db.enum_data(e.parent).variants[e.local_id].name.display(f.db.upcast())
)?,
};
f.end_location_link();
if parameters.len(Interner) > 0 {
let generics = generics(db.upcast(), def.into());
let (parent_params, self_param, type_params, const_params, _impl_trait_params) =
generics.provenance_split();
let total_len = parent_params + self_param + type_params + const_params;
// We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self?
if total_len > 0 {
// `parameters` are in the order of fn's params (including impl traits),
// parent's params (those from enclosing impl or trait, if any).
let parameters = parameters.as_slice(Interner);
let fn_params_len = self_param + type_params + const_params;
let fn_params = parameters.get(..fn_params_len);
let parent_params = parameters.get(parameters.len() - parent_params..);
let params = parent_params.into_iter().chain(fn_params).flatten();
write!(f, "<")?;
f.write_joined(params, ", ")?;
write!(f, ">")?;
}
}
write!(f, "(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ")")?;
let ret = sig.ret();
if !ret.is_unit() {
write!(f, " -> ")?;
ret.hir_fmt(f)?;
}
}
TyKind::Adt(AdtId(def_id), parameters) => {
f.start_location_link((*def_id).into());
match f.display_target {
DisplayTarget::Diagnostics | DisplayTarget::Test => {
let name = match *def_id {
hir_def::AdtId::StructId(it) => db.struct_data(it).name.clone(),
hir_def::AdtId::UnionId(it) => db.union_data(it).name.clone(),
hir_def::AdtId::EnumId(it) => db.enum_data(it).name.clone(),
};
write!(f, "{}", name.display(f.db.upcast()))?;
}
DisplayTarget::SourceCode { module_id, allow_opaque: _ } => {
if let Some(path) = find_path::find_path(
db.upcast(),
ItemInNs::Types((*def_id).into()),
module_id,
false,
) {
write!(f, "{}", path.display(f.db.upcast()))?;
} else {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::PathNotFound,
));
}
}
}
f.end_location_link();
let generic_def = self.as_generic_def(db);
hir_fmt_generics(f, parameters, generic_def)?;
}
TyKind::AssociatedType(assoc_type_id, parameters) => {
let type_alias = from_assoc_type_id(*assoc_type_id);
let trait_ = match type_alias.lookup(db.upcast()).container {
ItemContainerId::TraitId(it) => it,
_ => panic!("not an associated type"),
};
let trait_data = db.trait_data(trait_);
let type_alias_data = db.type_alias_data(type_alias);
// Use placeholder associated types when the target is test (https://rust-lang.github.io/chalk/book/clauses/type_equality.html#placeholder-associated-types)
if f.display_target.is_test() {
f.start_location_link(trait_.into());
write!(f, "{}", trait_data.name.display(f.db.upcast()))?;
f.end_location_link();
write!(f, "::")?;
f.start_location_link(type_alias.into());
write!(f, "{}", type_alias_data.name.display(f.db.upcast()))?;
f.end_location_link();
// Note that the generic args for the associated type come before those for the
// trait (including the self type).
// FIXME: reconsider the generic args order upon formatting?
