rust-analyzer/crates/ra_hir_ty/src/display.rs
2020-04-05 21:06:47 +03:00

464 lines
17 KiB
Rust

//! FIXME: write short doc here
use std::fmt;
use crate::{
db::HirDatabase, utils::generics, ApplicationTy, CallableDef, FnSig, GenericPredicate,
Obligation, ProjectionTy, Substs, TraitRef, Ty, TypeCtor,
};
use hir_def::{generics::TypeParamProvenance, AdtId, AssocContainerId, Lookup};
use hir_expand::name::Name;
pub struct HirFormatter<'a, 'b> {
pub db: &'a dyn HirDatabase,
fmt: &'a mut fmt::Formatter<'b>,
buf: String,
curr_size: usize,
pub(crate) max_size: Option<usize>,
omit_verbose_types: bool,
}
pub trait HirDisplay {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result;
fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper(db, self, None, false)
}
fn display_truncated<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper(db, self, max_size, true)
}
}
impl<'a, 'b> HirFormatter<'a, 'b> {
pub fn write_joined<T: HirDisplay>(
&mut self,
iter: impl IntoIterator<Item = T>,
sep: &str,
) -> fmt::Result {
let mut first = true;
for e in iter {
if !first {
write!(self, "{}", sep)?;
}
first = false;
e.hir_fmt(self)?;
}
Ok(())
}
/// This allows using the `write!` macro directly with a `HirFormatter`.
pub fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
// We write to a buffer first to track output size
self.buf.clear();
fmt::write(&mut self.buf, args)?;
self.curr_size += self.buf.len();
// Then we write to the internal formatter from the buffer
self.fmt.write_str(&self.buf)
}
pub fn should_truncate(&self) -> bool {
if let Some(max_size) = self.max_size {
self.curr_size >= max_size
} else {
false
}
}
pub fn omit_verbose_types(&self) -> bool {
self.omit_verbose_types
}
}
pub struct HirDisplayWrapper<'a, T>(&'a dyn HirDatabase, &'a T, Option<usize>, bool);
impl<'a, T> fmt::Display for HirDisplayWrapper<'a, T>
where
T: HirDisplay,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.1.hir_fmt(&mut HirFormatter {
db: self.0,
fmt: f,
buf: String::with_capacity(20),
curr_size: 0,
max_size: self.2,
omit_verbose_types: self.3,
})
}
}
const TYPE_HINT_TRUNCATION: &str = "";
impl HirDisplay for &Ty {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for ApplicationTy {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self.ctor {
TypeCtor::Bool => write!(f, "bool")?,
TypeCtor::Char => write!(f, "char")?,
TypeCtor::Int(t) => write!(f, "{}", t)?,
TypeCtor::Float(t) => write!(f, "{}", t)?,
TypeCtor::Str => write!(f, "str")?,
TypeCtor::Slice => {
let t = self.parameters.as_single();
write!(f, "[{}]", t.display(f.db))?;
}
TypeCtor::Array => {
let t = self.parameters.as_single();
write!(f, "[{}; _]", t.display(f.db))?;
}
TypeCtor::RawPtr(m) => {
let t = self.parameters.as_single();
write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
}
TypeCtor::Ref(m) => {
let t = self.parameters.as_single();
let ty_display = if f.omit_verbose_types() {
t.display_truncated(f.db, f.max_size)
} else {
t.display(f.db)
};
write!(f, "&{}{}", m.as_keyword_for_ref(), ty_display)?;
}
TypeCtor::Never => write!(f, "!")?,
TypeCtor::Tuple { .. } => {
let ts = &self.parameters;
if ts.len() == 1 {
write!(f, "({},)", ts[0].display(f.db))?;
} else {
write!(f, "(")?;
f.write_joined(&*ts.0, ", ")?;
write!(f, ")")?;
}
}
TypeCtor::FnPtr { .. } => {
let sig = FnSig::from_fn_ptr_substs(&self.parameters);
write!(f, "fn(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ")")?;
let ret = sig.ret();
if *ret != Ty::unit() {
write!(f, " -> {}", ret.display(f.db))?;
}
}
TypeCtor::FnDef(def) => {
let sig = f.db.callable_item_signature(def).subst(&self.parameters);
match def {
CallableDef::FunctionId(ff) => write!(f, "fn {}", f.db.function_data(ff).name)?,
CallableDef::StructId(s) => write!(f, "{}", f.db.struct_data(s).name)?,
CallableDef::EnumVariantId(e) => {
write!(f, "{}", f.db.enum_data(e.parent).variants[e.local_id].name)?
