mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-07 18:58:51 +00:00
422 lines
15 KiB
Rust
422 lines
15 KiB
Rust
//! FIXME: write short doc here
|
|
|
|
use std::{iter, sync::Arc};
|
|
|
|
use ra_syntax::{
|
|
ast::{self, NameOwner, TypeAscriptionOwner},
|
|
AstNode,
|
|
};
|
|
|
|
use crate::{db::AstDatabase, name, type_ref::TypeRef, AsName, Crate, Name, Source};
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub struct Path {
|
|
pub kind: PathKind,
|
|
pub segments: Vec<PathSegment>,
|
|
}
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub struct PathSegment {
|
|
pub name: Name,
|
|
pub args_and_bindings: Option<Arc<GenericArgs>>,
|
|
}
|
|
|
|
/// Generic arguments to a path segment (e.g. the `i32` in `Option<i32>`). This
|
|
/// can (in the future) also include bindings of associated types, like in
|
|
/// `Iterator<Item = Foo>`.
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub struct GenericArgs {
|
|
pub args: Vec<GenericArg>,
|
|
/// This specifies whether the args contain a Self type as the first
|
|
/// element. This is the case for path segments like `<T as Trait>`, where
|
|
/// `T` is actually a type parameter for the path `Trait` specifying the
|
|
/// Self type. Otherwise, when we have a path `Trait<X, Y>`, the Self type
|
|
/// is left out.
|
|
pub has_self_type: bool,
|
|
/// Associated type bindings like in `Iterator<Item = T>`.
|
|
pub bindings: Vec<(Name, TypeRef)>,
|
|
}
|
|
|
|
/// A single generic argument.
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub enum GenericArg {
|
|
Type(TypeRef),
|
|
// or lifetime...
|
|
}
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
|
|
pub enum PathKind {
|
|
Plain,
|
|
Self_,
|
|
Super,
|
|
Crate,
|
|
// Absolute path
|
|
Abs,
|
|
// Type based path like `<T>::foo`
|
|
Type(Box<TypeRef>),
|
|
// `$crate` from macro expansion
|
|
DollarCrate(Crate),
|
|
}
|
|
|
|
impl Path {
|
|
/// Calls `cb` with all paths, represented by this use item.
|
|
pub fn expand_use_item(
|
|
item_src: Source<ast::UseItem>,
|
|
db: &impl AstDatabase,
|
|
mut cb: impl FnMut(Path, &ast::UseTree, bool, Option<Name>),
|
|
) {
|
|
if let Some(tree) = item_src.ast.use_tree() {
|
|
expand_use_tree(
|
|
None,
|
|
tree,
|
|
&|| item_src.file_id.macro_crate(db).map(|crate_id| Crate { crate_id }),
|
|
&mut cb,
|
|
);
|
|
}
|
|
}
|
|
|
|
pub fn from_simple_segments(kind: PathKind, segments: impl IntoIterator<Item = Name>) -> Path {
|
|
Path {
|
|
kind,
|
|
segments: segments
|
|
.into_iter()
|
|
.map(|name| PathSegment { name, args_and_bindings: None })
|
|
.collect(),
|
|
}
|
|
}
|
|
|
|
/// Converts an `ast::Path` to `Path`. Works with use trees.
|
|
/// DEPRECATED: It does not handle `$crate` from macro call.
|
|
pub fn from_ast(path: ast::Path) -> Option<Path> {
|
|
Path::parse(path, &|| None)
|
|
}
|
|
|
|
/// Converts an `ast::Path` to `Path`. Works with use trees.
|
|
/// It correctly handles `$crate` based path from macro call.
