mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-06 10:18:53 +00:00
1693 lines
64 KiB
Rust
1693 lines
64 KiB
Rust
//! The type system. We currently use this to infer types for completion.
|
|
//!
|
|
//! For type inference, compare the implementations in rustc (the various
|
|
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
|
|
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
|
|
//! inference here is the `infer` function, which infers the types of all
|
|
//! expressions in a given function.
|
|
//!
|
|
//! The central struct here is `Ty`, which represents a type. During inference,
|
|
//! it can contain type 'variables' which represent currently unknown types; as
|
|
//! we walk through the expressions, we might determine that certain variables
|
|
//! need to be equal to each other, or to certain types. To record this, we use
|
|
//! the union-find implementation from the `ena` crate, which is extracted from
|
|
//! rustc.
|
|
|
|
mod autoderef;
|
|
pub(crate) mod primitive;
|
|
#[cfg(test)]
|
|
mod tests;
|
|
pub(crate) mod method_resolution;
|
|
|
|
use std::borrow::Cow;
|
|
use std::iter::repeat;
|
|
use std::ops::Index;
|
|
use std::sync::Arc;
|
|
use std::{fmt, mem};
|
|
|
|
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};
|
|
use ra_arena::map::ArenaMap;
|
|
use join_to_string::join;
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use test_utils::tested_by;
|
|
|
|
use crate::{
|
|
Function, Struct, StructField, Enum, EnumVariant, Path, Name,
|
|
FnSignature, ModuleDef, AdtDef,
|
|
HirDatabase,
|
|
type_ref::{TypeRef, Mutability},
|
|
name::KnownName,
|
|
expr::{Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement, FieldPat, self},
|
|
generics::GenericParams,
|
|
path::GenericArg,
|
|
adt::VariantDef,
|
|
resolve::{Resolver, Resolution},
|
|
};
|
|
|
|
/// The ID of a type variable.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
|
|
pub struct TypeVarId(u32);
|
|
|
|
impl UnifyKey for TypeVarId {
|
|
type Value = TypeVarValue;
|
|
|
|
fn index(&self) -> u32 {
|
|
self.0
|
|
}
|
|
|
|
fn from_index(i: u32) -> Self {
|
|
TypeVarId(i)
|
|
}
|
|
|
|
fn tag() -> &'static str {
|
|
"TypeVarId"
|
|
}
|
|
}
|
|
|
|
/// The value of a type variable: either we already know the type, or we don't
|
|
/// know it yet.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub enum TypeVarValue {
|
|
Known(Ty),
|
|
Unknown,
|
|
}
|
|
|
|
impl TypeVarValue {
|
|
fn known(&self) -> Option<&Ty> {
|
|
match self {
|
|
TypeVarValue::Known(ty) => Some(ty),
|
|
TypeVarValue::Unknown => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl UnifyValue for TypeVarValue {
|
|
type Error = NoError;
|
|
|
|
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
|
|
match (value1, value2) {
|
|
// We should never equate two type variables, both of which have
|
|
// known types. Instead, we recursively equate those types.
|
|
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
|
|
"equating two type variables, both of which have known types: {:?} and {:?}",
|
|
t1, t2
|
|
),
|
|
|
|
// If one side is known, prefer that one.
|
|
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
|
|
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
|
|
|
|
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The kinds of placeholders we need during type inference. There's separate
|
|
/// values for general types, and for integer and float variables. The latter
|
|
/// two are used for inference of literal values (e.g. `100` could be one of
|
|
/// several integer types).
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
|
|
pub enum InferTy {
|
|
TypeVar(TypeVarId),
|
|
IntVar(TypeVarId),
|
|
FloatVar(TypeVarId),
|
|
}
|
|
|
|
impl InferTy {
|
|
fn to_inner(self) -> TypeVarId {
|
|
match self {
|
|
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
|
|
}
|
|
}
|
|
|
|
fn fallback_value(self) -> Ty {
|
|
match self {
|
|
InferTy::TypeVar(..) => Ty::Unknown,
|
|
InferTy::IntVar(..) => {
|
|
Ty::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32))
|
|
}
|
|
InferTy::FloatVar(..) => {
|
|
Ty::Float(primitive::UncertainFloatTy::Known(primitive::FloatTy::F64))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inferring an expression, we propagate downward whatever type hint we
|
|
/// are able in the form of an `Expectation`.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
struct Expectation {
|
|
ty: Ty,
|
|
// TODO: In some cases, we need to be aware whether the expectation is that
|
|
// the type match exactly what we passed, or whether it just needs to be
|
|
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
|
|
}
|
|
|
|
impl Expectation {
|
|
/// The expectation that the type of the expression needs to equal the given
|
|
/// type.
|
|
fn has_type(ty: Ty) -> Self {
|
|
Expectation { ty }
|
|
}
|
|
|
|
/// This expresses no expectation on the type.
|
|
fn none() -> Self {
|
|
Expectation { ty: Ty::Unknown }
|
|
}
|
|
}
|
|
|
|
/// A list of substitutions for generic parameters.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct Substs(Arc<[Ty]>);
|
|
|
|
impl Substs {
|
|
pub fn empty() -> Substs {
|
|
Substs(Arc::new([]))
|
|
}
|
|
|
|
/// Replaces the end of the substitutions by other ones.
|
|
pub(crate) fn replace_tail(self, replace_by: Vec<Ty>) -> Substs {
|
|
// again missing Arc::make_mut_slice...
|
|
let len = replace_by.len().min(self.0.len());
|
|
let parent_len = self.0.len() - len;
|
|
let mut result = Vec::with_capacity(parent_len + len);
|
|
result.extend(self.0.iter().take(parent_len).cloned());
|
|
result.extend(replace_by);
|
|
Substs(result.into())
|
|
}
|
|
}
|
|
|
|
/// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs).
|
|
///
|
|
/// This should be cheap to clone.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub enum Ty {
|
|
/// The primitive boolean type. Written as `bool`.
|
|
Bool,
|
|
|
|
/// The primitive character type; holds a Unicode scalar value
|
|
/// (a non-surrogate code point). Written as `char`.
|
|
Char,
|
|
|
|
/// A primitive integer type. For example, `i32`.
|
|
Int(primitive::UncertainIntTy),
|
|
|
|
/// A primitive floating-point type. For example, `f64`.
|
|
Float(primitive::UncertainFloatTy),
|
|
|
|
/// Structures, enumerations and unions.
|
|
Adt {
|
|
/// The definition of the struct/enum.
|
|
def_id: AdtDef,
|
|
/// The name, for displaying.
|
|
name: Name,
|
|
/// Substitutions for the generic parameters of the type.
|
|
substs: Substs,
|
|
},
|
|
|
|
/// The pointee of a string slice. Written as `str`.
|
|
Str,
|
|
|
|
/// The pointee of an array slice. Written as `[T]`.
|
|
Slice(Arc<Ty>),
|
|
|
|
// An array with the given length. Written as `[T; n]`.
|
|
Array(Arc<Ty>),
|
|
|
|
/// A raw pointer. Written as `*mut T` or `*const T`
|
|
RawPtr(Arc<Ty>, Mutability),
|
|
|
|
/// A reference; a pointer with an associated lifetime. Written as
|
|
/// `&'a mut T` or `&'a T`.
|
|
Ref(Arc<Ty>, Mutability),
|
|
|
|
/// The anonymous type of a function declaration/definition. Each
|
|
/// function has a unique type, which is output (for a function
|
|
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
|
|
///
|
|
/// For example the type of `bar` here:
|
|
///
|
|
/// ```rust
|
|
/// fn foo() -> i32 { 1 }
|
|
/// let bar = foo; // bar: fn() -> i32 {foo}
|
|
/// ```
|
|
FnDef {
|
|
// Function definition
|
|
def: Function,
|
|
/// For display
|
|
name: Name,
|
|
/// Parameters and return type
|
|
sig: Arc<FnSig>,
|
|
/// Substitutions for the generic parameters of the type
|
|
substs: Substs,
|
|
},
|
|
|
|
/// A pointer to a function. Written as `fn() -> i32`.