if parameters.len(Interner) > 0 {
write!(f, "<")?;
f.write_joined(parameters.as_slice(Interner), ", ")?;
write!(f, ">")?;
}
} else {
let projection_ty = ProjectionTy {
associated_ty_id: to_assoc_type_id(type_alias),
substitution: parameters.clone(),
};
projection_ty.hir_fmt(f)?;
}
}
TyKind::Foreign(type_alias) => {
let alias = from_foreign_def_id(*type_alias);
let type_alias = db.type_alias_data(alias);
f.start_location_link(alias.into());
write!(f, "{}", type_alias.name.display(f.db.upcast()))?;
f.end_location_link();
}
TyKind::OpaqueType(opaque_ty_id, parameters) => {
if !f.display_target.allows_opaque() {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::OpaqueType,
));
}
let impl_trait_id = db.lookup_intern_impl_trait_id((*opaque_ty_id).into());
match impl_trait_id {
ImplTraitId::ReturnTypeImplTrait(func, idx) => {
let datas =
db.return_type_impl_traits(func).expect("impl trait id without data");
let data =
(*datas).as_ref().map(|rpit| rpit.impl_traits[idx].bounds.clone());
let bounds = data.substitute(Interner, &parameters);
let krate = func.lookup(db.upcast()).module(db.upcast()).krate();
write_bounds_like_dyn_trait_with_prefix(
f,
"impl",
bounds.skip_binders(),
SizedByDefault::Sized { anchor: krate },
)?;
// FIXME: it would maybe be good to distinguish this from the alias type (when debug printing), and to show the substitution
}
ImplTraitId::AsyncBlockTypeImplTrait(body, ..) => {
let future_trait = db
.lang_item(body.module(db.upcast()).krate(), LangItem::Future)
.and_then(LangItemTarget::as_trait);
let output = future_trait.and_then(|t| {
db.trait_data(t).associated_type_by_name(&hir_expand::name!(Output))
});
write!(f, "impl ")?;
if let Some(t) = future_trait {
f.start_location_link(t.into());
}
write!(f, "Future")?;
if let Some(_) = future_trait {
f.end_location_link();
}
write!(f, "<")?;
if let Some(t) = output {
f.start_location_link(t.into());
}
write!(f, "Output")?;
if let Some(_) = output {
f.end_location_link();
}
write!(f, " = ")?;
parameters.at(Interner, 0).hir_fmt(f)?;
write!(f, ">")?;
}
}
}
TyKind::Closure(id, substs) => {
if f.display_target.is_source_code() {
if !f.display_target.allows_opaque() {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::OpaqueType,
));
} else if f.closure_style != ClosureStyle::ImplFn {
never!("Only `impl Fn` is valid for displaying closures in source code");
}
}
match f.closure_style {
ClosureStyle::Hide => return write!(f, "{TYPE_HINT_TRUNCATION}"),
ClosureStyle::ClosureWithId => {
return write!(f, "{{closure#{:?}}}", id.0.as_u32())
}
ClosureStyle::ClosureWithSubst => {
write!(f, "{{closure#{:?}}}", id.0.as_u32())?;
return hir_fmt_generics(f, substs, None);
}
_ => (),
}
let sig = ClosureSubst(substs).sig_ty().callable_sig(db);
if let Some(sig) = sig {
let (def, _) = db.lookup_intern_closure((*id).into());
let infer = db.infer(def);
let (_, kind) = infer.closure_info(id);
match f.closure_style {
ClosureStyle::ImplFn => write!(f, "impl {kind:?}(")?,
ClosureStyle::RANotation => write!(f, "|")?,
_ => unreachable!(),
}
if sig.params().is_empty() {
} else if f.should_truncate() {
write!(f, "{TYPE_HINT_TRUNCATION}")?;
} else {
f.write_joined(sig.params(), ", ")?;
};
match f.closure_style {
ClosureStyle::ImplFn => write!(f, ")")?,
ClosureStyle::RANotation => write!(f, "|")?,
_ => unreachable!(),
}
if f.closure_style == ClosureStyle::RANotation || !sig.ret().is_unit() {
write!(f, " -> ")?;
sig.ret().hir_fmt(f)?;
}
} else {
write!(f, "{{closure}}")?;
}
}
TyKind::Placeholder(idx) => {
let id = from_placeholder_idx(db, *idx);
let generics = generics(db.upcast(), id.parent);
let param_data = &generics.params.type_or_consts[id.local_id];
match param_data {
TypeOrConstParamData::TypeParamData(p) => match p.provenance {
TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => {
write!(
f,
"{}",
p.name.clone().unwrap_or_else(Name::missing).display(f.db.upcast())
)?