}
};
if self.parameters.len() > 0 {
let generics = generics(f.db.upcast(), def.into());
let (parent_params, self_param, type_params, _impl_trait_params) =
generics.provenance_split();
let total_len = parent_params + self_param + type_params;
// We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self?
if total_len > 0 {
write!(f, "<")?;
f.write_joined(&self.parameters.0[..total_len], ", ")?;
write!(f, ">")?;
}
}
write!(f, "(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ")")?;
let ret = sig.ret();
if *ret != Ty::unit() {
write!(f, " -> {}", ret.display(f.db))?;
}
}
TypeCtor::Adt(def_id) => {
let name = match def_id {
AdtId::StructId(it) => f.db.struct_data(it).name.clone(),
AdtId::UnionId(it) => f.db.union_data(it).name.clone(),
AdtId::EnumId(it) => f.db.enum_data(it).name.clone(),
};
write!(f, "{}", name)?;
if self.parameters.len() > 0 {
let mut non_default_parameters = Vec::with_capacity(self.parameters.len());
let parameters_to_write = if f.omit_verbose_types() {
match self
.ctor
.as_generic_def()
.map(|generic_def_id| f.db.generic_defaults(generic_def_id))
.filter(|defaults| !defaults.is_empty())
{
None => self.parameters.0.as_ref(),
Some(default_parameters) => {
for (i, parameter) in self.parameters.iter().enumerate() {
match (parameter, default_parameters.get(i)) {
(&Ty::Unknown, _) | (_, None) => {
non_default_parameters.push(parameter.clone())
}
(_, Some(default_parameter))
if parameter != default_parameter =>
{
non_default_parameters.push(parameter.clone())
}
_ => (),
}
}
&non_default_parameters
}
}
} else {
self.parameters.0.as_ref()
};
write!(f, "<")?;
f.write_joined(parameters_to_write, ", ")?;
write!(f, ">")?;
}
}
TypeCtor::AssociatedType(type_alias) => {
let trait_ = match type_alias.lookup(f.db.upcast()).container {
AssocContainerId::TraitId(it) => it,
_ => panic!("not an associated type"),
};
let trait_ = f.db.trait_data(trait_);
let type_alias = f.db.type_alias_data(type_alias);
write!(f, "{}::{}", trait_.name, type_alias.name)?;
if self.parameters.len() > 0 {
write!(f, "<")?;
f.write_joined(&*self.parameters.0, ", ")?;
write!(f, ">")?;
}
}
TypeCtor::Closure { .. } => {
let sig = self.parameters[0]
.callable_sig(f.db)
.expect("first closure parameter should contain signature");
if sig.params().is_empty() {
write!(f, "||")?;
} else if f.omit_verbose_types() {
write!(f, "|{}|", TYPE_HINT_TRUNCATION)?;
} else {
write!(f, "|")?;
f.write_joined(sig.params(), ", ")?;
write!(f, "|")?;
};
write!(f, " -> {}", sig.ret().display(f.db))?;
}
}
Ok(())
}
}
impl HirDisplay for ProjectionTy {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
let trait_ = f.db.trait_data(self.trait_(f.db));
write!(f, "<{} as {}", self.parameters[0].display(f.db), trait_.name)?;
if self.parameters.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.parameters[1..], ", ")?;
write!(f, ">")?;
}
write!(f, ">::{}", f.db.type_alias_data(self.associated_ty).name)?;
Ok(())
}
}
impl HirDisplay for Ty {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self {
Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
Ty::Projection(p_ty) => p_ty.hir_fmt(f)?,
Ty::Placeholder(id) => {
let generics = generics(f.db.upcast(), id.parent);
let param_data = &generics.params.types[id.local_id];
match param_data.provenance {
TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => {
write!(f, "{}", param_data.name.clone().unwrap_or_else(Name::missing))?