|
|
///
|
|
/// For example the type of `bar` here:
|
|
///
|
|
/// ```rust
|
|
/// fn foo() -> i32 { 1 }
|
|
/// let bar: fn() -> i32 = foo;
|
|
/// ```
|
|
FnPtr(Arc<FnSig>),
|
|
|
|
// rustc has a separate type for each function, which just coerces to the
|
|
// above function pointer type. Once we implement generics, we will probably
|
|
// need this as well.
|
|
|
|
// A trait, defined with `dyn Trait`.
|
|
// Dynamic(),
|
|
|
|
// The anonymous type of a closure. Used to represent the type of
|
|
// `|a| a`.
|
|
// Closure(DefId, ClosureSubsts<'tcx>),
|
|
|
|
// The anonymous type of a generator. Used to represent the type of
|
|
// `|a| yield a`.
|
|
// Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),
|
|
|
|
// A type representing the types stored inside a generator.
|
|
// This should only appear in GeneratorInteriors.
|
|
// GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
|
|
/// The never type `!`.
|
|
Never,
|
|
|
|
/// A tuple type. For example, `(i32, bool)`.
|
|
Tuple(Arc<[Ty]>),
|
|
|
|
// The projection of an associated type. For example,
|
|
// `<T as Trait<..>>::N`.pub
|
|
// Projection(ProjectionTy),
|
|
|
|
// Opaque (`impl Trait`) type found in a return type.
|
|
// Opaque(DefId, Substs),
|
|
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
|
|
Param {
|
|
/// The index of the parameter (starting with parameters from the
|
|
/// surrounding impl, then the current function).
|
|
idx: u32,
|
|
/// The name of the parameter, for displaying.
|
|
name: Name,
|
|
},
|
|
|
|
/// A type variable used during type checking. Not to be confused with a
|
|
/// type parameter.
|
|
Infer(InferTy),
|
|
|
|
/// A placeholder for a type which could not be computed; this is propagated
|
|
/// to avoid useless error messages. Doubles as a placeholder where type
|
|
/// variables are inserted before type checking, since we want to try to
|
|
/// infer a better type here anyway -- for the IDE use case, we want to try
|
|
/// to infer as much as possible even in the presence of type errors.
|
|
Unknown,
|
|
}
|
|
|
|
/// A function signature.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct FnSig {
|
|
input: Vec<Ty>,
|
|
output: Ty,
|
|
}
|
|
|
|
impl Ty {
|
|
pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
|
|
match type_ref {
|
|
TypeRef::Never => Ty::Never,
|
|
TypeRef::Tuple(inner) => {
|
|
let inner_tys =
|
|
inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
|
|
Ty::Tuple(inner_tys.into())
|
|
}
|
|
TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
|
|
TypeRef::RawPtr(inner, mutability) => {
|
|
let inner_ty = Ty::from_hir(db, resolver, inner);
|
|
Ty::RawPtr(Arc::new(inner_ty), *mutability)
|
|
}
|
|
TypeRef::Array(inner) => {
|
|
let inner_ty = Ty::from_hir(db, resolver, inner);
|
|
Ty::Array(Arc::new(inner_ty))
|
|
}
|
|
TypeRef::Slice(inner) => {
|
|
let inner_ty = Ty::from_hir(db, resolver, inner);
|
|
Ty::Slice(Arc::new(inner_ty))
|
|
}
|
|
TypeRef::Reference(inner, mutability) => {
|
|
let inner_ty = Ty::from_hir(db, resolver, inner);
|
|
Ty::Ref(Arc::new(inner_ty), *mutability)
|
|
}
|
|
TypeRef::Placeholder => Ty::Unknown,
|
|
TypeRef::Fn(params) => {
|
|
let mut inner_tys =
|
|
params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
|
|
let return_ty =
|
|
inner_tys.pop().expect("TypeRef::Fn should always have at least return type");
|
|
let sig = FnSig { input: inner_tys, output: return_ty };
|
|
Ty::FnPtr(Arc::new(sig))
|
|
}
|
|
TypeRef::Error => Ty::Unknown,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Self {
|
|
if let Some(name) = path.as_ident() {
|
|
// TODO handle primitive type names in resolver as well?
|
|
if let Some(int_ty) = primitive::UncertainIntTy::from_name(name) {
|
|
return Ty::Int(int_ty);
|
|
} else if let Some(float_ty) = primitive::UncertainFloatTy::from_name(name) {
|
|
return Ty::Float(float_ty);
|
|
} else if let Some(known) = name.as_known_name() {
|
|
match known {
|
|
KnownName::Bool => return Ty::Bool,
|
|
KnownName::Char => return Ty::Char,
|
|
KnownName::Str => return Ty::Str,
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve the path (in type namespace)
|
|
let resolution = resolver.resolve_path(db, path).take_types();
|
|
|
|
let def = match resolution {
|
|
Some(Resolution::Def(def)) => def,
|
|
Some(Resolution::LocalBinding(..)) => {
|
|
// this should never happen
|
|
panic!("path resolved to local binding in type ns");
|
|
}
|
|
Some(Resolution::GenericParam(idx)) => {
|
|
return Ty::Param {
|
|
idx,
|
|
// TODO: maybe return name in resolution?
|
|
name: path
|
|
.as_ident()
|
|
.expect("generic param should be single-segment path")
|
|
.clone(),
|
|
};
|
|
}
|
|
Some(Resolution::SelfType(impl_block)) => {
|
|
return impl_block.target_ty(db);
|
|
}
|
|
None => return Ty::Unknown,
|
|
};
|
|
|
|
let typable: TypableDef = match def.into() {
|
|
None => return Ty::Unknown,
|
|
Some(it) => it,
|
|
};
|
|
let ty = db.type_for_def(typable);
|
|
let substs = Ty::substs_from_path(db, resolver, path, typable);
|
|
ty.apply_substs(substs)
|
|
}
|
|
|
|
/// Collect generic arguments from a path into a `Substs`. See also
|
|
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
|
|
fn substs_from_path(
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
path: &Path,
|
|
resolved: TypableDef,
|
|
) -> Substs {
|
|
let mut substs = Vec::new();
|
|
let last = path.segments.last().expect("path should have at least one segment");
|
|
let (def_generics, segment) = match resolved {
|
|
TypableDef::Function(func) => (func.generic_params(db), last),
|
|
TypableDef::Struct(s) => (s.generic_params(db), last),
|
|
TypableDef::Enum(e) => (e.generic_params(db), last),
|
|
TypableDef::EnumVariant(var) => {
|
|
// the generic args for an enum variant may be either specified
|
|
// on the segment referring to the enum, or on the segment
|
|
// referring to the variant. So `Option::<T>::None` and
|
|
// `Option::None::<T>` are both allowed (though the former is
|
|
// preferred). See also `def_ids_for_path_segments` in rustc.