}
TypeParamProvenance::ArgumentImplTrait => {
let substs = generics.placeholder_subst(db);
let bounds = db
.generic_predicates(id.parent)
.iter()
.map(|pred| pred.clone().substitute(Interner, &substs))
.filter(|wc| match &wc.skip_binders() {
WhereClause::Implemented(tr) => {
&tr.self_type_parameter(Interner) == self
}
WhereClause::AliasEq(AliasEq {
alias: AliasTy::Projection(proj),
ty: _,
}) => &proj.self_type_parameter(db) == self,
_ => false,
})
.collect::<Vec<_>>();
let krate = id.parent.module(db.upcast()).krate();
write_bounds_like_dyn_trait_with_prefix(
f,
"impl",
&bounds,
SizedByDefault::Sized { anchor: krate },
)?;
}
},
TypeOrConstParamData::ConstParamData(p) => {
write!(f, "{}", p.name.display(f.db.upcast()))?;
}
}
}
TyKind::BoundVar(idx) => idx.hir_fmt(f)?,
TyKind::Dyn(dyn_ty) => {
// Reorder bounds to satisfy `write_bounds_like_dyn_trait()`'s expectation.
// FIXME: `Iterator::partition_in_place()` or `Vec::drain_filter()` may make it
// more efficient when either of them hits stable.
let mut bounds: SmallVec<[_; 4]> =
dyn_ty.bounds.skip_binders().iter(Interner).cloned().collect();
let (auto_traits, others): (SmallVec<[_; 4]>, _) =
bounds.drain(1..).partition(|b| b.skip_binders().trait_id().is_some());
bounds.extend(others);
bounds.extend(auto_traits);
write_bounds_like_dyn_trait_with_prefix(
f,
"dyn",
&bounds,
SizedByDefault::NotSized,
)?;
}
TyKind::Alias(AliasTy::Projection(p_ty)) => p_ty.hir_fmt(f)?,
TyKind::Alias(AliasTy::Opaque(opaque_ty)) => {
if !f.display_target.allows_opaque() {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::OpaqueType,
));
}
let impl_trait_id = db.lookup_intern_impl_trait_id(opaque_ty.opaque_ty_id.into());
match impl_trait_id {
ImplTraitId::ReturnTypeImplTrait(func, idx) => {
let datas =
db.return_type_impl_traits(func).expect("impl trait id without data");
let data =
(*datas).as_ref().map(|rpit| rpit.impl_traits[idx].bounds.clone());
let bounds = data.substitute(Interner, &opaque_ty.substitution);
let krate = func.lookup(db.upcast()).module(db.upcast()).krate();
write_bounds_like_dyn_trait_with_prefix(
f,
"impl",
bounds.skip_binders(),
SizedByDefault::Sized { anchor: krate },
)?;
}
ImplTraitId::AsyncBlockTypeImplTrait(..) => {
write!(f, "{{async block}}")?;
}
};
}
TyKind::Error => {
if f.display_target.is_source_code() {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::UnknownType,
));
}
write!(f, "{{unknown}}")?;
}
TyKind::InferenceVar(..) => write!(f, "_")?,
TyKind::Generator(_, subst) => {
if f.display_target.is_source_code() {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::Generator,
));
}
let subst = subst.as_slice(Interner);
let a: Option<SmallVec<[&Ty; 3]>> = subst
.get(subst.len() - 3..)