|
|
pub fn from_src(source: Source<ast::Path>, db: &impl AstDatabase) -> Option<Path> {
|
|
let file_id = source.file_id;
|
|
Path::parse(source.ast, &|| file_id.macro_crate(db).map(|crate_id| Crate { crate_id }))
|
|
}
|
|
|
|
fn parse(mut path: ast::Path, macro_crate: &impl Fn() -> Option<Crate>) -> Option<Path> {
|
|
let mut kind = PathKind::Plain;
|
|
let mut segments = Vec::new();
|
|
loop {
|
|
let segment = path.segment()?;
|
|
|
|
if segment.has_colon_colon() {
|
|
kind = PathKind::Abs;
|
|
}
|
|
|
|
match segment.kind()? {
|
|
ast::PathSegmentKind::Name(name) => {
|
|
if name.text() == "$crate" {
|
|
if let Some(macro_crate) = macro_crate() {
|
|
kind = PathKind::DollarCrate(macro_crate);
|
|
break;
|
|
}
|
|
}
|
|
|
|
let args = segment
|
|
.type_arg_list()
|
|
.and_then(GenericArgs::from_ast)
|
|
.or_else(|| {
|
|
GenericArgs::from_fn_like_path_ast(
|
|
segment.param_list(),
|
|
segment.ret_type(),
|
|
)
|
|
})
|
|
.map(Arc::new);
|
|
let segment = PathSegment { name: name.as_name(), args_and_bindings: args };
|
|
segments.push(segment);
|
|
}
|
|
ast::PathSegmentKind::Type { type_ref, trait_ref } => {
|
|
assert!(path.qualifier().is_none()); // this can only occur at the first segment
|
|
|
|
let self_type = TypeRef::from_ast(type_ref?);
|
|
|
|
match trait_ref {
|
|
// <T>::foo
|
|
None => {
|
|
kind = PathKind::Type(Box::new(self_type));
|
|
}
|
|
// <T as Trait<A>>::Foo desugars to Trait<Self=T, A>::Foo
|
|
Some(trait_ref) => {
|
|
let path = Path::parse(trait_ref.path()?, macro_crate)?;
|
|
kind = path.kind;
|
|
let mut prefix_segments = path.segments;
|
|
prefix_segments.reverse();
|
|
segments.extend(prefix_segments);
|
|
// Insert the type reference (T in the above example) as Self parameter for the trait
|
|
let mut last_segment = segments.last_mut()?;
|
|
if last_segment.args_and_bindings.is_none() {
|
|
last_segment.args_and_bindings =
|
|
Some(Arc::new(GenericArgs::empty()));
|
|
};
|
|
let args = last_segment.args_and_bindings.as_mut().unwrap();
|
|
let mut args_inner = Arc::make_mut(args);
|
|
args_inner.has_self_type = true;
|
|
args_inner.args.insert(0, GenericArg::Type(self_type));
|
|
}
|
|
}
|
|
}
|
|
ast::PathSegmentKind::CrateKw => {
|
|
kind = PathKind::Crate;
|
|
break;
|
|
}
|
|
ast::PathSegmentKind::SelfKw => {
|
|
kind = PathKind::Self_;
|
|
break;
|
|
}
|
|
ast::PathSegmentKind::SuperKw => {
|
|
kind = PathKind::Super;
|
|
break;
|
|
}
|
|
}
|
|
path = match qualifier(&path) {
|
|
Some(it) => it,
|
|
None => break,
|
|
};
|
|
}
|
|
segments.reverse();
|
|
return Some(Path { kind, segments });
|
|
|
|
fn qualifier(path: &ast::Path) -> Option<ast::Path> {
|
|
if let Some(q) = path.qualifier() {
|
|
return Some(q);
|
|
}
|
|
// FIXME: this bottom up traversal is not too precise.
|
|
// Should we handle do a top-down analysis, recording results?
|
|
let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?;
|
|
let use_tree = use_tree_list.parent_use_tree();
|
|
use_tree.path()
|
|
}
|
|
}
|
|
|
|
/// Converts an `ast::NameRef` into a single-identifier `Path`.
|
|
pub fn from_name_ref(name_ref: &ast::NameRef) -> Path {
|
|
name_ref.as_name().into()
|
|
}
|
|
|
|
/// `true` is this path is a single identifier, like `foo`
|
|
pub fn is_ident(&self) -> bool {
|
|
self.kind == PathKind::Plain && self.segments.len() == 1
|
|
}
|
|
|
|
/// `true` if this path is just a standalone `self`
|
|
pub fn is_self(&self) -> bool {
|
|
self.kind == PathKind::Self_ && self.segments.is_empty()
|
|
}
|
|
|
|
/// If this path is a single identifier, like `foo`, return its name.