|
|
let len = path.segments.len();
|
|
let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
|
|
// Option::<T>::None
|
|
&path.segments[len - 2]
|
|
} else {
|
|
// Option::None::<T>
|
|
last
|
|
};
|
|
(var.parent_enum(db).generic_params(db), segment)
|
|
}
|
|
};
|
|
let parent_param_count = def_generics.count_parent_params();
|
|
substs.extend((0..parent_param_count).map(|_| Ty::Unknown));
|
|
if let Some(generic_args) = &segment.args_and_bindings {
|
|
// if args are provided, it should be all of them, but we can't rely on that
|
|
let param_count = def_generics.params.len();
|
|
for arg in generic_args.args.iter().take(param_count) {
|
|
match arg {
|
|
GenericArg::Type(type_ref) => {
|
|
let ty = Ty::from_hir(db, resolver, type_ref);
|
|
substs.push(ty);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// add placeholders for args that were not provided
|
|
// TODO: handle defaults
|
|
let supplied_params = substs.len();
|
|
for _ in supplied_params..def_generics.count_params_including_parent() {
|
|
substs.push(Ty::Unknown);
|
|
}
|
|
assert_eq!(substs.len(), def_generics.params.len());
|
|
Substs(substs.into())
|
|
}
|
|
|
|
pub fn unit() -> Self {
|
|
Ty::Tuple(Arc::new([]))
|
|
}
|
|
|
|
pub fn walk(&self, f: &mut impl FnMut(&Ty)) {
|
|
match self {
|
|
Ty::Slice(t) | Ty::Array(t) => t.walk(f),
|
|
Ty::RawPtr(t, _) => t.walk(f),
|
|
Ty::Ref(t, _) => t.walk(f),
|
|
Ty::Tuple(ts) => {
|
|
for t in ts.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
Ty::FnPtr(sig) => {
|
|
for input in &sig.input {
|
|
input.walk(f);
|
|
}
|
|
sig.output.walk(f);
|
|
}
|
|
Ty::FnDef { substs, sig, .. } => {
|
|
for input in &sig.input {
|
|
input.walk(f);
|
|
}
|
|
sig.output.walk(f);
|
|
for t in substs.0.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
Ty::Adt { substs, .. } => {
|
|
for t in substs.0.iter() {
|
|
t.walk(f);
|
|
}
|
|
}
|
|
Ty::Bool
|
|
| Ty::Char
|
|
| Ty::Int(_)
|
|
| Ty::Float(_)
|
|
| Ty::Str
|
|
| Ty::Never
|
|
| Ty::Param { .. }
|
|
| Ty::Infer(_)
|
|
| Ty::Unknown => {}
|
|
}
|
|
f(self);
|
|
}
|
|
|
|
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
|
|
match self {
|
|
Ty::Slice(t) | Ty::Array(t) => Arc::make_mut(t).walk_mut(f),
|
|
Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f),
|
|
Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f),
|
|
Ty::Tuple(ts) => {
|
|
// Without an Arc::make_mut_slice, we can't avoid the clone here:
|
|
let mut v: Vec<_> = ts.iter().cloned().collect();
|
|
for t in &mut v {
|
|
t.walk_mut(f);
|
|
}
|
|
*ts = v.into();
|
|
}
|
|
Ty::FnPtr(sig) => {
|
|
let sig_mut = Arc::make_mut(sig);
|
|
for input in &mut sig_mut.input {
|
|
input.walk_mut(f);
|
|
}
|
|
sig_mut.output.walk_mut(f);
|
|
}
|
|
Ty::FnDef { substs, sig, .. } => {
|
|
let sig_mut = Arc::make_mut(sig);
|
|
for input in &mut sig_mut.input {
|
|
input.walk_mut(f);
|
|
}
|
|
sig_mut.output.walk_mut(f);
|
|
// Without an Arc::make_mut_slice, we can't avoid the clone here:
|
|
let mut v: Vec<_> = substs.0.iter().cloned().collect();
|
|
for t in &mut v {
|
|
t.walk_mut(f);
|
|
}
|
|
substs.0 = v.into();
|
|
}
|
|
Ty::Adt { substs, .. } => {
|
|
// Without an Arc::make_mut_slice, we can't avoid the clone here:
|
|
let mut v: Vec<_> = substs.0.iter().cloned().collect();
|
|
for t in &mut v {
|
|
t.walk_mut(f);
|
|
}
|
|
substs.0 = v.into();
|
|
}
|
|
Ty::Bool
|
|
| Ty::Char
|
|
| Ty::Int(_)
|
|
| Ty::Float(_)
|
|
| Ty::Str
|
|
| Ty::Never
|
|
| Ty::Param { .. }
|
|
| Ty::Infer(_)
|
|
| Ty::Unknown => {}
|
|
}
|
|
f(self);
|
|
}
|
|
|
|
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty {
|
|
self.walk_mut(&mut |ty_mut| {
|
|
let ty = mem::replace(ty_mut, Ty::Unknown);
|
|
*ty_mut = f(ty);
|
|
});
|
|
self
|
|
}
|
|
|
|
fn builtin_deref(&self) -> Option<Ty> {
|
|
match self {
|
|
Ty::Ref(t, _) => Some(Ty::clone(t)),
|
|
Ty::RawPtr(t, _) => Some(Ty::clone(t)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// If this is a type with type parameters (an ADT or function), replaces
|
|
/// the `Substs` for these type parameters with the given ones. (So e.g. if
|
|
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
|
|
/// `Option<u32>` afterwards.)
|
|
pub fn apply_substs(self, substs: Substs) -> Ty {
|
|
match self {
|
|
Ty::Adt { def_id, name, .. } => Ty::Adt { def_id, name, substs },
|
|
Ty::FnDef { def, name, sig, .. } => Ty::FnDef { def, name, sig, substs },
|
|
_ => self,
|
|
}
|
|
}
|
|
|
|
/// Replaces type parameters in this type using the given `Substs`. (So e.g.
|
|
/// if `self` is `&[T]`, where type parameter T has index 0, and the
|
|
/// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
|
|
pub fn subst(self, substs: &Substs) -> Ty {
|
|
self.fold(&mut |ty| match ty {
|
|
Ty::Param { idx, name } => {
|
|
if (idx as usize) < substs.0.len() {
|
|
substs.0[idx as usize].clone()
|
|
} else {
|
|
// TODO: does this indicate a bug? i.e. should we always
|
|
// have substs for all type params? (they might contain the
|
|
// params themselves again...)
|
|
Ty::Param { idx, name }
|
|
}
|
|
}
|
|
ty => ty,
|
|
})
|
|
}
|
|
|
|
/// Returns the type parameters of this type if it has some (i.e. is an ADT
|
|
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
|
|
fn substs(&self) -> Option<Substs> {
|
|
match self {
|
|
Ty::Adt { substs, .. } | Ty::FnDef { substs, .. } => Some(substs.clone()),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for Ty {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self {
|
|
Ty::Bool => write!(f, "bool"),
|
|
Ty::Char => write!(f, "char"),
|
|
Ty::Int(t) => write!(f, "{}", t.ty_to_string()),
|
|
Ty::Float(t) => write!(f, "{}", t.ty_to_string()),
|
|
Ty::Str => write!(f, "str"),
|
|
Ty::Slice(t) | Ty::Array(t) => write!(f, "[{}]", t),
|
|
Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t),
|
|
Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t),
|
|
Ty::Never => write!(f, "!"),
|
|
Ty::Tuple(ts) => {
|
|
if ts.len() == 1 {
|
|
write!(f, "({},)", ts[0])
|
|
} else {
|
|
join(ts.iter()).surround_with("(", ")").separator(", ").to_fmt(f)
|
|
}
|
|
}
|
|
Ty::FnPtr(sig) => {
|
|
join(sig.input.iter()).surround_with("fn(", ")").separator(", ").to_fmt(f)?;
|
|
write!(f, " -> {}", sig.output)
|
|
}
|
|
Ty::FnDef { name, substs, sig, .. } => {
|
|
write!(f, "fn {}", name)?;
|
|
if substs.0.len() > 0 {
|
|
join(substs.0.iter()).surround_with("<", ">").separator(", ").to_fmt(f)?;
|
|
}
|
|
join(sig.input.iter()).surround_with("(", ")").separator(", ").to_fmt(f)?;
|
|
write!(f, " -> {}", sig.output)
|
|
}
|
|
Ty::Adt { name, substs, .. } => {
|
|
write!(f, "{}", name)?;
|
|
if substs.0.len() > 0 {
|
|
join(substs.0.iter()).surround_with("<", ">").separator(", ").to_fmt(f)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
Ty::Param { name, .. } => write!(f, "{}", name),
|
|
Ty::Unknown => write!(f, "[unknown]"),
|
|
Ty::Infer(..) => write!(f, "_"),
|
|
}
|
|
}
|
|
}
|
|
|
|
// Functions returning declared types for items
|
|
|
|
/// Compute the declared type of a function. This should not need to look at the
|
|
/// function body.