.map(|args| args.iter().map(|arg| arg.ty(Interner)).collect())
.flatten();
if let Some([resume_ty, yield_ty, ret_ty]) = a.as_deref() {
write!(f, "|")?;
resume_ty.hir_fmt(f)?;
write!(f, "|")?;
write!(f, " yields ")?;
yield_ty.hir_fmt(f)?;
write!(f, " -> ")?;
ret_ty.hir_fmt(f)?;
} else {
// This *should* be unreachable, but fallback just in case.
write!(f, "{{generator}}")?;
}
}
TyKind::GeneratorWitness(..) => write!(f, "{{generator witness}}")?,
}
Ok(())
}
}
fn hir_fmt_generics(
f: &mut HirFormatter<'_>,
parameters: &Substitution,
generic_def: Option<hir_def::GenericDefId>,
) -> Result<(), HirDisplayError> {
let db = f.db;
let lifetime_args_count = generic_def.map_or(0, |g| db.generic_params(g).lifetimes.len());
if parameters.len(Interner) + lifetime_args_count > 0 {
let parameters_to_write = if f.display_target.is_source_code() || f.omit_verbose_types() {
match generic_def
.map(|generic_def_id| db.generic_defaults(generic_def_id))
.filter(|defaults| !defaults.is_empty())
{
None => parameters.as_slice(Interner),
Some(default_parameters) => {
fn should_show(
parameter: &GenericArg,
default_parameters: &[Binders<GenericArg>],
i: usize,
parameters: &Substitution,
) -> bool {
if parameter.ty(Interner).map(|x| x.kind(Interner)) == Some(&TyKind::Error)
{
return true;
}
if let Some(ConstValue::Concrete(c)) =
parameter.constant(Interner).map(|x| &x.data(Interner).value)
{
if c.interned == ConstScalar::Unknown {
return true;
}
}
let default_parameter = match default_parameters.get(i) {
Some(x) => x,
None => return true,
};
let actual_default =
default_parameter.clone().substitute(Interner, &parameters);
parameter != &actual_default
}
let mut default_from = 0;
for (i, parameter) in parameters.iter(Interner).enumerate() {
if should_show(parameter, &default_parameters, i, parameters) {
default_from = i + 1;
}
}
&parameters.as_slice(Interner)[0..default_from]
}
}
} else {
parameters.as_slice(Interner)
};
if !parameters_to_write.is_empty() || lifetime_args_count != 0 {
write!(f, "<")?;
let mut first = true;
for _ in 0..lifetime_args_count {
if !first {
write!(f, ", ")?;
}
first = false;
write!(f, "'_")?;
}
for generic_arg in parameters_to_write {
if !first {
write!(f, ", ")?;
}
first = false;
if f.display_target.is_source_code()
&& generic_arg.ty(Interner).map(|ty| ty.kind(Interner)) == Some(&TyKind::Error)
{
write!(f, "_")?;
} else {
generic_arg.hir_fmt(f)?;
}
}
write!(f, ">")?;
}
}
Ok(())
}
impl HirDisplay for CallableSig {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
write!(f, "fn(")?;
f.write_joined(self.params(), ", ")?;
if self.is_varargs {
if self.params().is_empty() {
write!(f, "...")?;
} else {
write!(f, ", ...")?;
}
}
write!(f, ")")?;
let ret = self.ret();
if !ret.is_unit() {
write!(f, " -> ")?;
ret.hir_fmt(f)?;
}
Ok(())
}
}
fn fn_traits(db: &dyn DefDatabase, trait_: TraitId) -> impl Iterator<Item = TraitId> + '_ {
let krate = trait_.lookup(db).container.krate();
utils::fn_traits(db, krate)
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum SizedByDefault {
NotSized,
Sized { anchor: CrateId },
}
impl SizedByDefault {
fn is_sized_trait(self, trait_: TraitId, db: &dyn DefDatabase) -> bool {
match self {
Self::NotSized => false,
Self::Sized { anchor } => {
let sized_trait = db
.lang_item(anchor, LangItem::Sized)
.and_then(|lang_item| lang_item.as_trait());
Some(trait_) == sized_trait
}
}
}
}
pub fn write_bounds_like_dyn_trait_with_prefix(
f: &mut HirFormatter<'_>,
prefix: &str,
predicates: &[QuantifiedWhereClause],
default_sized: SizedByDefault,
) -> Result<(), HirDisplayError> {
write!(f, "{prefix}")?;
if !predicates.is_empty()
|| predicates.is_empty() && matches!(default_sized, SizedByDefault::Sized { .. })
{
write!(f, " ")?;
write_bounds_like_dyn_trait(f, predicates, default_sized)
} else {
Ok(())
}
}
fn write_bounds_like_dyn_trait(
f: &mut HirFormatter<'_>,
predicates: &[QuantifiedWhereClause],
default_sized: SizedByDefault,
) -> Result<(), HirDisplayError> {
// Note: This code is written to produce nice results (i.e.
