rust-analyzer/crates/syntax/src/algo.rs
2020-08-12 18:30:53 +02:00

406 lines
14 KiB
Rust

//! FIXME: write short doc here
use std::{
fmt,
ops::{self, RangeInclusive},
};
use itertools::Itertools;
use rustc_hash::FxHashMap;
use text_edit::TextEditBuilder;
use crate::{
AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxNodePtr,
SyntaxToken, TextRange, TextSize,
};
/// Returns ancestors of the node at the offset, sorted by length. This should
/// do the right thing at an edge, e.g. when searching for expressions at `{
/// <|>foo }` we will get the name reference instead of the whole block, which
/// we would get if we just did `find_token_at_offset(...).flat_map(|t|
/// t.parent().ancestors())`.
pub fn ancestors_at_offset(
node: &SyntaxNode,
offset: TextSize,
) -> impl Iterator<Item = SyntaxNode> {
node.token_at_offset(offset)
.map(|token| token.parent().ancestors())
.kmerge_by(|node1, node2| node1.text_range().len() < node2.text_range().len())
}
/// Finds a node of specific Ast type at offset. Note that this is slightly
/// imprecise: if the cursor is strictly between two nodes of the desired type,
/// as in
///
/// ```no-run
/// struct Foo {}|struct Bar;
/// ```
///
/// then the shorter node will be silently preferred.
pub fn find_node_at_offset<N: AstNode>(syntax: &SyntaxNode, offset: TextSize) -> Option<N> {
ancestors_at_offset(syntax, offset).find_map(N::cast)
}
pub fn find_node_at_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> {
find_covering_element(syntax, range).ancestors().find_map(N::cast)
}
/// Skip to next non `trivia` token
pub fn skip_trivia_token(mut token: SyntaxToken, direction: Direction) -> Option<SyntaxToken> {
while token.kind().is_trivia() {
token = match direction {
Direction::Next => token.next_token()?,
Direction::Prev => token.prev_token()?,
}
}
Some(token)
}
/// Finds the first sibling in the given direction which is not `trivia`
pub fn non_trivia_sibling(element: SyntaxElement, direction: Direction) -> Option<SyntaxElement> {
return match element {
NodeOrToken::Node(node) => node.siblings_with_tokens(direction).skip(1).find(not_trivia),
NodeOrToken::Token(token) => token.siblings_with_tokens(direction).skip(1).find(not_trivia),
};
fn not_trivia(element: &SyntaxElement) -> bool {
match element {
NodeOrToken::Node(_) => true,
NodeOrToken::Token(token) => !token.kind().is_trivia(),
}
}
}
pub fn find_covering_element(root: &SyntaxNode, range: TextRange) -> SyntaxElement {
root.covering_element(range)
}
pub fn least_common_ancestor(u: &SyntaxNode, v: &SyntaxNode) -> Option<SyntaxNode> {
if u == v {
return Some(u.clone());
}
let u_depth = u.ancestors().count();
let v_depth = v.ancestors().count();
let keep = u_depth.min(v_depth);
let u_candidates = u.ancestors().skip(u_depth - keep);
let v_canidates = v.ancestors().skip(v_depth - keep);
let (res, _) = u_candidates.zip(v_canidates).find(|(x, y)| x == y)?;
Some(res)
}
pub fn neighbor<T: AstNode>(me: &T, direction: Direction) -> Option<T> {
me.syntax().siblings(direction).skip(1).find_map(T::cast)
}
pub fn has_errors(node: &SyntaxNode) -> bool {
node.children().any(|it| it.kind() == SyntaxKind::ERROR)
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum InsertPosition<T> {
First,
Last,
Before(T),
After(T),
}
pub struct TreeDiff {
replacements: FxHashMap<SyntaxElement, SyntaxElement>,
}
impl TreeDiff {
pub fn into_text_edit(&self, builder: &mut TextEditBuilder) {
for (from, to) in self.replacements.iter() {
builder.replace(from.text_range(), to.to_string())
}
}
pub fn is_empty(&self) -> bool {
self.replacements.is_empty()
}
}
/// Finds minimal the diff, which, applied to `from`, will result in `to`.
///
/// Specifically, returns a map whose keys are descendants of `from` and values
/// are descendants of `to`, such that `replace_descendants(from, map) == to`.