|
|
fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty {
|
|
let signature = def.signature(db);
|
|
let resolver = def.resolver(db);
|
|
let generics = def.generic_params(db);
|
|
let name = def.name(db);
|
|
let input =
|
|
signature.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
|
|
let output = Ty::from_hir(db, &resolver, signature.ret_type());
|
|
let sig = Arc::new(FnSig { input, output });
|
|
let substs = make_substs(&generics);
|
|
Ty::FnDef { def, sig, name, substs }
|
|
}
|
|
|
|
fn make_substs(generics: &GenericParams) -> Substs {
|
|
Substs(
|
|
(0..generics.count_params_including_parent())
|
|
.map(|_p| Ty::Unknown)
|
|
.collect::<Vec<_>>()
|
|
.into(),
|
|
)
|
|
}
|
|
|
|
fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Ty {
|
|
let generics = s.generic_params(db);
|
|
Ty::Adt {
|
|
def_id: s.into(),
|
|
name: s.name(db).unwrap_or_else(Name::missing),
|
|
substs: make_substs(&generics),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Ty {
|
|
let generics = s.generic_params(db);
|
|
Ty::Adt {
|
|
def_id: s.into(),
|
|
name: s.name(db).unwrap_or_else(Name::missing),
|
|
substs: make_substs(&generics),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn type_for_enum_variant(db: &impl HirDatabase, ev: EnumVariant) -> Ty {
|
|
let enum_parent = ev.parent_enum(db);
|
|
|
|
type_for_enum(db, enum_parent)
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum TypableDef {
|
|
Function(Function),
|
|
Struct(Struct),
|
|
Enum(Enum),
|
|
EnumVariant(EnumVariant),
|
|
}
|
|
impl_froms!(TypableDef: Function, Struct, Enum, EnumVariant);
|
|
|
|
impl From<ModuleDef> for Option<TypableDef> {
|
|
fn from(def: ModuleDef) -> Option<TypableDef> {
|
|
let res = match def {
|
|
ModuleDef::Function(f) => f.into(),
|
|
ModuleDef::Struct(s) => s.into(),
|
|
ModuleDef::Enum(e) => e.into(),
|
|
ModuleDef::EnumVariant(v) => v.into(),
|
|
ModuleDef::Const(_)
|
|
| ModuleDef::Static(_)
|
|
| ModuleDef::Module(_)
|
|
| ModuleDef::Trait(_)
|
|
| ModuleDef::Type(_) => return None,
|
|
};
|
|
Some(res)
|
|
}
|
|
}
|
|
|
|
pub(super) fn type_for_def(db: &impl HirDatabase, def: TypableDef) -> Ty {
|
|
match def {
|
|
TypableDef::Function(f) => type_for_fn(db, f),
|
|
TypableDef::Struct(s) => type_for_struct(db, s),
|
|
TypableDef::Enum(e) => type_for_enum(db, e),
|
|
TypableDef::EnumVariant(v) => type_for_enum_variant(db, v),
|
|
}
|
|
}
|
|
|
|
pub(super) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty {
|
|
let parent_def = field.parent_def(db);
|
|
let resolver = match parent_def {
|
|
VariantDef::Struct(it) => it.resolver(db),
|
|
VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db),
|
|
};
|
|
let var_data = parent_def.variant_data(db);
|
|
let type_ref = &var_data.fields().unwrap()[field.id].type_ref;
|
|
Ty::from_hir(db, &resolver, type_ref)
|
|
}
|
|
|
|
/// The result of type inference: A mapping from expressions and patterns to types.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct InferenceResult {
|
|
/// For each method call expr, records the function it resolves to.
|
|
method_resolutions: FxHashMap<ExprId, Function>,
|
|
/// For each field access expr, records the field it resolves to.
|
|
field_resolutions: FxHashMap<ExprId, StructField>,
|
|
type_of_expr: ArenaMap<ExprId, Ty>,
|
|
type_of_pat: ArenaMap<PatId, Ty>,
|
|
}
|
|
|
|
impl InferenceResult {
|
|
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
|
|
self.method_resolutions.get(&expr).map(|it| *it)
|
|
}
|
|
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
|
|
self.field_resolutions.get(&expr).map(|it| *it)
|
|
}
|
|
}
|
|
|
|
impl Index<ExprId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, expr: ExprId) -> &Ty {
|
|
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
|
|
}
|
|
}
|
|
|
|
impl Index<PatId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, pat: PatId) -> &Ty {
|
|
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
|
|
}
|
|
}
|
|
|
|
/// The inference context contains all information needed during type inference.
|
|
#[derive(Clone, Debug)]
|
|
struct InferenceContext<'a, D: HirDatabase> {
|
|
db: &'a D,
|
|
body: Arc<Body>,
|
|
resolver: Resolver,
|
|
var_unification_table: InPlaceUnificationTable<TypeVarId>,
|
|
method_resolutions: FxHashMap<ExprId, Function>,
|
|
field_resolutions: FxHashMap<ExprId, StructField>,
|
|
type_of_expr: ArenaMap<ExprId, Ty>,
|
|
type_of_pat: ArenaMap<PatId, Ty>,
|
|
/// The return type of the function being inferred.
|
|
return_ty: Ty,
|
|
}
|
|
|
|
fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty {
|
|
match op {
|
|
BinaryOp::BooleanOr
|
|
| BinaryOp::BooleanAnd
|
|
| BinaryOp::EqualityTest
|
|
| BinaryOp::LesserEqualTest
|
|
| BinaryOp::GreaterEqualTest
|
|
| BinaryOp::LesserTest
|
|
| BinaryOp::GreaterTest => Ty::Bool,
|
|
BinaryOp::Assignment
|
|
| BinaryOp::AddAssign
|
|
| BinaryOp::SubAssign
|
|
| BinaryOp::DivAssign
|
|
| BinaryOp::MulAssign
|
|
| BinaryOp::RemAssign
|
|
| BinaryOp::ShrAssign
|
|
| BinaryOp::ShlAssign
|
|
| BinaryOp::BitAndAssign
|
|
| BinaryOp::BitOrAssign
|
|
| BinaryOp::BitXorAssign => Ty::unit(),
|
|
BinaryOp::Addition
|
|
| BinaryOp::Subtraction
|
|
| BinaryOp::Multiplication
|
|
| BinaryOp::Division
|
|
| BinaryOp::Remainder
|
|
| BinaryOp::LeftShift
|
|
| BinaryOp::RightShift
|
|
| BinaryOp::BitwiseAnd
|
|
| BinaryOp::BitwiseOr
|
|
| BinaryOp::BitwiseXor => match rhs_ty {
|
|
Ty::Int(..)
|
|
| Ty::Float(..)
|
|
| Ty::Infer(InferTy::IntVar(..))