// corresponding to surface Rust) for types that can occur in
// actual Rust. It will have weird results if the predicates
// aren't as expected (i.e. self types = $0, projection
// predicates for a certain trait come after the Implemented
// predicate for that trait).
let mut first = true;
let mut angle_open = false;
let mut is_fn_trait = false;
let mut is_sized = false;
for p in predicates.iter() {
match p.skip_binders() {
WhereClause::Implemented(trait_ref) => {
let trait_ = trait_ref.hir_trait_id();
if default_sized.is_sized_trait(trait_, f.db.upcast()) {
is_sized = true;
if matches!(default_sized, SizedByDefault::Sized { .. }) {
// Don't print +Sized, but rather +?Sized if absent.
continue;
}
}
if !is_fn_trait {
is_fn_trait = fn_traits(f.db.upcast(), trait_).any(|it| it == trait_);
}
if !is_fn_trait && angle_open {
write!(f, ">")?;
angle_open = false;
}
if !first {
write!(f, " + ")?;
}
// We assume that the self type is ^0.0 (i.e. the
// existential) here, which is the only thing that's
// possible in actual Rust, and hence don't print it
f.start_location_link(trait_.into());
write!(f, "{}", f.db.trait_data(trait_).name.display(f.db.upcast()))?;
f.end_location_link();
if let [_, params @ ..] = &*trait_ref.substitution.as_slice(Interner) {
if is_fn_trait {
if let Some(args) =
params.first().and_then(|it| it.assert_ty_ref(Interner).as_tuple())
{
write!(f, "(")?;
f.write_joined(args.as_slice(Interner), ", ")?;
write!(f, ")")?;
}
} else if !params.is_empty() {
write!(f, "<")?;
f.write_joined(params, ", ")?;
// there might be assoc type bindings, so we leave the angle brackets open
angle_open = true;
}
}
}
WhereClause::AliasEq(alias_eq) if is_fn_trait => {
is_fn_trait = false;
if !alias_eq.ty.is_unit() {
write!(f, " -> ")?;
alias_eq.ty.hir_fmt(f)?;
}
}
WhereClause::AliasEq(AliasEq { ty, alias }) => {
// in types in actual Rust, these will always come
// after the corresponding Implemented predicate
if angle_open {
write!(f, ", ")?;
} else {
write!(f, "<")?;
angle_open = true;
}
if let AliasTy::Projection(proj) = alias {
let assoc_ty_id = from_assoc_type_id(proj.associated_ty_id);
let type_alias = f.db.type_alias_data(assoc_ty_id);
f.start_location_link(assoc_ty_id.into());
write!(f, "{}", type_alias.name.display(f.db.upcast()))?;
f.end_location_link();
let proj_arg_count = generics(f.db.upcast(), assoc_ty_id.into()).len_self();
if proj_arg_count > 0 {
write!(f, "<")?;
f.write_joined(
&proj.substitution.as_slice(Interner)[..proj_arg_count],
", ",
)?;
write!(f, ">")?;
}
write!(f, " = ")?;
}
ty.hir_fmt(f)?;
}
// FIXME implement these
WhereClause::LifetimeOutlives(_) => {}
WhereClause::TypeOutlives(_) => {}
}
first = false;
}
if angle_open {
write!(f, ">")?;
}
if let SizedByDefault::Sized { anchor } = default_sized {
let sized_trait =
f.db.lang_item(anchor, LangItem::Sized).and_then(|lang_item| lang_item.as_trait());
if !is_sized {
if !first {
write!(f, " + ")?;
}
if let Some(sized_trait) = sized_trait {
f.start_location_link(sized_trait.into());
}
write!(f, "?Sized")?;
} else if first {
if let Some(sized_trait) = sized_trait {
f.start_location_link(sized_trait.into());
}
write!(f, "Sized")?;
}
if let Some(_) = sized_trait {
f.end_location_link();
}
}
Ok(())
}
fn fmt_trait_ref(
f: &mut HirFormatter<'_>,
tr: &TraitRef,
use_as: bool,
) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{TYPE_HINT_TRUNCATION}");
}
tr.self_type_parameter(Interner).hir_fmt(f)?;
if use_as {
write!(f, " as ")?;
} else {
write!(f, ": ")?;
}
let trait_ = tr.hir_trait_id();
f.start_location_link(trait_.into());
write!(f, "{}", f.db.trait_data(trait_).name.display(f.db.upcast()))?;
f.end_location_link();
if tr.substitution.len(Interner) > 1 {
write!(f, "<")?;
f.write_joined(&tr.substitution.as_slice(Interner)[1..], ", ")?;
write!(f, ">")?;
}
Ok(())
}
impl HirDisplay for TraitRef {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
fmt_trait_ref(f, self, false)
}
}
impl HirDisplay for WhereClause {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{TYPE_HINT_TRUNCATION}");
}
match self {
WhereClause::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
WhereClause::AliasEq(AliasEq { alias: AliasTy::Projection(projection_ty), ty }) => {
write!(f, "<")?;
fmt_trait_ref(f, &projection_ty.trait_ref(f.db), true)?;
write!(f, ">::",)?;
let type_alias = from_assoc_type_id(projection_ty.associated_ty_id);
f.start_location_link(type_alias.into());
write!(f, "{}", f.db.type_alias_data(type_alias).name.display(f.db.upcast()),)?;
f.end_location_link();
write!(f, " = ")?;
ty.hir_fmt(f)?;
}
WhereClause::AliasEq(_) => write!(f, "{{error}}")?,
// FIXME implement these
WhereClause::TypeOutlives(..) => {}
WhereClause::LifetimeOutlives(..) => {}
}
Ok(())
}
}
impl HirDisplay for LifetimeOutlives {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
self.a.hir_fmt(f)?;
write!(f, ": ")?;
self.b.hir_fmt(f)
}
}
impl HirDisplay for Lifetime {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
self.interned().hir_fmt(f)
}
}
impl HirDisplay for LifetimeData {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match self {
LifetimeData::BoundVar(idx) => idx.hir_fmt(f),
LifetimeData::InferenceVar(_) => write!(f, "_"),
LifetimeData::Placeholder(idx) => {
let id = lt_from_placeholder_idx(f.db, *idx);
let generics = generics(f.db.upcast(), id.parent);
let param_data = &generics.params.lifetimes[id.local_id];
write!(f, "{}", param_data.name.display(f.db.upcast()))?;
Ok(())
}
LifetimeData::Static => write!(f, "'static"),
LifetimeData::Erased => Ok(()),
LifetimeData::Phantom(_, _) => Ok(()),
}
}
}
impl HirDisplay for DomainGoal {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match self {
DomainGoal::Holds(wc) => {
write!(f, "Holds(")?;
wc.hir_fmt(f)?;
write!(f, ")")?;
}
_ => write!(f, "?")?,
}
Ok(())
}
}
pub fn write_visibility(
module_id: ModuleId,
vis: Visibility,
f: &mut HirFormatter<'_>,
) -> Result<(), HirDisplayError> {
match vis {
Visibility::Public => write!(f, "pub "),
Visibility::Module(vis_id) => {
let def_map = module_id.def_map(f.db.upcast());
let root_module_id = def_map.module_id(DefMap::ROOT);
if vis_id == module_id {
// pub(self) or omitted
Ok(())
} else if root_module_id == vis_id {
write!(f, "pub(crate) ")
} else if module_id.containing_module(f.db.upcast()) == Some(vis_id) {
write!(f, "pub(super) ")
} else {
write!(f, "pub(in ...) ")
}
}
}
}
impl HirDisplay for TypeRef {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match self {
TypeRef::Never => write!(f, "!")?,
TypeRef::Placeholder => write!(f, "_")?,
TypeRef::Tuple(elems) => {
write!(f, "(")?;
f.write_joined(elems, ", ")?;