///
/// A trivial solution is a singleton map `{ from: to }`, but this function
/// tries to find a more fine-grained diff.
pub fn diff(from: &SyntaxNode, to: &SyntaxNode) -> TreeDiff {
let mut buf = FxHashMap::default();
// FIXME: this is both horrible inefficient and gives larger than
// necessary diff. I bet there's a cool algorithm to diff trees properly.
go(&mut buf, from.clone().into(), to.clone().into());
return TreeDiff { replacements: buf };
fn go(
buf: &mut FxHashMap<SyntaxElement, SyntaxElement>,
lhs: SyntaxElement,
rhs: SyntaxElement,
) {
if lhs.kind() == rhs.kind()
&& lhs.text_range().len() == rhs.text_range().len()
&& match (&lhs, &rhs) {
(NodeOrToken::Node(lhs), NodeOrToken::Node(rhs)) => {
lhs.green() == rhs.green() || lhs.text() == rhs.text()
}
(NodeOrToken::Token(lhs), NodeOrToken::Token(rhs)) => lhs.text() == rhs.text(),
_ => false,
}
{
return;
}
if let (Some(lhs), Some(rhs)) = (lhs.as_node(), rhs.as_node()) {
if lhs.children_with_tokens().count() == rhs.children_with_tokens().count() {
for (lhs, rhs) in lhs.children_with_tokens().zip(rhs.children_with_tokens()) {
go(buf, lhs, rhs)
}
return;
}
}
buf.insert(lhs, rhs);
}
}
/// Adds specified children (tokens or nodes) to the current node at the
/// specific position.
///
/// This is a type-unsafe low-level editing API, if you need to use it,
/// prefer to create a type-safe abstraction on top of it instead.
pub fn insert_children(
parent: &SyntaxNode,
position: InsertPosition<SyntaxElement>,
to_insert: impl IntoIterator<Item = SyntaxElement>,
) -> SyntaxNode {
let mut to_insert = to_insert.into_iter();
_insert_children(parent, position, &mut to_insert)
}
fn _insert_children(
parent: &SyntaxNode,
position: InsertPosition<SyntaxElement>,
to_insert: &mut dyn Iterator<Item = SyntaxElement>,
) -> SyntaxNode {
let mut delta = TextSize::default();
let to_insert = to_insert.map(|element| {
delta += element.text_range().len();
to_green_element(element)
});
let mut old_children = parent.green().children().map(|it| match it {
NodeOrToken::Token(it) => NodeOrToken::Token(it.clone()),
NodeOrToken::Node(it) => NodeOrToken::Node(it.clone()),
});
let new_children = match &position {
InsertPosition::First => to_insert.chain(old_children).collect::<Vec<_>>(),
InsertPosition::Last => old_children.chain(to_insert).collect::<Vec<_>>(),
InsertPosition::Before(anchor) | InsertPosition::After(anchor) => {
let take_anchor = if let InsertPosition::After(_) = position { 1 } else { 0 };
let split_at = position_of_child(parent, anchor.clone()) + take_anchor;
let before = old_children.by_ref().take(split_at).collect::<Vec<_>>();
before.into_iter().chain(to_insert).chain(old_children).collect::<Vec<_>>()
}
};
with_children(parent, new_children)
}
/// Replaces all nodes in `to_delete` with nodes from `to_insert`
///
/// This is a type-unsafe low-level editing API, if you need to use it,
/// prefer to create a type-safe abstraction on top of it instead.
pub fn replace_children(
parent: &SyntaxNode,
to_delete: RangeInclusive<SyntaxElement>,
to_insert: impl IntoIterator<Item = SyntaxElement>,
) -> SyntaxNode {
let mut to_insert = to_insert.into_iter();
_replace_children(parent, to_delete, &mut to_insert)
}
fn _replace_children(
parent: &SyntaxNode,
to_delete: RangeInclusive<SyntaxElement>,
to_insert: &mut dyn Iterator<Item = SyntaxElement>,
) -> SyntaxNode {
let start = position_of_child(parent, to_delete.start().clone());
let end = position_of_child(parent, to_delete.end().clone());
let mut old_children = parent.green().children().map(|it| match it {
NodeOrToken::Token(it) => NodeOrToken::Token(it.clone()),
NodeOrToken::Node(it) => NodeOrToken::Node(it.clone()),
});
let before = old_children.by_ref().take(start).collect::<Vec<_>>();
let new_children = before
.into_iter()
.chain(to_insert.map(to_green_element))
.chain(old_children.skip(end + 1 - start))
.collect::<Vec<_>>();
with_children(parent, new_children)
}
#[derive(Default)]
pub struct SyntaxRewriter<'a> {
f: Option<Box<dyn Fn(&SyntaxElement) -> Option<SyntaxElement> + 'a>>,
//FIXME: add debug_assertions that all elements are in fact from the same file.