|
|
| Ty::Infer(InferTy::FloatVar(..)) => rhs_ty,
|
|
_ => Ty::Unknown,
|
|
},
|
|
BinaryOp::RangeRightOpen | BinaryOp::RangeRightClosed => Ty::Unknown,
|
|
}
|
|
}
|
|
|
|
fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty {
|
|
match op {
|
|
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => Ty::Bool,
|
|
BinaryOp::Assignment | BinaryOp::EqualityTest => match lhs_ty {
|
|
Ty::Int(..) | Ty::Float(..) | Ty::Str | Ty::Char | Ty::Bool => lhs_ty,
|
|
_ => Ty::Unknown,
|
|
},
|
|
BinaryOp::LesserEqualTest
|
|
| BinaryOp::GreaterEqualTest
|
|
| BinaryOp::LesserTest
|
|
| BinaryOp::GreaterTest
|
|
| BinaryOp::AddAssign
|
|
| BinaryOp::SubAssign
|
|
| BinaryOp::DivAssign
|
|
| BinaryOp::MulAssign
|
|
| BinaryOp::RemAssign
|
|
| BinaryOp::ShrAssign
|
|
| BinaryOp::ShlAssign
|
|
| BinaryOp::BitAndAssign
|
|
| BinaryOp::BitOrAssign
|
|
| BinaryOp::BitXorAssign
|
|
| BinaryOp::Addition
|
|
| BinaryOp::Subtraction
|
|
| BinaryOp::Multiplication
|
|
| BinaryOp::Division
|
|
| BinaryOp::Remainder
|
|
| BinaryOp::LeftShift
|
|
| BinaryOp::RightShift
|
|
| BinaryOp::BitwiseAnd
|
|
| BinaryOp::BitwiseOr
|
|
| BinaryOp::BitwiseXor => match lhs_ty {
|
|
Ty::Int(..) | Ty::Float(..) => lhs_ty,
|
|
_ => Ty::Unknown,
|
|
},
|
|
_ => Ty::Unknown,
|
|
}
|
|
}
|
|
|
|
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
|
|
fn new(db: &'a D, body: Arc<Body>, resolver: Resolver) -> Self {
|
|
InferenceContext {
|
|
method_resolutions: FxHashMap::default(),
|
|
field_resolutions: FxHashMap::default(),
|
|
type_of_expr: ArenaMap::default(),
|
|
type_of_pat: ArenaMap::default(),
|
|
var_unification_table: InPlaceUnificationTable::new(),
|
|
return_ty: Ty::Unknown, // set in collect_fn_signature
|
|
db,
|
|
body,
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
fn resolve_all(mut self) -> InferenceResult {
|
|
let mut tv_stack = Vec::new();
|
|
let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default());
|
|
for ty in expr_types.values_mut() {
|
|
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
|
|
*ty = resolved;
|
|
}
|
|
let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default());
|
|
for ty in pat_types.values_mut() {
|
|
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
|
|
*ty = resolved;
|
|
}
|
|
InferenceResult {
|
|
method_resolutions: self.method_resolutions,
|
|
field_resolutions: self.field_resolutions,
|
|
type_of_expr: expr_types,
|
|
type_of_pat: pat_types,
|
|
}
|
|
}
|
|
|
|
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
|
|
self.type_of_expr.insert(expr, ty);
|
|
}
|
|
|
|
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
|
|
self.method_resolutions.insert(expr, func);
|
|
}
|
|
|
|
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
|
|
self.field_resolutions.insert(expr, field);
|
|
}
|
|
|
|
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
|
|
self.type_of_pat.insert(pat, ty);
|
|
}
|
|
|
|
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
|
|
let ty = Ty::from_hir(
|
|
self.db,
|
|
// TODO use right resolver for block
|
|
&self.resolver,
|
|
type_ref,
|
|
);
|
|
let ty = self.insert_type_vars(ty);
|
|
ty
|
|
}
|
|
|
|
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
|
|
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
|
|
}
|
|
|
|
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
self.unify_inner(ty1, ty2, 0)
|
|
}
|
|
|
|
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
|
|
if depth > 1000 {
|
|
// prevent stackoverflows
|
|
panic!("infinite recursion in unification");
|
|
}
|
|
if ty1 == ty2 {
|
|
return true;
|
|
}
|
|
// try to resolve type vars first
|
|
let ty1 = self.resolve_ty_shallow(ty1);
|
|
let ty2 = self.resolve_ty_shallow(ty2);
|
|
match (&*ty1, &*ty2) {
|
|
(Ty::Unknown, ..) => true,
|
|
(.., Ty::Unknown) => true,
|
|
(Ty::Int(t1), Ty::Int(t2)) => match (t1, t2) {
|
|
(primitive::UncertainIntTy::Unknown, _)
|
|
| (_, primitive::UncertainIntTy::Unknown) => true,
|
|
_ => t1 == t2,
|
|
},
|
|
(Ty::Float(t1), Ty::Float(t2)) => match (t1, t2) {
|
|
(primitive::UncertainFloatTy::Unknown, _)
|
|
| (_, primitive::UncertainFloatTy::Unknown) => true,
|
|
_ => t1 == t2,
|
|
},
|
|
(Ty::Bool, _) | (Ty::Str, _) | (Ty::Never, _) | (Ty::Char, _) => ty1 == ty2,
|
|
(
|
|
Ty::Adt { def_id: def_id1, substs: substs1, .. },
|
|
Ty::Adt { def_id: def_id2, substs: substs2, .. },
|
|
) if def_id1 == def_id2 => self.unify_substs(substs1, substs2, depth + 1),
|
|
(Ty::Slice(t1), Ty::Slice(t2)) => self.unify_inner(t1, t2, depth + 1),
|
|
(Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => {
|
|
self.unify_inner(t1, t2, depth + 1)
|
|
}
|
|
(Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify_inner(t1, t2, depth + 1),
|
|
(Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true,
|
|
(Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => {
|
|
ts1.iter().zip(ts2.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth + 1))
|
|
}
|
|
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
|
|
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
|
|
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
|
|
// both type vars are unknown since we tried to resolve them
|
|
self.var_unification_table.union(*tv1, *tv2);
|
|
true
|
|
}
|
|
(Ty::Infer(InferTy::TypeVar(tv)), other)
|
|
| (other, Ty::Infer(InferTy::TypeVar(tv)))
|
|
| (Ty::Infer(InferTy::IntVar(tv)), other)
|
|
| (other, Ty::Infer(InferTy::IntVar(tv)))
|
|
| (Ty::Infer(InferTy::FloatVar(tv)), other)
|
|
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
|
|
// the type var is unknown since we tried to resolve it
|
|
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
|
|
true
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn new_type_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
|
}
|
|
|
|
fn new_integer_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
|
}
|
|
|
|
fn new_float_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
|
}
|
|
|
|
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
|
|
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
|
|
match ty {
|
|
Ty::Unknown => self.new_type_var(),
|
|
Ty::Int(primitive::UncertainIntTy::Unknown) => self.new_integer_var(),
|
|
Ty::Float(primitive::UncertainFloatTy::Unknown) => self.new_float_var(),
|
|
_ => ty,
|
|
}
|
|
}
|
|
|
|
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
|
|
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
|
|
}
|
|
|
|
/// Resolves the type as far as currently possible, replacing type variables
|
|
/// by their known types. All types returned by the infer_* functions should
|
|
/// be resolved as far as possible, i.e. contain no type variables with
|
|
/// known type.
|
|
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
|
|
ty.fold(&mut |ty| match ty {
|
|
Ty::Infer(tv) => {
|
|
let inner = tv.to_inner();
|
|
if tv_stack.contains(&inner) {
|
|
tested_by!(type_var_cycles_resolve_as_possible);
|
|
// recursive type
|
|
return tv.fallback_value();
|
|
}
|
|
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
|
|
// known_ty may contain other variables that are known by now
|
|
tv_stack.push(inner);
|
|
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
|
|
tv_stack.pop();
|
|
result
|
|
} else {
|
|
ty
|
|
}
|
|
}
|
|
_ => ty,
|
|
})
|
|
}
|
|
|
|
/// If `ty` is a type variable with known type, returns that type;
|
|
/// otherwise, return ty.
|
|
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
|
|
let mut ty = Cow::Borrowed(ty);
|
|
// The type variable could resolve to a int/float variable. Hence try
|
|
// resolving up to three times; each type of variable shouldn't occur
|
|
// more than once
|
|
for i in 0..3 {
|
|
if i > 0 {
|
|
tested_by!(type_var_resolves_to_int_var);
|
|
}
|
|
match &*ty {
|
|
Ty::Infer(tv) => {
|
|
let inner = tv.to_inner();
|
|
match self.var_unification_table.probe_value(inner).known() {
|
|
Some(known_ty) => {
|
|
// The known_ty can't be a type var itself
|
|
ty = Cow::Owned(known_ty.clone());
|
|
}
|
|
_ => return ty,
|
|
}
|
|
}
|
|
_ => return ty,
|
|
}
|
|
}
|
|
log::error!("Inference variable still not resolved: {:?}", ty);
|
|
ty
|
|
}
|
|
|
|
/// Resolves the type completely; type variables without known type are
|
|
/// replaced by Ty::Unknown.