if elems.len() == 1 {
write!(f, ",")?;
}
write!(f, ")")?;
}
TypeRef::Path(path) => path.hir_fmt(f)?,
TypeRef::RawPtr(inner, mutability) => {
let mutability = match mutability {
hir_def::type_ref::Mutability::Shared => "*const ",
hir_def::type_ref::Mutability::Mut => "*mut ",
};
write!(f, "{mutability}")?;
inner.hir_fmt(f)?;
}
TypeRef::Reference(inner, lifetime, mutability) => {
let mutability = match mutability {
hir_def::type_ref::Mutability::Shared => "",
hir_def::type_ref::Mutability::Mut => "mut ",
};
write!(f, "&")?;
if let Some(lifetime) = lifetime {
write!(f, "{} ", lifetime.name.display(f.db.upcast()))?;
}
write!(f, "{mutability}")?;
inner.hir_fmt(f)?;
}
TypeRef::Array(inner, len) => {
write!(f, "[")?;
inner.hir_fmt(f)?;
write!(f, "; {}]", len.display(f.db.upcast()))?;
}
TypeRef::Slice(inner) => {
write!(f, "[")?;
inner.hir_fmt(f)?;
write!(f, "]")?;
}
&TypeRef::Fn(ref parameters, is_varargs, is_unsafe) => {
// FIXME: Function pointer qualifiers.
if is_unsafe {
write!(f, "unsafe ")?;
}
write!(f, "fn(")?;
if let Some(((_, return_type), function_parameters)) = parameters.split_last() {
for index in 0..function_parameters.len() {
let (param_name, param_type) = &function_parameters[index];
if let Some(name) = param_name {
write!(f, "{}: ", name.display(f.db.upcast()))?;
}
param_type.hir_fmt(f)?;
if index != function_parameters.len() - 1 {
write!(f, ", ")?;
}
}
if is_varargs {
write!(f, "{}...", if parameters.len() == 1 { "" } else { ", " })?;
}
write!(f, ")")?;
match &return_type {
TypeRef::Tuple(tup) if tup.is_empty() => {}
_ => {
write!(f, " -> ")?;
return_type.hir_fmt(f)?;
}
}
}
}
TypeRef::ImplTrait(bounds) => {
write!(f, "impl ")?;
f.write_joined(bounds, " + ")?;
}
TypeRef::DynTrait(bounds) => {
write!(f, "dyn ")?;
f.write_joined(bounds, " + ")?;
}
TypeRef::Macro(macro_call) => {
let macro_call = macro_call.to_node(f.db.upcast());
let ctx = hir_def::lower::LowerCtx::with_hygiene(
f.db.upcast(),
&Hygiene::new_unhygienic(),
);
match macro_call.path() {
Some(path) => match Path::from_src(path, &ctx) {
Some(path) => path.hir_fmt(f)?,
None => write!(f, "{{macro}}")?,
},
None => write!(f, "{{macro}}")?,
}
write!(f, "!(..)")?;
}
TypeRef::Error => write!(f, "{{error}}")?,
}
Ok(())
}
}
impl HirDisplay for TypeBound {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match self {
TypeBound::Path(path, modifier) => {
match modifier {
TraitBoundModifier::None => (),
TraitBoundModifier::Maybe => write!(f, "?")?,
}
path.hir_fmt(f)
}
TypeBound::Lifetime(lifetime) => write!(f, "{}", lifetime.name.display(f.db.upcast())),
TypeBound::ForLifetime(lifetimes, path) => {
write!(
f,
"for<{}> ",
lifetimes.iter().map(|it| it.display(f.db.upcast())).format(", ")
)?;
path.hir_fmt(f)
}
TypeBound::Error => write!(f, "{{error}}"),
}
}
}
impl HirDisplay for Path {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match (self.type_anchor(), self.kind()) {
(Some(anchor), _) => {
write!(f, "<")?;
anchor.hir_fmt(f)?;
write!(f, ">")?;
}
(_, PathKind::Plain) => {}
(_, PathKind::Abs) => {}
(_, PathKind::Crate) => write!(f, "crate")?,
(_, PathKind::Super(0)) => write!(f, "self")?,
(_, PathKind::Super(n)) => {
for i in 0..*n {
if i > 0 {
write!(f, "::")?;
}
write!(f, "super")?;
}
}
(_, PathKind::DollarCrate(id)) => {
// Resolve `$crate` to the crate's display name.