|
|
pub fn as_ident(&self) -> Option<&Name> {
|
|
if self.kind != PathKind::Plain || self.segments.len() > 1 {
|
|
return None;
|
|
}
|
|
self.segments.first().map(|s| &s.name)
|
|
}
|
|
|
|
pub fn expand_macro_expr(&self) -> Option<Name> {
|
|
self.as_ident().and_then(|name| Some(name.clone()))
|
|
}
|
|
|
|
pub fn is_type_relative(&self) -> bool {
|
|
match self.kind {
|
|
PathKind::Type(_) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl GenericArgs {
|
|
pub(crate) fn from_ast(node: ast::TypeArgList) -> Option<GenericArgs> {
|
|
let mut args = Vec::new();
|
|
for type_arg in node.type_args() {
|
|
let type_ref = TypeRef::from_ast_opt(type_arg.type_ref());
|
|
args.push(GenericArg::Type(type_ref));
|
|
}
|
|
// lifetimes ignored for now
|
|
let mut bindings = Vec::new();
|
|
for assoc_type_arg in node.assoc_type_args() {
|
|
if let Some(name_ref) = assoc_type_arg.name_ref() {
|
|
let name = name_ref.as_name();
|
|
let type_ref = TypeRef::from_ast_opt(assoc_type_arg.type_ref());
|
|
bindings.push((name, type_ref));
|
|
}
|
|
}
|
|
if args.is_empty() && bindings.is_empty() {
|
|
None
|
|
} else {
|
|
Some(GenericArgs { args, has_self_type: false, bindings })
|
|
}
|
|
}
|
|
|
|
/// Collect `GenericArgs` from the parts of a fn-like path, i.e. `Fn(X, Y)
|
|
/// -> Z` (which desugars to `Fn<(X, Y), Output=Z>`).
|
|
pub(crate) fn from_fn_like_path_ast(
|
|
params: Option<ast::ParamList>,
|
|
ret_type: Option<ast::RetType>,
|
|
) -> Option<GenericArgs> {
|
|
let mut args = Vec::new();
|
|
let mut bindings = Vec::new();
|
|
if let Some(params) = params {
|
|
let mut param_types = Vec::new();
|
|
for param in params.params() {
|
|
let type_ref = TypeRef::from_ast_opt(param.ascribed_type());
|
|
param_types.push(type_ref);
|
|
}
|
|
let arg = GenericArg::Type(TypeRef::Tuple(param_types));
|
|
args.push(arg);
|
|
}
|
|
if let Some(ret_type) = ret_type {
|
|
let type_ref = TypeRef::from_ast_opt(ret_type.type_ref());
|
|
bindings.push((name::OUTPUT_TYPE, type_ref))
|
|
}
|
|
if args.is_empty() && bindings.is_empty() {
|
|
None
|
|
} else {
|
|
Some(GenericArgs { args, has_self_type: false, bindings })
|
|
}
|
|
}
|
|
|
|
pub(crate) fn empty() -> GenericArgs {
|
|
GenericArgs { args: Vec::new(), has_self_type: false, bindings: Vec::new() }
|
|
}
|
|
}
|
|
|
|
impl From<Name> for Path {
|
|
fn from(name: Name) -> Path {
|
|
Path::from_simple_segments(PathKind::Plain, iter::once(name))
|
|
}
|
|
}
|
|
|
|
fn expand_use_tree(
|
|
prefix: Option<Path>,
|
|
tree: ast::UseTree,
|
|
macro_crate: &impl Fn() -> Option<Crate>,
|
|
cb: &mut impl FnMut(Path, &ast::UseTree, bool, Option<Name>),
|
|
) {
|
|
if let Some(use_tree_list) = tree.use_tree_list() {
|
|
let prefix = match tree.path() {
|
|
// E.g. use something::{{{inner}}};
|
|
None => prefix,
|
|
// E.g. `use something::{inner}` (prefix is `None`, path is `something`)
|
|
// or `use something::{path::{inner::{innerer}}}` (prefix is `something::path`, path is `inner`)
|
|
Some(path) => match convert_path(prefix, path, macro_crate) {
|
|
Some(it) => Some(it),
|
|
None => return, // FIXME: report errors somewhere
|
|
},
|
|
};
|
|
for child_tree in use_tree_list.use_trees() {
|
|
expand_use_tree(prefix.clone(), child_tree, macro_crate, cb);
|
|
}
|
|
} else {
|
|
let alias = tree.alias().and_then(|a| a.name()).map(|a| a.as_name());
|
|
if let Some(ast_path) = tree.path() {
|
|
// Handle self in a path.