|
|
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
|
|
ty.fold(&mut |ty| match ty {
|
|
Ty::Infer(tv) => {
|
|
let inner = tv.to_inner();
|
|
if tv_stack.contains(&inner) {
|
|
tested_by!(type_var_cycles_resolve_completely);
|
|
// recursive type
|
|
return tv.fallback_value();
|
|
}
|
|
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
|
|
// known_ty may contain other variables that are known by now
|
|
tv_stack.push(inner);
|
|
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
|
|
tv_stack.pop();
|
|
result
|
|
} else {
|
|
tv.fallback_value()
|
|
}
|
|
}
|
|
_ => ty,
|
|
})
|
|
}
|
|
|
|
fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path) -> Option<Ty> {
|
|
let resolved = resolver.resolve_path(self.db, &path).take_values()?;
|
|
match resolved {
|
|
Resolution::Def(def) => {
|
|
let typable: Option<TypableDef> = def.into();
|
|
let typable = typable?;
|
|
let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
|
|
let ty = self.db.type_for_def(typable).apply_substs(substs);
|
|
let ty = self.insert_type_vars(ty);
|
|
Some(ty)
|
|
}
|
|
Resolution::LocalBinding(pat) => {
|
|
let ty = self.type_of_pat.get(pat)?;
|
|
let ty = self.resolve_ty_as_possible(&mut vec![], ty.clone());
|
|
Some(ty)
|
|
}
|
|
Resolution::GenericParam(..) => {
|
|
// generic params can't refer to values... yet
|
|
None
|
|
}
|
|
Resolution::SelfType(_) => {
|
|
log::error!("path expr {:?} resolved to Self type in values ns", path);
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
|
|
let path = match path {
|
|
Some(path) => path,
|
|
None => return (Ty::Unknown, None),
|
|
};
|
|
let resolver = &self.resolver;
|
|
let typable: Option<TypableDef> = match resolver.resolve_path(self.db, &path).take_types() {
|
|
Some(Resolution::Def(def)) => def.into(),
|
|
Some(Resolution::LocalBinding(..)) => {
|
|
// this cannot happen
|
|
log::error!("path resolved to local binding in type ns");
|
|
return (Ty::Unknown, None);
|
|
}
|
|
Some(Resolution::GenericParam(..)) => {
|
|
// generic params can't be used in struct literals
|
|
return (Ty::Unknown, None);
|
|
}
|
|
Some(Resolution::SelfType(..)) => {
|
|
// TODO this is allowed in an impl for a struct, handle this
|
|
return (Ty::Unknown, None);
|
|
}
|
|
None => return (Ty::Unknown, None),
|
|
};
|
|
let def = match typable {
|
|
None => return (Ty::Unknown, None),
|
|
Some(it) => it,
|
|
};
|
|
// TODO remove the duplication between here and `Ty::from_path`?
|
|
let substs = Ty::substs_from_path(self.db, resolver, path, def);
|
|
match def {
|
|
TypableDef::Struct(s) => {
|
|
let ty = type_for_struct(self.db, s);
|
|
let ty = self.insert_type_vars(ty.apply_substs(substs));
|
|
(ty, Some(s.into()))
|
|
}
|
|
TypableDef::EnumVariant(var) => {
|
|
let ty = type_for_enum_variant(self.db, var);
|
|
let ty = self.insert_type_vars(ty.apply_substs(substs));
|
|
(ty, Some(var.into()))
|
|
}
|
|
TypableDef::Function(_) | TypableDef::Enum(_) => (Ty::Unknown, None),
|
|
}
|
|
}
|
|
|
|
fn infer_tuple_struct_pat(
|
|
&mut self,
|
|
path: Option<&Path>,
|
|
subpats: &[PatId],
|
|
expected: &Ty,
|
|
) -> Ty {
|
|
let (ty, def) = self.resolve_variant(path);
|
|
|
|
self.unify(&ty, expected);
|
|
|
|
let substs = ty.substs().unwrap_or_else(Substs::empty);
|
|
|
|
for (i, &subpat) in subpats.iter().enumerate() {
|
|
let expected_ty = def
|
|
.and_then(|d| d.field(self.db, &Name::tuple_field_name(i)))
|
|
.map_or(Ty::Unknown, |field| field.ty(self.db))
|
|
.subst(&substs);
|
|
self.infer_pat(subpat, &expected_ty);
|
|
}
|
|
|
|
ty
|
|
}
|
|
|
|
fn infer_struct_pat(&mut self, path: Option<&Path>, subpats: &[FieldPat], expected: &Ty) -> Ty {
|
|
let (ty, def) = self.resolve_variant(path);
|
|
|
|
self.unify(&ty, expected);
|
|
|
|
let substs = ty.substs().unwrap_or_else(Substs::empty);
|
|
|
|
for subpat in subpats {
|
|
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
|
|
let expected_ty =
|
|
matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs);
|
|
self.infer_pat(subpat.pat, &expected_ty);
|
|
}
|
|
|
|
ty
|
|
}
|
|
|
|
fn infer_pat(&mut self, pat: PatId, expected: &Ty) -> Ty {
|
|
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
|
|
|
let ty = match &body[pat] {
|
|
Pat::Tuple(ref args) => {
|
|
let expectations = match *expected {
|
|
Ty::Tuple(ref tuple_args) => &**tuple_args,
|
|
_ => &[],
|
|
};
|
|
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
|
|
|
|
let inner_tys = args
|
|
.iter()
|
|
.zip(expectations_iter)
|
|
.map(|(&pat, ty)| self.infer_pat(pat, ty))
|
|
.collect::<Vec<_>>()
|
|
.into();
|
|
|
|
Ty::Tuple(inner_tys)
|
|
}
|
|
Pat::Ref { pat, mutability } => {
|
|
let expectation = match *expected {
|
|
Ty::Ref(ref sub_ty, exp_mut) => {
|
|
if *mutability != exp_mut {
|
|
// TODO: emit type error?