// FIXME: should use the dependency name instead if available, but that depends on
// the crate invoking `HirDisplay`
let crate_graph = f.db.crate_graph();
let name = crate_graph[*id]
.display_name
.as_ref()
.map(|name| name.canonical_name())
.unwrap_or("$crate");
write!(f, "{name}")?
}
}
for (seg_idx, segment) in self.segments().iter().enumerate() {
if !matches!(self.kind(), PathKind::Plain) || seg_idx > 0 {
write!(f, "::")?;
}
write!(f, "{}", segment.name.display(f.db.upcast()))?;
if let Some(generic_args) = segment.args_and_bindings {
// We should be in type context, so format as `Foo<Bar>` instead of `Foo::<Bar>`.
// Do we actually format expressions?
if generic_args.desugared_from_fn {
// First argument will be a tuple, which already includes the parentheses.
// If the tuple only contains 1 item, write it manually to avoid the trailing `,`.
if let hir_def::path::GenericArg::Type(TypeRef::Tuple(v)) =
&generic_args.args[0]
{
if v.len() == 1 {
write!(f, "(")?;
v[0].hir_fmt(f)?;
write!(f, ")")?;
} else {
generic_args.args[0].hir_fmt(f)?;
}
}
if let Some(ret) = &generic_args.bindings[0].type_ref {
if !matches!(ret, TypeRef::Tuple(v) if v.is_empty()) {
write!(f, " -> ")?;
ret.hir_fmt(f)?;
}
}
return Ok(());
}
write!(f, "<")?;
let mut first = true;
for arg in generic_args.args.iter() {
if first {
first = false;
if generic_args.has_self_type {
// FIXME: Convert to `<Ty as Trait>` form.
write!(f, "Self = ")?;
}
} else {
write!(f, ", ")?;
}
arg.hir_fmt(f)?;
}
for binding in generic_args.bindings.iter() {
if first {
first = false;
} else {
write!(f, ", ")?;
}
write!(f, "{}", binding.name.display(f.db.upcast()))?;
match &binding.type_ref {
Some(ty) => {
write!(f, " = ")?;
ty.hir_fmt(f)?
}
None => {
write!(f, ": ")?;
f.write_joined(binding.bounds.iter(), " + ")?;
}
}
}
write!(f, ">")?;
}
}
Ok(())
}
}
impl HirDisplay for hir_def::path::GenericArg {
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> {
match self {
hir_def::path::GenericArg::Type(ty) => ty.hir_fmt(f),
hir_def::path::GenericArg::Const(c) => write!(f, "{}", c.display(f.db.upcast())),
hir_def::path::GenericArg::Lifetime(lifetime) => {
write!(f, "{}", lifetime.name.display(f.db.upcast()))
}
}
}
}