rust-analyzer/crates/ra_syntax/src/lib.rs
Aleksey Kladov 773ad2edb3 simiplify
2019-07-21 13:34:15 +03:00

318 lines
10 KiB
Rust

//! Syntax Tree library used throughout the rust analyzer.
//!
//! Properties:
//! - easy and fast incremental re-parsing
//! - graceful handling of errors
//! - full-fidelity representation (*any* text can be precisely represented as
//! a syntax tree)
//!
//! For more information, see the [RFC]. Current implementation is inspired by
//! the [Swift] one.
//!
//! The most interesting modules here are `syntax_node` (which defines concrete
//! syntax tree) and `ast` (which defines abstract syntax tree on top of the
//! CST). The actual parser live in a separate `ra_parser` crate, though the
//! lexer lives in this crate.
//!
//! See `api_walkthrough` test in this file for a quick API tour!
//!
//! [RFC]: <https://github.com/rust-lang/rfcs/pull/2256>
//! [Swift]: <https://github.com/apple/swift/blob/13d593df6f359d0cb2fc81cfaac273297c539455/lib/Syntax/README.md>
mod syntax_node;
mod syntax_error;
mod parsing;
mod validation;
mod ptr;
pub mod algo;
pub mod ast;
#[doc(hidden)]
pub mod fuzz;
use std::{fmt::Write, marker::PhantomData, sync::Arc};
use ra_text_edit::AtomTextEdit;
use crate::syntax_node::GreenNode;
pub use crate::{
algo::InsertPosition,
ast::{AstNode, AstToken},
parsing::{classify_literal, tokenize, Token},
ptr::{AstPtr, SyntaxNodePtr},
syntax_error::{Location, SyntaxError, SyntaxErrorKind},
syntax_node::{
Direction, NodeOrToken, SyntaxElement, SyntaxNode, SyntaxToken, SyntaxTreeBuilder,
},
};
pub use ra_parser::{SyntaxKind, T};
pub use rowan::{SmolStr, SyntaxText, TextRange, TextUnit, TokenAtOffset, WalkEvent};
/// `Parse` is the result of the parsing: a syntax tree and a collection of
/// errors.
///
/// Note that we always produce a syntax tree, even for completely invalid
/// files.
#[derive(Debug, PartialEq, Eq)]
pub struct Parse<T> {
green: GreenNode,
errors: Arc<Vec<SyntaxError>>,
_ty: PhantomData<fn() -> T>,
}
impl<T> Clone for Parse<T> {
fn clone(&self) -> Parse<T> {
Parse { green: self.green.clone(), errors: self.errors.clone(), _ty: PhantomData }
}
}
impl<T> Parse<T> {
fn new(green: GreenNode, errors: Vec<SyntaxError>) -> Parse<T> {
Parse { green, errors: Arc::new(errors), _ty: PhantomData }
}
pub fn syntax_node(&self) -> SyntaxNode {
SyntaxNode::new_root(self.green.clone())
}
}
impl<T: AstNode> Parse<T> {
pub fn to_syntax(self) -> Parse<SyntaxNode> {
Parse { green: self.green, errors: self.errors, _ty: PhantomData }
}
pub fn tree(&self) -> T {
T::cast(self.syntax_node()).unwrap()
}
pub fn errors(&self) -> &[SyntaxError] {
&*self.errors
}
pub fn ok(self) -> Result<T, Arc<Vec<SyntaxError>>> {
if self.errors.is_empty() {
Ok(self.tree())
} else {
Err(self.errors)
}
}
}
impl Parse<SyntaxNode> {
pub fn cast<N: AstNode>(self) -> Option<Parse<N>> {
if N::cast(self.syntax_node()).is_some() {
Some(Parse { green: self.green, errors: self.errors, _ty: PhantomData })
} else {
None
}
}
}
impl Parse<SourceFile> {
pub fn debug_dump(&self) -> String {
let mut buf = format!("{:#?}", self.tree().syntax());
for err in self.errors.iter() {
writeln!(buf, "error {:?}: {}", err.location(), err.kind()).unwrap();
}
buf
}
pub fn reparse(&self, edit: &AtomTextEdit) -> Parse<SourceFile> {
self.incremental_reparse(edit).unwrap_or_else(|| self.full_reparse(edit))
}
fn incremental_reparse(&self, edit: &AtomTextEdit) -> Option<Parse<SourceFile>> {
// FIXME: validation errors are not handled here
parsing::incremental_reparse(self.tree().syntax(), edit, self.errors.to_vec()).map(
|(green_node, errors, _reparsed_range)| Parse {
green: green_node,
errors: Arc::new(errors),
_ty: PhantomData,
},
)
}
fn full_reparse(&self, edit: &AtomTextEdit) -> Parse<SourceFile> {
let text = edit.apply(self.tree().syntax().text().to_string());
SourceFile::parse(&text)
}
}
/// `SourceFile` represents a parse tree for a single Rust file.
pub use crate::ast::SourceFile;
impl SourceFile {
pub fn parse(text: &str) -> Parse<SourceFile> {
let (green, mut errors) = parsing::parse_text(text);
let root = SyntaxNode::new_root(green.clone());
if cfg!(debug_assertions) {
validation::validate_block_structure(&root);
}
errors.extend(validation::validate(&root));
assert_eq!(root.kind(), SyntaxKind::SOURCE_FILE);
Parse { green, errors: Arc::new(errors), _ty: PhantomData }
}
}
/// This test does not assert anything and instead just shows off the crate's
/// API.