|
|
}
|
|
&**sub_ty
|
|
}
|
|
_ => &Ty::Unknown,
|
|
};
|
|
let subty = self.infer_pat(*pat, expectation);
|
|
Ty::Ref(subty.into(), *mutability)
|
|
}
|
|
Pat::TupleStruct { path: ref p, args: ref subpats } => {
|
|
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected)
|
|
}
|
|
Pat::Struct { path: ref p, args: ref fields } => {
|
|
self.infer_struct_pat(p.as_ref(), fields, expected)
|
|
}
|
|
Pat::Path(path) => {
|
|
// TODO use correct resolver for the surrounding expression
|
|
let resolver = self.resolver.clone();
|
|
self.infer_path_expr(&resolver, &path).unwrap_or(Ty::Unknown)
|
|
}
|
|
Pat::Bind { mode, name: _name, subpat } => {
|
|
let inner_ty = if let Some(subpat) = subpat {
|
|
self.infer_pat(*subpat, expected)
|
|
} else {
|
|
expected.clone()
|
|
};
|
|
let inner_ty = self.insert_type_vars_shallow(inner_ty);
|
|
|
|
let bound_ty = match mode {
|
|
BindingAnnotation::Ref => Ty::Ref(inner_ty.clone().into(), Mutability::Shared),
|
|
BindingAnnotation::RefMut => Ty::Ref(inner_ty.clone().into(), Mutability::Mut),
|
|
BindingAnnotation::Mutable | BindingAnnotation::Unannotated => inner_ty.clone(),
|
|
};
|
|
let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
|
|
self.write_pat_ty(pat, bound_ty);
|
|
return inner_ty;
|
|
}
|
|
_ => Ty::Unknown,
|
|
};
|
|
// use a new type variable if we got Ty::Unknown here
|
|
let ty = self.insert_type_vars_shallow(ty);
|
|
self.unify(&ty, expected);
|
|
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
|
|
self.write_pat_ty(pat, ty.clone());
|
|
ty
|
|
}
|
|
|
|
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
|
|
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
|
let ty = match &body[tgt_expr] {
|
|
Expr::Missing => Ty::Unknown,
|
|
Expr::If { condition, then_branch, else_branch } => {
|
|
// if let is desugared to match, so this is always simple if
|
|
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
|
|
let then_ty = self.infer_expr(*then_branch, expected);
|
|
match else_branch {
|
|
Some(else_branch) => {
|
|
self.infer_expr(*else_branch, expected);
|
|
}
|
|
None => {
|
|
// no else branch -> unit
|
|
self.unify(&then_ty, &Ty::unit()); // actually coerce
|
|
}
|
|
};
|
|
then_ty
|
|
}
|
|
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
|
|
Expr::Loop { body } => {
|
|
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
|
|
// TODO handle break with value
|
|
Ty::Never
|
|
}
|
|
Expr::While { condition, body } => {
|
|
// while let is desugared to a match loop, so this is always simple while
|
|
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
|
|
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
|
|
Ty::unit()
|
|
}
|
|
Expr::For { iterable, body, pat } => {
|
|
let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
|
|
self.infer_pat(*pat, &Ty::Unknown);
|
|
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
|
|
Ty::unit()
|
|
}
|
|
Expr::Lambda { body, args, arg_types } => {
|
|
assert_eq!(args.len(), arg_types.len());
|
|
|
|
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
|
|
let expected = if let Some(type_ref) = arg_type {
|
|
let ty = self.make_ty(type_ref);
|
|
ty
|
|
} else {
|
|
Ty::Unknown
|
|
};
|
|
self.infer_pat(*arg_pat, &expected);
|
|
}
|
|
|
|
// TODO: infer lambda type etc.
|
|
let _body_ty = self.infer_expr(*body, &Expectation::none());
|
|
Ty::Unknown
|
|
}
|
|
Expr::Call { callee, args } => {
|
|
let callee_ty = self.infer_expr(*callee, &Expectation::none());
|
|
let (param_tys, ret_ty) = match &callee_ty {
|
|
Ty::FnPtr(sig) => (sig.input.clone(), sig.output.clone()),
|
|
Ty::FnDef { substs, sig, .. } => {
|
|
let ret_ty = sig.output.clone().subst(&substs);
|
|
let param_tys =
|
|
sig.input.iter().map(|ty| ty.clone().subst(&substs)).collect();
|
|
(param_tys, ret_ty)
|
|
}
|
|
_ => {
|
|
// not callable
|
|
// TODO report an error?
|
|
(Vec::new(), Ty::Unknown)
|
|
}
|
|
};
|
|
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
|
|
for (arg, param) in args.iter().zip(param_iter) {
|
|
self.infer_expr(*arg, &Expectation::has_type(param));
|
|
}
|
|
ret_ty
|
|
}
|
|
Expr::MethodCall { receiver, args, method_name, generic_args } => {
|
|
let receiver_ty = self.infer_expr(*receiver, &Expectation::none());
|
|
let resolved = receiver_ty.clone().lookup_method(self.db, method_name);
|
|
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
|
|
Some((ty, func)) => {
|
|
self.write_method_resolution(tgt_expr, func);
|
|
(ty, self.db.type_for_def(func.into()), Some(func.generic_params(self.db)))
|
|
}
|
|
None => (Ty::Unknown, receiver_ty, None),
|
|
};
|
|
// handle provided type arguments
|
|
let method_ty = if let Some(generic_args) = generic_args {
|
|
// if args are provided, it should be all of them, but we can't rely on that
|
|
let param_count = def_generics.map(|g| g.params.len()).unwrap_or(0);
|
|
let mut new_substs = Vec::with_capacity(generic_args.args.len());
|
|
for arg in generic_args.args.iter().take(param_count) {
|
|
match arg {
|
|
GenericArg::Type(type_ref) => {
|
|
let ty = self.make_ty(type_ref);
|
|
new_substs.push(ty);
|
|
}
|
|
}
|
|
}
|
|
let substs = method_ty.substs().unwrap_or_else(Substs::empty);
|
|
let substs = substs.replace_tail(new_substs);
|
|
method_ty.apply_substs(substs)
|
|
} else {
|
|
method_ty
|
|
};
|
|
let method_ty = self.insert_type_vars(method_ty);
|
|
let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty {
|
|
Ty::FnPtr(sig) => {
|
|
if !sig.input.is_empty() {
|
|
(sig.input[0].clone(), sig.input[1..].to_vec(), sig.output.clone())
|
|
} else {
|
|
(Ty::Unknown, Vec::new(), sig.output.clone())
|
|
}
|
|
}
|
|
Ty::FnDef { substs, sig, .. } => {
|
|
let ret_ty = sig.output.clone().subst(&substs);
|
|
|
|
if !sig.input.is_empty() {
|
|
let mut arg_iter = sig.input.iter().map(|ty| ty.clone().subst(&substs));
|
|
let receiver_ty = arg_iter.next().unwrap();
|
|
(receiver_ty, arg_iter.collect(), ret_ty)
|
|
} else {
|
|
(Ty::Unknown, Vec::new(), ret_ty)
|
|
}
|
|
}
|
|
_ => (Ty::Unknown, Vec::new(), Ty::Unknown),
|
|
};
|
|
// Apply autoref so the below unification works correctly
|
|
let actual_receiver_ty = match expected_receiver_ty {
|
|
Ty::Ref(_, mutability) => Ty::Ref(Arc::new(derefed_receiver_ty), mutability),
|
|
_ => derefed_receiver_ty,
|
|
};
|
|
self.unify(&expected_receiver_ty, &actual_receiver_ty);
|
|
|
|
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
|
|
for (arg, param) in args.iter().zip(param_iter) {
|
|
self.infer_expr(*arg, &Expectation::has_type(param));
|
|
}
|
|
ret_ty
|
|
}
|
|
Expr::Match { expr, arms } => {
|
|
let expected = if expected.ty == Ty::Unknown {
|
|
Expectation::has_type(self.new_type_var())
|
|
} else {
|
|
expected.clone()
|
|
};
|
|
let input_ty = self.infer_expr(*expr, &Expectation::none());
|
|
|
|
for arm in arms {
|
|
for &pat in &arm.pats {
|
|
let _pat_ty = self.infer_pat(pat, &input_ty);
|
|
}
|
|
if let Some(guard_expr) = arm.guard {
|
|
self.infer_expr(guard_expr, &Expectation::has_type(Ty::Bool));
|
|
}
|
|
self.infer_expr(arm.expr, &expected);
|
|
}
|
|
|
|
expected.ty
|
|
}
|
|
Expr::Path(p) => {
|
|
// TODO this could be more efficient...