replacements: FxHashMap<SyntaxElement, Replacement>,
}
impl fmt::Debug for SyntaxRewriter<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SyntaxRewriter").field("replacements", &self.replacements).finish()
}
}
impl<'a> SyntaxRewriter<'a> {
pub fn from_fn(f: impl Fn(&SyntaxElement) -> Option<SyntaxElement> + 'a) -> SyntaxRewriter<'a> {
SyntaxRewriter { f: Some(Box::new(f)), replacements: FxHashMap::default() }
}
pub fn delete<T: Clone + Into<SyntaxElement>>(&mut self, what: &T) {
let what = what.clone().into();
let replacement = Replacement::Delete;
self.replacements.insert(what, replacement);
}
pub fn replace<T: Clone + Into<SyntaxElement>>(&mut self, what: &T, with: &T) {
let what = what.clone().into();
let replacement = Replacement::Single(with.clone().into());
self.replacements.insert(what, replacement);
}
pub fn replace_with_many<T: Clone + Into<SyntaxElement>>(
&mut self,
what: &T,
with: Vec<SyntaxElement>,
) {
let what = what.clone().into();
let replacement = Replacement::Many(with);
self.replacements.insert(what, replacement);
}
pub fn replace_ast<T: AstNode>(&mut self, what: &T, with: &T) {
self.replace(what.syntax(), with.syntax())
}
pub fn rewrite(&self, node: &SyntaxNode) -> SyntaxNode {
if self.f.is_none() && self.replacements.is_empty() {
return node.clone();
}
self.rewrite_children(node)
}
pub fn rewrite_ast<N: AstNode>(self, node: &N) -> N {
N::cast(self.rewrite(node.syntax())).unwrap()
}
/// Returns a node that encompasses all replacements to be done by this rewriter.
///
/// Passing the returned node to `rewrite` will apply all replacements queued up in `self`.
///
/// Returns `None` when there are no replacements.
pub fn rewrite_root(&self) -> Option<SyntaxNode> {
assert!(self.f.is_none());
self.replacements
.keys()
.map(|element| match element {
SyntaxElement::Node(it) => it.clone(),
SyntaxElement::Token(it) => it.parent(),
})
// If we only have one replacement, we must return its parent node, since `rewrite` does
// not replace the node passed to it.
.map(|it| it.parent().unwrap_or(it))
.fold1(|a, b| least_common_ancestor(&a, &b).unwrap())
}
fn replacement(&self, element: &SyntaxElement) -> Option<Replacement> {
if let Some(f) = &self.f {
assert!(self.replacements.is_empty());
return f(element).map(Replacement::Single);
}
self.replacements.get(element).cloned()
}
fn rewrite_children(&self, node: &SyntaxNode) -> SyntaxNode {
// FIXME: this could be made much faster.
let mut new_children = Vec::new();
for child in node.children_with_tokens() {
self.rewrite_self(&mut new_children, &child);
}
with_children(node, new_children)
}
fn rewrite_self(
&self,
acc: &mut Vec<NodeOrToken<rowan::GreenNode, rowan::GreenToken>>,
element: &SyntaxElement,
) {
if let Some(replacement) = self.replacement(&element) {
match replacement {
Replacement::Single(NodeOrToken::Node(it)) => {
acc.push(NodeOrToken::Node(it.green().clone()))
}
Replacement::Single(NodeOrToken::Token(it)) => {
acc.push(NodeOrToken::Token(it.green().clone()))
}
Replacement::Many(replacements) => {
acc.extend(replacements.iter().map(|it| match it {
NodeOrToken::Node(it) => NodeOrToken::Node(it.green().clone()),
NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()),
}))
}
Replacement::Delete => (),
};
return;
}
let res = match element {
NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()),
NodeOrToken::Node(it) => NodeOrToken::Node(self.rewrite_children(it).green().clone()),
};
acc.push(res)
}
}
impl ops::AddAssign for SyntaxRewriter<'_> {
fn add_assign(&mut self, rhs: SyntaxRewriter) {
assert!(rhs.f.is_none());
self.replacements.extend(rhs.replacements)
}
}
#[derive(Clone, Debug)]
enum Replacement {
Delete,
Single(SyntaxElement),
Many(Vec<SyntaxElement>),
}
fn with_children(
parent: &SyntaxNode,
new_children: Vec<NodeOrToken<rowan::GreenNode, rowan::GreenToken>>,
) -> SyntaxNode {
let len = new_children.iter().map(|it| it.text_len()).sum::<TextSize>();
let new_node = rowan::GreenNode::new(rowan::SyntaxKind(parent.kind() as u16), new_children);
let new_root_node = parent.replace_with(new_node);
let new_root_node = SyntaxNode::new_root(new_root_node);
// FIXME: use a more elegant way to re-fetch the node (#1185), make
// `range` private afterwards
let mut ptr = SyntaxNodePtr::new(parent);
ptr.range = TextRange::at(ptr.range.start(), len);
ptr.to_node(&new_root_node)
}
fn position_of_child(parent: &SyntaxNode, child: SyntaxElement) -> usize {
parent
.children_with_tokens()
.position(|it| it == child)
.expect("element is not a child of current element")
}
fn to_green_element(element: SyntaxElement) -> NodeOrToken<rowan::GreenNode, rowan::GreenToken> {
match element {
NodeOrToken::Node(it) => it.green().clone().into(),
NodeOrToken::Token(it) => it.green().clone().into(),
}
}