|
|
// E.g. `use something::{self, <...>}`
|
|
if ast_path.qualifier().is_none() {
|
|
if let Some(segment) = ast_path.segment() {
|
|
if segment.kind() == Some(ast::PathSegmentKind::SelfKw) {
|
|
if let Some(prefix) = prefix {
|
|
cb(prefix, &tree, false, alias);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if let Some(path) = convert_path(prefix, ast_path, macro_crate) {
|
|
let is_glob = tree.has_star();
|
|
cb(path, &tree, is_glob, alias)
|
|
}
|
|
// FIXME: report errors somewhere
|
|
// We get here if we do
|
|
}
|
|
}
|
|
}
|
|
|
|
fn convert_path(
|
|
prefix: Option<Path>,
|
|
path: ast::Path,
|
|
macro_crate: &impl Fn() -> Option<Crate>,
|
|
) -> Option<Path> {
|
|
let prefix = if let Some(qual) = path.qualifier() {
|
|
Some(convert_path(prefix, qual, macro_crate)?)
|
|
} else {
|
|
prefix
|
|
};
|
|
|
|
let segment = path.segment()?;
|
|
let res = match segment.kind()? {
|
|
ast::PathSegmentKind::Name(name) => {
|
|
if name.text() == "$crate" {
|
|
if let Some(krate) = macro_crate() {
|
|
return Some(Path::from_simple_segments(
|
|
PathKind::DollarCrate(krate),
|
|
iter::empty(),
|
|
));
|
|
}
|
|
}
|
|
|
|
// no type args in use
|
|
let mut res = prefix
|
|
.unwrap_or_else(|| Path { kind: PathKind::Plain, segments: Vec::with_capacity(1) });
|
|
res.segments.push(PathSegment {
|
|
name: name.as_name(),
|
|
args_and_bindings: None, // no type args in use
|
|
});
|
|
res
|
|
}
|
|
ast::PathSegmentKind::CrateKw => {
|
|
if prefix.is_some() {
|
|
return None;
|
|
}
|
|
Path::from_simple_segments(PathKind::Crate, iter::empty())
|
|
}
|
|
ast::PathSegmentKind::SelfKw => {
|
|
if prefix.is_some() {
|
|
return None;
|
|
}
|
|
Path::from_simple_segments(PathKind::Self_, iter::empty())
|
|
}
|
|
ast::PathSegmentKind::SuperKw => {
|
|
if prefix.is_some() {
|
|
return None;
|
|
}
|
|
Path::from_simple_segments(PathKind::Super, iter::empty())
|
|
}
|
|
ast::PathSegmentKind::Type { .. } => {
|
|
// not allowed in imports
|
|
return None;
|
|
}
|
|
};
|
|
Some(res)
|
|
}
|
|
|
|
pub mod known {
|
|
use super::{Path, PathKind};
|
|
use crate::name;
|
|
|
|
pub fn std_iter_into_iterator() -> Path {
|
|
Path::from_simple_segments(
|
|
PathKind::Abs,
|
|
vec![name::STD, name::ITER, name::INTO_ITERATOR_TYPE],
|
|
)
|
|
}
|
|
|
|
pub fn std_ops_try() -> Path {
|
|
Path::from_simple_segments(PathKind::Abs, vec![name::STD, name::OPS, name::TRY_TYPE])
|
|
}
|
|
|
|
pub fn std_result_result() -> Path {
|
|
Path::from_simple_segments(PathKind::Abs, vec![name::STD, name::RESULT, name::RESULT_TYPE])
|
|
}
|
|
|
|
pub fn std_future_future() -> Path {
|
|
Path::from_simple_segments(PathKind::Abs, vec![name::STD, name::FUTURE, name::FUTURE_TYPE])
|
|
}
|
|
|
|
pub fn std_boxed_box() -> Path {
|
|
Path::from_simple_segments(PathKind::Abs, vec![name::STD, name::BOXED, name::BOX_TYPE])
|
|
}
|
|
}
|