|
|
let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
|
|
self.infer_path_expr(&resolver, p).unwrap_or(Ty::Unknown)
|
|
}
|
|
Expr::Continue => Ty::Never,
|
|
Expr::Break { expr } => {
|
|
if let Some(expr) = expr {
|
|
// TODO handle break with value
|
|
self.infer_expr(*expr, &Expectation::none());
|
|
}
|
|
Ty::Never
|
|
}
|
|
Expr::Return { expr } => {
|
|
if let Some(expr) = expr {
|
|
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
|
|
}
|
|
Ty::Never
|
|
}
|
|
Expr::StructLit { path, fields, spread } => {
|
|
let (ty, def_id) = self.resolve_variant(path.as_ref());
|
|
let substs = ty.substs().unwrap_or_else(Substs::empty);
|
|
for field in fields {
|
|
let field_ty = def_id
|
|
.and_then(|it| it.field(self.db, &field.name))
|
|
.map_or(Ty::Unknown, |field| field.ty(self.db))
|
|
.subst(&substs);
|
|
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
|
|
}
|
|
if let Some(expr) = spread {
|
|
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
|
|
}
|
|
ty
|
|
}
|
|
Expr::Field { expr, name } => {
|
|
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
|
|
let ty = receiver_ty
|
|
.autoderef(self.db)
|
|
.find_map(|derefed_ty| match derefed_ty {
|
|
Ty::Tuple(fields) => {
|
|
let i = name.to_string().parse::<usize>().ok();
|
|
i.and_then(|i| fields.get(i).cloned())
|
|
}
|
|
Ty::Adt { def_id: AdtDef::Struct(s), ref substs, .. } => {
|
|
s.field(self.db, name).map(|field| {
|
|
self.write_field_resolution(tgt_expr, field);
|
|
field.ty(self.db).subst(substs)
|
|
})
|
|
}
|
|
_ => None,
|
|
})
|
|
.unwrap_or(Ty::Unknown);
|
|
self.insert_type_vars(ty)
|
|
}
|
|
Expr::Try { expr } => {
|
|
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
|
|
Ty::Unknown
|
|
}
|
|
Expr::Cast { expr, type_ref } => {
|
|
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
|
|
let cast_ty = self.make_ty(type_ref);
|
|
// TODO check the cast...
|
|
cast_ty
|
|
}
|
|
Expr::Ref { expr, mutability } => {
|
|
let expectation = if let Ty::Ref(ref subty, expected_mutability) = expected.ty {
|
|
if expected_mutability == Mutability::Mut && *mutability == Mutability::Shared {
|
|
// TODO: throw type error - expected mut reference but found shared ref,
|
|
// which cannot be coerced
|
|
}
|
|
Expectation::has_type((**subty).clone())
|
|
} else {
|
|
Expectation::none()
|
|
};
|
|
// TODO reference coercions etc.
|
|
let inner_ty = self.infer_expr(*expr, &expectation);
|
|
Ty::Ref(Arc::new(inner_ty), *mutability)
|
|
}
|
|
Expr::UnaryOp { expr, op } => {
|
|
let inner_ty = self.infer_expr(*expr, &Expectation::none());
|
|
match op {
|
|
UnaryOp::Deref => {
|
|
if let Some(derefed_ty) = inner_ty.builtin_deref() {
|
|
derefed_ty
|
|
} else {
|
|
// TODO Deref::deref
|
|
Ty::Unknown
|
|
}
|
|
}
|
|
UnaryOp::Neg => {
|
|
match inner_ty {
|
|
Ty::Int(primitive::UncertainIntTy::Unknown)
|
|
| Ty::Int(primitive::UncertainIntTy::Signed(..))
|
|
| Ty::Infer(InferTy::IntVar(..))
|
|
| Ty::Infer(InferTy::FloatVar(..))
|
|
| Ty::Float(..) => inner_ty,
|
|
// TODO: resolve ops::Neg trait
|
|
_ => Ty::Unknown,
|
|
}
|
|
}
|
|
UnaryOp::Not => {
|
|
match inner_ty {
|
|
Ty::Bool | Ty::Int(_) | Ty::Infer(InferTy::IntVar(..)) => inner_ty,
|
|
// TODO: resolve ops::Not trait for inner_ty
|
|
_ => Ty::Unknown,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Expr::BinaryOp { lhs, rhs, op } => match op {
|
|
Some(op) => {
|
|
let lhs_expectation = match op {
|
|
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
|
|
Expectation::has_type(Ty::Bool)
|
|
}
|
|
_ => Expectation::none(),
|
|
};
|
|
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
|
|
// TODO: find implementation of trait corresponding to operation
|
|
// symbol and resolve associated `Output` type
|
|
let rhs_expectation = binary_op_rhs_expectation(*op, lhs_ty);
|
|
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
|
|
|
|
// TODO: similar as above, return ty is often associated trait type
|
|
binary_op_return_ty(*op, rhs_ty)
|
|
}
|
|
_ => Ty::Unknown,
|
|
},
|
|
Expr::Tuple { exprs } => {
|
|
let mut ty_vec = Vec::with_capacity(exprs.len());
|
|
for arg in exprs.iter() {
|
|
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
|
|
}
|
|
|
|
Ty::Tuple(Arc::from(ty_vec))
|
|
}
|
|
Expr::Array { exprs } => {
|
|
let elem_ty = match &expected.ty {
|
|
Ty::Slice(inner) | Ty::Array(inner) => Ty::clone(&inner),
|
|
_ => self.new_type_var(),
|
|
};
|
|
|
|
for expr in exprs.iter() {
|
|
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
|
|
}
|
|
|
|
Ty::Array(Arc::new(elem_ty))
|
|
}
|
|
Expr::Literal(lit) => match lit {
|
|
Literal::Bool(..) => Ty::Bool,
|
|
Literal::String(..) => Ty::Ref(Arc::new(Ty::Str), Mutability::Shared),
|
|
Literal::ByteString(..) => {
|
|
let byte_type = Arc::new(Ty::Int(primitive::UncertainIntTy::Unsigned(
|
|
primitive::UintTy::U8,
|
|
)));
|
|
let slice_type = Arc::new(Ty::Slice(byte_type));
|
|
Ty::Ref(slice_type, Mutability::Shared)
|
|
}
|
|
Literal::Char(..) => Ty::Char,
|
|
Literal::Int(_v, ty) => Ty::Int(*ty),
|
|
Literal::Float(_v, ty) => Ty::Float(*ty),
|
|
},
|
|
};
|
|
// use a new type variable if we got Ty::Unknown here
|
|
let ty = self.insert_type_vars_shallow(ty);
|
|
self.unify(&ty, &expected.ty);
|
|
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
|
|
self.write_expr_ty(tgt_expr, ty.clone());
|
|
ty
|
|
}
|
|
|
|
fn infer_block(
|
|
&mut self,
|
|
statements: &[Statement],
|
|
tail: Option<ExprId>,
|
|
expected: &Expectation,
|
|
) -> Ty {
|
|
for stmt in statements {
|
|
match stmt {
|
|
Statement::Let { pat, type_ref, initializer } => {
|
|
let decl_ty =
|
|
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
|
|
let decl_ty = self.insert_type_vars(decl_ty);
|
|
let ty = if let Some(expr) = initializer {
|
|
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
|
|
expr_ty
|
|
} else {
|
|
decl_ty
|
|
};
|
|
|
|
self.infer_pat(*pat, &ty);
|
|
}
|
|
Statement::Expr(expr) => {
|
|
self.infer_expr(*expr, &Expectation::none());
|
|
}
|
|
}
|
|
}
|
|
let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() };
|
|
ty
|
|
}
|
|
|
|
fn collect_fn_signature(&mut self, signature: &FnSignature) {
|
|
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
|
for (type_ref, pat) in signature.params().iter().zip(body.params()) {
|
|
let ty = self.make_ty(type_ref);
|
|
|
|
self.infer_pat(*pat, &ty);
|
|
}
|
|
self.return_ty = self.make_ty(signature.ret_type());
|
|
}
|
|
|
|
fn infer_body(&mut self) {
|
|
self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()));
|
|
}
|
|
}
|
|
|
|
pub fn infer(db: &impl HirDatabase, func: Function) -> Arc<InferenceResult> {
|
|
db.check_canceled();
|
|
let body = func.body(db);
|
|
let resolver = func.resolver(db);
|
|
let mut ctx = InferenceContext::new(db, body, resolver);
|
|
|
|
let signature = func.signature(db);
|
|
ctx.collect_fn_signature(&signature);
|
|
|
|
ctx.infer_body();
|
|
|
|
Arc::new(ctx.resolve_all())
|
|
}
|