#[test]
fn api_walkthrough() {
use ast::{ModuleItemOwner, NameOwner};
let source_code = "
fn foo() {
1 + 1
}
";
// `SourceFile` is the main entry point.
//
// The `parse` method returns a `Parse` -- a pair of syntax tree and a list
// of errors. That is, syntax tree is constructed even in presence of errors.
let parse = SourceFile::parse(source_code);
assert!(parse.errors().is_empty());
// The `tree` method returns an owned syntax node of type `SourceFile`.
// Owned nodes are cheap: inside, they are `Rc` handles to the underling data.
let file: SourceFile = parse.tree();
// `SourceFile` is the root of the syntax tree. We can iterate file's items.
// Let's fetch the `foo` function.
let mut func = None;
for item in file.items() {
match item.kind() {
ast::ModuleItemKind::FnDef(f) => func = Some(f),
_ => unreachable!(),
}
}
let func: ast::FnDef = func.unwrap();
// Each AST node has a bunch of getters for children. All getters return
// `Option`s though, to account for incomplete code. Some getters are common
// for several kinds of node. In this case, a trait like `ast::NameOwner`
// usually exists. By convention, all ast types should be used with `ast::`
// qualifier.
let name: Option<ast::Name> = func.name();
let name = name.unwrap();
assert_eq!(name.text(), "foo");
// Let's get the `1 + 1` expression!
let block: ast::Block = func.body().unwrap();
let expr: ast::Expr = block.expr().unwrap();
// "Enum"-like nodes are represented using the "kind" pattern. It allows us
// to match exhaustively against all flavors of nodes, while maintaining
// internal representation flexibility. The drawback is that one can't write
// nested matches as one pattern.
let bin_expr: ast::BinExpr = match expr.kind() {
ast::ExprKind::BinExpr(e) => e,
_ => unreachable!(),
};
// Besides the "typed" AST API, there's an untyped CST one as well.
// To switch from AST to CST, call `.syntax()` method:
let expr_syntax: &SyntaxNode = expr.syntax();
// Note how `expr` and `bin_expr` are in fact the same node underneath:
assert!(expr_syntax == bin_expr.syntax());
// To go from CST to AST, `AstNode::cast` function is used:
let _expr: ast::Expr = match ast::Expr::cast(expr_syntax.clone()) {
Some(e) => e,
None => unreachable!(),
};
// The two properties each syntax node has is a `SyntaxKind`:
assert_eq!(expr_syntax.kind(), SyntaxKind::BIN_EXPR);
// And text range:
assert_eq!(expr_syntax.text_range(), TextRange::from_to(32.into(), 37.into()));
// You can get node's text as a `SyntaxText` object, which will traverse the
// tree collecting token's text:
let text: SyntaxText = expr_syntax.text();
assert_eq!(text.to_string(), "1 + 1");
// There's a bunch of traversal methods on `SyntaxNode`:
assert_eq!(expr_syntax.parent().as_ref(), Some(block.syntax()));
assert_eq!(block.syntax().first_child_or_token().map(|it| it.kind()), Some(T!['{']));
assert_eq!(
expr_syntax.next_sibling_or_token().map(|it| it.kind()),
Some(SyntaxKind::WHITESPACE)
);
// As well as some iterator helpers:
let f = expr_syntax.ancestors().find_map(ast::FnDef::cast);
assert_eq!(f, Some(func));
assert!(expr_syntax.siblings_with_tokens(Direction::Next).any(|it| it.kind() == T!['}']));
assert_eq!(
expr_syntax.descendants_with_tokens().count(),
8, // 5 tokens `1`, ` `, `+`, ` `, `!`
// 2 child literal expressions: `1`, `1`
// 1 the node itself: `1 + 1`
);
// There's also a `preorder` method with a more fine-grained iteration control:
let mut buf = String::new();
let mut indent = 0;
for event in expr_syntax.preorder_with_tokens() {
match event {
WalkEvent::Enter(node) => {
let text = match &node {
NodeOrToken::Node(it) => it.text().to_string(),
NodeOrToken::Token(it) => it.text().to_string(),
};
buf += &format!("{:indent$}{:?} {:?}\n", " ", text, node.kind(), indent = indent);
indent += 2;
}
WalkEvent::Leave(_) => indent -= 2,
}
}
assert_eq!(indent, 0);
assert_eq!(
buf.trim(),
r#"
"1 + 1" BIN_EXPR
"1" LITERAL
"1" INT_NUMBER
" " WHITESPACE
"+" PLUS
" " WHITESPACE
"1" LITERAL
"1" INT_NUMBER
"#
.trim()
);
// To recursively process the tree, there are three approaches:
// 1. explicitly call getter methods on AST nodes.
// 2. use descendants and `AstNode::cast`.
// 3. use descendants and the visitor.
//
// Here's how the first one looks like:
let exprs_cast: Vec<String> = file
.syntax()
.descendants()
.filter_map(ast::Expr::cast)
.map(|expr| expr.syntax().text().to_string())
.collect();
// An alternative is to use a visitor. The visitor does not do traversal
// automatically (so it's more akin to a generic lambda) and is constructed
// from closures. This seems more flexible than a single generated visitor
// trait.
use algo::visit::{visitor, Visitor};
let mut exprs_visit = Vec::new();
for node in file.syntax().descendants() {
if let Some(result) =
visitor().visit::<ast::Expr, _>(|expr| expr.syntax().text().to_string()).accept(&node)
{
exprs_visit.push(result);
}
}
assert_eq!(exprs_cast, exprs_visit);
}