}
TypeParamProvenance::ArgumentImplTrait => {
write!(f, "impl ")?;
let bounds = f.db.generic_predicates_for_param(*id);
let substs = Substs::type_params_for_generics(&generics);
write_bounds_like_dyn_trait(
&bounds.iter().map(|b| b.clone().subst(&substs)).collect::<Vec<_>>(),
f,
)?;
}
}
}
Ty::Bound(idx) => write!(f, "?{}", idx)?,
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
match self {
Ty::Dyn(_) => write!(f, "dyn ")?,
Ty::Opaque(_) => write!(f, "impl ")?,
_ => unreachable!(),
};
write_bounds_like_dyn_trait(predicates, f)?;
}
Ty::Unknown => write!(f, "{{unknown}}")?,
Ty::Infer(..) => write!(f, "_")?,
}
Ok(())
}
}
fn write_bounds_like_dyn_trait(
predicates: &[GenericPredicate],
f: &mut HirFormatter,
) -> fmt::Result {
// Note: This code is written to produce nice results (i.e.
// corresponding to surface Rust) for types that can occur in
// actual Rust. It will have weird results if the predicates
// aren't as expected (i.e. self types = $0, projection
// predicates for a certain trait come after the Implemented
// predicate for that trait).
let mut first = true;
let mut angle_open = false;
for p in predicates.iter() {
match p {
GenericPredicate::Implemented(trait_ref) => {
if angle_open {
write!(f, ">")?;
}
if !first {
write!(f, " + ")?;
}
// We assume that the self type is $0 (i.e. the
// existential) here, which is the only thing that's
// possible in actual Rust, and hence don't print it
write!(f, "{}", f.db.trait_data(trait_ref.trait_).name)?;
if trait_ref.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&trait_ref.substs[1..], ", ")?;
// there might be assoc type bindings, so we leave the angle brackets open
angle_open = true;
}
}
GenericPredicate::Projection(projection_pred) => {
// in types in actual Rust, these will always come
// after the corresponding Implemented predicate
if angle_open {
write!(f, ", ")?;
} else {
write!(f, "<")?;
angle_open = true;
}
let type_alias = f.db.type_alias_data(projection_pred.projection_ty.associated_ty);
write!(f, "{} = ", type_alias.name)?;
projection_pred.ty.hir_fmt(f)?;
}
GenericPredicate::Error => {
if angle_open {
// impl Trait<X, {error}>
write!(f, ", ")?;
} else if !first {
// impl Trait + {error}
write!(f, " + ")?;
}
p.hir_fmt(f)?;
}
}
first = false;
}
if angle_open {
write!(f, ">")?;
}
Ok(())
}
impl TraitRef {
fn hir_fmt_ext(&self, f: &mut HirFormatter, use_as: bool) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
self.substs[0].hir_fmt(f)?;
if use_as {
write!(f, " as ")?;
} else {
write!(f, ": ")?;
}
write!(f, "{}", f.db.trait_data(self.trait_).name)?;
if self.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.substs[1..], ", ")?;
write!(f, ">")?;
}
Ok(())
}
}
impl HirDisplay for TraitRef {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
self.hir_fmt_ext(f, false)
}
}
impl HirDisplay for &GenericPredicate {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for GenericPredicate {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
GenericPredicate::Projection(projection_pred) => {
write!(f, "<")?;
projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?;
write!(
f,
">::{} = {}",
f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name,
projection_pred.ty.display(f.db)
)?;
}
GenericPredicate::Error => write!(f, "{{error}}")?,
}
Ok(())
}
}
impl HirDisplay for Obligation {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
match self {
Obligation::Trait(tr) => write!(f, "Implements({})", tr.display(f.db)),
Obligation::Projection(proj) => write!(
f,
"Normalize({} => {})",
proj.projection_ty.display(f.db),
proj.ty.display(f.db)
),
}
}
}